Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Barium-Catalyzed C-OH/P-H Dehydrative Cross-coupling for

C-P Bond Construction

Xiangyang Wo, a Peizhong Xie, *a Weishan Fu, a Cuiqing Gao, b Yanan Liu, a Zuolian Sun, a and Teck-Peng Loh *a.c

- ^a School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China.
- ^b Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- ^c Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

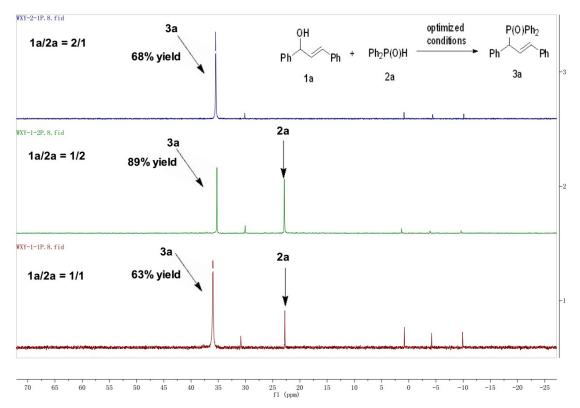
E-mail: peizhongxie@njtech.edu.cn teckpeng@ntu.edu.sg

Contents

1. General Information	1
2. General Procedure for The C-OH/P-H Dehydrative Cross-Coupling	1
3. Addition Experiments	1
4. Analytical Data for All New Compounds	3
5. References	16
6.NMR Spectra for New Compounds	17

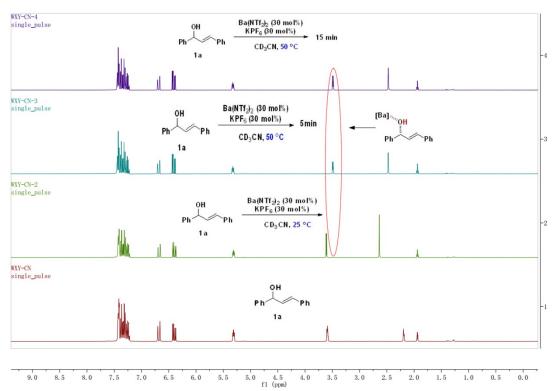
1. General Information

Unless otherwise noted, all commercially available compounds were used as received. All solvents were purified according to standard procedures. The ¹H NMR and spectra was recorded at 400MHz, ¹³C NMR was recorded at 101MHz. ³¹P NMR was recorded at 162 MHz. ¹H and ¹³C NMR Chemical shifts were calibrated to tetramethylsilane as an external reference. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), d (doublet), t (triplet), dd (doublet of doublets), m (multiplet); coupling constants (*J*) are in Hertz (Hz). HRMS were obtained on an IonSpec FT-ICR mass spectrometer with ESI resource. Melting points were measured on a RY-I apparatus and are reported uncorrected. The starting materials **2a** purchased from *J&K Chemical Ltd* (Shanghai), dibenzo[c,e][1,2]oxaphosphinine 6-oxide and additive KPF₆ were purchased from *Energy Chemical Ltd* (Shanghai). The catalyst Ba(NTf₂)₂ was purchased from *Tokyo Chemical Industry* (TCI) (Shanghai) CO., *Ltd*. Other phosphine oxides **2** ¹ and allylic alcohols ² were readily prepared according to the related literatures.


2. General Procedure for The C-OH/P-H Dehydrative Cross-Coupling

Phosphine oxide **2** (0.6 mmol) was added to allylic alcohol **1** (0.3 mmol), Ba(NTf₂)₂ (0.03 mmol) and KPF₆ (0.03 mmol) in acetonitrile (2 mL) in Schlenk tube (10 mL). The reaction was stirred at 100 °C (oil bath) or 30 °C for 12h. After complete conversion, the residue was purified *via* PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1:1) or column chromatography (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1:1) to afford the corresponding products **3a-3af**.

3. Addition Experiments


3.1 The role of phosphine oxide in this reaction.

We performed the reaction between **1a** and **2a** in 1/1, 2/1 and 1/2 ratio. The crude ³¹P NMR was as shown follow. Judging from the crude NMR and TLC investigation, no by-product can be isolated. The ratio of 1a/2a was 1/2 give the best yield. Instead of involved into the reaction, the extra one equivalent of phosphine oxide **2a** still can be detected by NMR, which might be able to promote the reaction through equilibrium system in this reaction.

3.2 The interaction between catalyst and allylic alcohols.

we conducted the NMR study by measure the ^{1}H NMR spectra of the mixture of 1a, Ba(NTf₂)₂ and KPF₆ in CD₃CN. As is shown in the following picture, the interaction between catalyst and **1a** was obviously, especially at the higher temperature (50 $^{\circ}$ C).

