Electronic Supplementary Information

Experimental section

Materials: NH₄Cl, N₂H₄·H₂O, HNO₃, HCl, C₂H₅OH, and Na₂SO₄ were purchased from Chengdu Kelong Chemical Reagent Factory. NaOH, C₇H₅NaO₃, NaClO, C₅FeN₆Na₂O, para-(dimethylamino) benzaldehyde (p-C₉H₁₁NO), and stannic chloride pentahydrate (SnCl₄·5H₂O) were purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. All the reagents were used as received without further purification. CC was purchased from Hongshan District, Wuhan Instrument Surgical Instruments business, and was pretreated in HNO₃, then was sequentially cleaned in deionized water and C₂H₅OH several times by sonication to remove the surface impurities. The water used throughout all experiments was purified through a Millipore system.

Preparation of SnO₂/**CC**: SnCl₄·5H₂O (0.84 mmol) and NaOH (10.08 mmol) were dissolved in deionized water (28 mL) in a 50 mL beaker. After being magnetically stirred for 20 min in air at room temperature, the mixture solution and a piece of CC (2 cm × 3 cm) were transferred to a Teflon-lined stainless-steel autoclave and maintained at 200 °C for 24 h. After the autoclave naturally cooled down to room temperature, the sample was taken out and thoroughly washed with deionized water and C₂H₅OH several times alternatively, then dried in air at 60 °C for 6 h. The loading for SnO₂ on CC was determined to be 2.25 mg cm⁻².

Characterizations: XRD data were obtained from a Shimazu XRD-6100 diffractometer with Cu Kα radiation (40 kV, 30 mA) of wavelength 0.154 nm (Japan). SEM measurements were carried out on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV. TEM images were obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer with the exciting source of Mg. UV-Vis absorption spectra were recorded on a UV-Vis spectrophotometer (Shimadazu, UV-1800). Raman spectrum was collected on Renishaw with a 532 nm laser. A gas chromatograph (SHIMADZU, GC-2014C) equipped with MolSieve 5A column and Ar carrier gas was used for H₂ quantification. Gas-phase product was sampled every 1000 s using a gas-tight syringe (Hamilton). The N₂-TPD spectrum was tested by TP-5076 TPD experimental device.

Electrochemical measurements: N₂ reduction experiments were carried out in a twocompartment cell under ambient conditions, which was separated by proton exchange membrane. The membrane was protonated by first boiling in ultrapure water for 1 h and treating in H₂O₂ (5%) aqueous solution for another 1 h. And then, the membrane was treated in 0.5 M H₂SO₄ for 3 h and finally in water for 6 h. All steps were performed at 80°C.¹ Electrochemical measurements were performed in a standard three-electrode system by a CHI 660E electrochemical analyzer (CHI Instruments, Inc., Shanghai) using SnO₂/CC (0.5×0.5 cm²) as working electrode, Ag/AgCl as reference electrode, and graphite rod as counter electrode. All experiments were carried out at room temperature (25 °C). For N₂ reduction experiments, the Na₂SO₄ electrolyte (0.1 M) was bubbled with N₂ for 30 min before measurement.

Determination of NH₃: Concentration of produced NH₃ was detected by UV-Vis absorption spectrophotometry with salicylic acid analysis method.² In detail, 4 mL electrolyte was taken from the cathodic chamber, then 50 µL oxidizing solution containing NaClO (ρ Cl = 4 ~ 4.9) and NaOH (0.75 M) was added into this solution. Subsequently, 500 µL coloring solution containing 0.4 M C₇H₅NaO₃ and 0.32 M NaOH, and 50 µL catalyst solution (0.1 g Na₂[Fe(CN)₅NO]·2H₂O diluted to 10 mL with deionized water) were added into the above solution. After standing at 25 °C for 1 h, the UV-Vis absorption spectrum was measured at awavelength of 660 nm. The concentration-absorbance curve (y = 0.729x + 0.022, R² = 0.999) was calibrated using standard NH₄Cl solution with NH₃ concentrations of 0.00, 0.01, 0.03, 0.05, 0.10, 0.20, and 0.30 µg mL⁻¹ in 0.1 M Na₂SO₄ and it shows good linear relation of absorbances value with NH₃ concentrations by three times independent calibrations.

Determination of N₂**H**₄: N₂H₄ presented was estimated by the method of Watt and Chrisp.³ p-C₉H₁₁NO (5.99 g), HCI (30 mL), and C₂H₅OH (300 mL) were mixed and used as a color reagent. Calibration curve was plotted as follows. We prepared a series of 5 mL standard N₂H₄ solutions with the concentrations of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 μ g mL⁻¹ in 0.1 M Na₂SO₄, and separately mixed with 5 mL above prepared color reagent. After stirring the mixed solution for 10 min at room temperature, the absorbance of the resulting solution was measured at 455 nm, and the yields of N₂H₄ were estimated from a standard curve.

Calibration curve (y = 1.198 x + 0.0519, $R^2 = 0.999$) shows good linear relation of absorbance with N₂H₄ concentration by three times independent calibrations.

Calculations of NH₃ yield rate and FE: NH₃ yield rate is calculated using the following equation:

NH₃ yield rate =
$$(c_{NH3} \times V) / (17 \times t \times A)$$
 (1)

FE is calculated according to following equation:

 $FE = 3 \times F \times c_{NH3} \times V / (17 \times Q)$ ⁽²⁾

Where c_{NH3} is the measured NH₃ concentration; V is the volume of the cathodic reaction electrolyte; t is the potential applied time; A is the geometric area of the cathode (0.5 × 0.5 cm²); F is the Faraday constant; and Q is the quantity of applied electricity.

Fig. S1. SEM images for bare CC.

Fig. S2. FE-SEM image for SnO₂/CC.

Fig. S3. TEM image for SnO₂.

Fig. S4. N₂ TPD profile of SnO₂.

Fig. S5. LSV curves of SnO_2/CC in Ar- and N_2 -saturated 0.1 M Na_2SO_4 with a scan rate of 5 mV s⁻¹.

Fig. S6. CV curves of SnO_2/CC in Ar- and N_2 -saturated 0.1 M Na_2SO_4 .

Fig. S7. (A) UV-Vis absorption spectra of various NH₃ concentrations after incubated for 1 h at room temperature. (B) Calibration curve used for calculation of NH₃ concentrations.

Fig. S8. (A) The amount of evolved H_2 at each given potential. (B) The calculated FEs of HER.

Fig. S9. UV-Vis absorption spectra of 0.1 M Na₂SO₄ electrolyte stained with NH₃ color agent before and after 2 h electrolysis at -0.7 and -0.8 V in Ar atmosphere on the SnO₂/CC electrode.

Fig. S10. UV-Vis absorption spectra of 0.1 M Na_2SO_4 electrolyte stained with NH_3 color agent before and after 2 h electrolysis in N_2 atmosphere on the SnO_2/CC electrode at opencircuit potential under ambient conditions.

Fig. S11. UV-Vis absorption spectra of 0.1 M Na₂SO₄ electrolyte (before and after using CC as working electrode at -0.7 V for 2 h in 0.1 M Na₂SO₄) after incubated with NH₃ color agent under ambient conditions.

Fig. S12. (A) UV-Vis absorption spectra of various N_2H_4 concentrations after incubated for 10 min at room temperature. (B) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S13. UV-Vis absorption spectra of 0.1 M Na₂SO₄ electrolyte (after cycling stability test at -0.7 V for 2 h) after incubated with NH₃ color agent.

Fig. S14. FE-SEM images of SnO_2/CC after NRR stability test in 0.1 M Na_2SO_4 .

Fig. S15. TEM image of SnO_2 after stability test in 0.1 M Na_2SO_4 .

Fig. S16. XRD pattern of SnO₂/CC after stability test.

Fig. S17. XPS spectra for SnO_2 in (A) Sn 3d and (B) O 1s regions after stability test.

Catalyst	Electrolyte	Temperatur e	NH ₃ yield rate	Ref.
SnO ₂ /CC	0.1 M Na ₂ SO ₄	25 °C	$\begin{array}{c} 1.47 \times 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2} \\ (4.03 \ \mu\text{g h}^{-1} \ \text{mg}^{-1}_{\text{cat.}}) \end{array}$	This work
Fe ₂ O ₃ -CNT	diluted KHCO ₃ aqueous solution	25 °C	$3.58 \times 10^{-12} \text{ mol s}^{-1} \text{ cm}^{-2}$	2
AuHNCs	0.5 M LiClO ₄	25 °C	$6.37 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	4
β-FeOOH	0.5 M LiClO ₄	25 °C	23.32 μ g h ⁻¹ mg ⁻¹ _{cat.}	5
MoS ₂ /CC	0.1 M Na ₂ SO ₄	25 °C	$8.08 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	6
TiO ₂	0.1 M Na ₂ SO ₄	25 °C	$9.16 \times 10^{-11} \text{ mol s}^{-1} \cdot \text{cm}^{-2}$	7
Li ⁺ - incorporated PEBCD/C	0.5 M Li ₂ SO ₄	25 °C	$2.58 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	8
Fe ₃ O ₄ /Ti	0.1 M Na ₂ SO ₄	25 °C	$5.6 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	9
Mo nanofilm	0.01 M H ₂ SO ₄	25 °C	$3.09 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	10
hollow Cr ₂ O ₃ microspheres	0.1 M Na ₂ SO ₄	25 °C	$25.3 \ \mu g \ h^{-1} \ m g^{-1}_{cat.}$	11
DR MoS ₂ nanoflower	0.1 M Na ₂ SO ₄	25 °C	29.28 µg h ⁻¹ mg ⁻¹ _{cat.}	12
Fe ₂ O ₃ nanorods	0.1 M Na ₂ SO ₄	25 °C	$15.9 \ \mu g \ h^{-1} \ m g^{-1}_{cat.}$	13
TiO ₂ -rGO	0.1 M Na ₂ SO ₄	25 °C	$15.13 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$	14
Bi ₄ V ₂ O ₁₁ /CeO ₂	0.1 M HCl	25 °C	23.2 μ g h ⁻¹ mg ⁻¹ _{cat.}	15
MoO ₃	0.1 M HCl	25 °C	29.43 μ g h ⁻¹ mg ⁻¹ _{cat.}	16
Mo ₂ N	0.1 M HCl	25 °C	78.4 μ g h ⁻¹ mg ⁻¹ _{cat.}	17
Nb ₂ O ₅ nanofiber	0.1 M HCl	25 °C	43.6 μ g h ⁻¹ mg ⁻¹ _{cat.}	18
VN/TM	0.1 M HCl	25 °C	$8.40 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	19
MoN NA/CC	0.1 M HCl	25 °C	$3.01 \times 10^{-10} \text{ mo1 s}^{-1} \text{ cm}^{-2}$	20
Ag nanosheet	0.1 M HCl	25 °C	$4.62 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	21
B ₄ C	0.1 M HCl	25 °C	$26.57 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	22
Au nanorods	0.1 M KOH	25 °C	$2.69 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	23

Table S1. Comparison of the NH_3 yield of SnO_2/CC with other reported aqueous-based NRR electrocatalysts.

Pd _{0.2} Cu _{0.8} /rGO 0.1 M KOH 25 °C 2.80 μ g h ⁻¹ mg ⁻¹ _{cat.}	24
--	----

Catalyst	Electrolyte	Temperature	FE	Ref.
SnO ₂ /CC	0.1 M Na ₂ SO ₄	25 °C	2.17%	This work
Fe ₂ O ₃ -CNT	diluted KHCO ₃ aqueous solution	25 °C	0.15%	2
MoS ₂ /CC	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	25 °C	1.17%	6
TiO ₂	0.1 M Na ₂ SO ₄	25 °C	2.5%	7
Li ⁺ -incorporated PEBCD/C	0.5 M Li ₂ SO ₄	25 °C	2.85%	8
Fe ₃ O ₄ /Ti	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	25 °C	2.6%	9
Mo nanofilm	0.01 M H ₂ SO ₄	25 °C	0.72%	10
hollow Cr ₂ O ₃ microspheres	0.1 M Na ₂ SO ₄	25 °C	6.78%	11
DR MoS ₂ nanoflower	0.1 M Na ₂ SO ₄	25 °C	8.34%	12
Fe ₂ O ₃ nanorods	0.1 M Na ₂ SO ₄	25 °C	0.94%	13
TiO ₂ -rGO	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	25 °C	3.3%	14
Bi ₄ V ₂ O ₁₁ /CeO ₂	0.1 M HCl	25 °C	10.16%	15
MoO ₃	0.1 M HCl	25 °C	1.9%	16
Mo ₂ N	0.1 M HCl	25 °C	4.5%	17
Nb ₂ O ₅ nanofiber	0.1 M HCl	25 °C	9.26%	18
VN/TM	0.1 M HCl	25 °C	2.25%	19
MoN NA/CC	0.1 M HCl	25 °C	1.15%	20
B ₄ C	0.1 M HCl	25 °C	15.95%	22
N-doped porous C	0.05 M H ₂ SO ₄	25 °C	1.42%	25
N-doped porous C	0.1 M HCl	25 °C	1.45%	26
Rh nanosheets nanoassemblies	0.1 M KOH	25 °C	0.217%	27
γ-Fe ₂ O ₃	0.1 M KOH	25 °C	1.96%	28
CP ₂ TiCl ₂	H ₂ O	25 °C	0.23%	29

Table S2. Comparison of FE of SnO_2/CC for NRR with other reported aqueous-based NRR electrocatalysts.

References

- 1 S. Suarez and D. Paterno, J. Power Sources, 2016, **331**, 544–552.
- S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, *Angew. Chem., Int. Ed.*, 2017, 56, 2699–2703.
- 3 G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006–2008.
- 4 M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, *Nano Energy*, 2018, **49**, 316–323.
- X. Zhu, Z. Liu, Q. Liu, Y. Luo, X. Shi, A. M. Asiri, Y. Wu and X. Sun, *Chem. Commun.*, 2018, DOI: 10.1039/C8TA05627G.
- 6 L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Mater.*, 2018, **30**, 1800191.
- 7 R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo and X. Sun, ACS Appl. Mater. Interfaces, 2018, 10, 28251–28255.
- G. Chen, X. Cao, S. Wu, X. Zeng, L. Ding, M. Zhu and H. Wang, J. Am. Chem. Soc., 2017, 139, 9771–9774.
- 9 Q. Liu, X. Zhang, B Zhang, Y. Luo, G. Cui, F. Xie and X. Sun, *Nanoscale*, 2018, 10, 14386–14389.
- 10 D. Yang, T. Chen and Z. Wang, J. Mater. Chem. A, 2017, 5, 18967–18971.
- 11 Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li and X. Sun, ACS Catal., 2018, 8, 8540–8544.
- 12 X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Energy Mater.*, 2018, 8, 201801357.
- X. Xiang, Z. Wang, X. Shi, M. Fan and X. Sun, *ChemCatChem*, 2018, DOI: 10.1002/cctc.201801208.
- X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun and T. Li, *J. Mater. Chem. A*, 2018, 6, 17303–17306.
- C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, *Angew. Chem., Int. Ed.*, 2018, 57, 6073–6076.

- 16 J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, J. Mater. Chem. A, 2018, 6, 12974–12977.
- X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, *Chem. Commun.*, 2018, 54, 8474–8477.
- 18 J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, *Nano Energy*, 2018, **52**, 264–270.
- 19 R. Zhang, Y. Zhang, X. Ren, G. Cui, A. M. Asiri, B. Zheng and X. Sun, ACS Sustainable Chem. Eng., 2018, 6, 9545–9549.
- 20 L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, ACS Sustainable Chem. Eng., 2018, 6, 9550–9554.
- H. Huang, L. Xia, X. Shi, A. M. Asiri and X. Sun, *Chem. Commun.*, 2018, DOI: 10.1039/C8CC06365F.
- W. Qiu, X. Xie, J. Qiu, W. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang and X. Sun, *Nat. Commun.*, 2018, 9, 3485.
- D. Bao, Q. Zhang, F. Meng, H. Zhong, M. Shi, Y. Zhang, J. Yan, Q. Jiang and X. Zhang, *Adv. Mater.*, 2017, 29, 1604799.
- M. Shi, D. Bao, S. Li, B. Wulan, J. Yan and Q. Jiang, Adv. Energy Mater., 2018, 8, 1800124.
- 25 Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186–1191.
- 26 X. Yang, K. Li, D. Cheng, W. Pang, J. Lv, X. Chen, H. Zang, X. Wu, H. Tan, Y. Wang and Y. Li, *J. Mater. Chem. A*, 2018, 6, 7762–7769.
- H. Liu, S. Han, Y. Zhao, Y. Zhu, X. L. Tian, J. Zeng, J. Jiang, B. Y. Xia and Y. Chen, J. Mater. Chem. A, 2018, 6, 3211–3217.
- 28 J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi and H. S. Park, ACS Sustainable Chem. Eng., 2017, 5, 10986–10995.
- 29 E.-Y. Jeong, C.-Y. Yoo, C. H. J. Jung, H. Park, Y. C. Park, J.-N. Kim, S.-G. Oh, Y. Woo and H. C. Yoon, ACS Sustainable Chem. Eng., 2017, 5, 9662–9666.