4. Analytical Data for All New Compounds

(E)-(1,3-diphenylallyl)diphenylphosphine oxide (3a)³

Following the general procedure, 3a was isolated as white solid. Mp: 212-214 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.89 - 7.83 (m, 2H), 7.62 - 7.55 (m, 2H), 7.51 - 7.41 (m, 3H), 7.38 - 7.34 (m, 3H), 7.31 - 7.25 (m, 2H), 7.24 - 7.19 (m, 6H), 7.18 - 7.13 (m, 2H), 6.64 - 6.54 (m, 1H), 6.32 (dd, J = 15.8, 4.8 Hz, 1H), 4.39 (dd, J = 9.8, 9.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) $\delta = 136.81$, 136.78, 136.03 (d, $J_{C-P} = 5.9$ Hz), 134.55, 134.44, 132.23 (d, $J_{C-P} = 29.5$ Hz), 131.89 (d, $J_{C-P} = 2.7$ Hz), 131.84, 131.76, 131.62 (d, $J_{C-P} = 2.8 \text{ Hz}$), 131.46, 131.37, 131.27 (d, $J_{C-P} = 29.7 \text{ Hz}$) 129.59, 129.53, 128.68, 128.66, 128.61, 128.53, 128.50, 128.35, 128.23, 127.71, 127.23 (d, $J_{\text{C-P}} = 2.1 \text{ Hz}$), 126.48, 124.70 (d, $J_{\text{C-P}} = 7.2 \text{ Hz}$, 52.41 (d, $J_{\text{C-P}} = 65.0 \text{ Hz}$). IR (KBr): 3079.55, 3057.34, 3024.68, 1645.32, 1275.42, 764.22, 748.72, 721.94, 692,32. HRMS (ESI/[M+H]+) Calcd. for: C₂₇H₂₄OP 395.1565, found 395.1562. The Procedure for gram scale reaction (3a): Diphenylphosphine oxide (2.02g, 10 mmol) was added to (E)-1,3-diphenylprop-2-en-1-ol (1.05g, 5 mmol), Ba(NTf₂)₂ (0.35g, 0.5 mmol) and KPF₆ (0.09g, 0.5 mmol) in acetonitrile (15 ml). The reaction was stirred at 100 °C for 12h. Corresponding (E)-(1,3diphenylallyl)diphenylphosphine oxide (3a) precipitated from the solvent (65% yield, the was purity over 98% by NMR). The solvent was removed under reduced pressure. The residue was purified by silica gel chromatography with Petroleum ether (bp: 60-90 °C)/ethyl acetate = 1:1 to give (E)-(1,3diphenylallyl)diphenylphosphine oxide (3a) as white solid (1.68 g, 85% yield).

(E)-(1,3-di-p-tolylallyl)diphenylphosphine oxide (3b)³

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3b** was isolated as white solid. Mp: 186-187 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 7.88 – 7.78 (m, 2H), 7.66 – 7.56 (m, 2H), 7.50 – 7.34 (m, 4H), 7.33 – 7.20 (m, 4H), 7.14 – 6.98 (m, 6H), 6.57 – 6.45 (m, 1H), 6.26 (dd, J = 15.7, 3.6 Hz, 1H), 4.34 (dd, J = 9.6, 9.6 Hz, 1H), 2.26 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ = 137.38, 136.70 (d, $J_{\text{C-P}}$ = 2.4 Hz), 134.16, 134.05, 132.92, 132.86, 132.33 (d, $J_{\text{C-P}}$ = 29.4 Hz), 131.78, 131.70, 131.49, 131.44, 131.35, 131.22, 129.34, 129.30, 129.28, 129.12, 128.45, 128.34, 128.25, 128.14, 126.30, 123.68 (d, $J_{\text{C-P}}$ = 7.0 Hz), 51.87 (d, $J_{\text{C-P}}$ = 65.4 Hz) 21.21, 21.11. ³¹P NMR (162 MHz, Chloroform-d) δ = 31.45. IR (KBr): 3005.80, 2989.46, 2921.39, 2853.46, 1632.32, 1275.43, 802.30, 822,85, 764.27, 749.80, 703.74. HRMS (ESI/[M+H]+) Calcd. for: C₂₉H₂₈OP 423.1878, found 423.1876.

(E)-(1,3-di-m-tolylallyl)diphenylphosphine oxide (3c)³

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3c** was isolated as white solid. Mp: 164-167 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 7.90 – 7.79 (m, 2H), 7.61 – 7.53 (m, 2H), 7.51 – 7.41 (m, 3H), 7.40 – 7.33 (m, 1H), 7.33 – 7.22 (m, 2H), 7.18 – 7.04 (m, 5H), 7.03 – 6.94 (m, 3H), 6.65 – 6.50 (m, 1H), 6.29 (dd, J = 15.8, 3.6 Hz, 1H), 4.33 (dd, J = 9.5, 9.5 Hz, 1H), 2.27 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ = 138.13, 137.98, 136.70 (d, J_{C-P} = 2.2 Hz), 135.89 (d, J_{C-P} = 5.9 Hz), 134.40, 134.29, 132.29 (d, J_{C-P} = 33.6 Hz), 131.79, 131.71, 131.45, 131.36, 131.16, 130.17 (d, J_{C-P} = 5.6 Hz), 128.47, 128.38, 128.30, 128.18, 128.07, 127.88, 127.86, 127.00, 126.48 (d, J_{C-P} = 5.8 Hz), 124.48 (d, J_{C-P} = 7.2 Hz), 123.68, 52.33 (d, J_{C-P} = 65.2 Hz), 21.43, 21.34. ³¹P NMR (162 MHz, Chloroform-d) δ = 31.40. IR (KBr): 3005.23, 2955.52, 2922.56, 1632.32, 1275.35, 764.19, 749.49, 723.82, 703.27. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₉H₂₈OP 423.1878, found 423.1878.

(E)-(1,3-di-o-tolylallyl)diphenylphosphine oxide (3d)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3d** was isolated as white solid. Mp: 168-170 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 7.99 – 7.79 (m, 3H), 7.60 – 7.40 (m, 5H), 7.40 – 7.15 (m, 5H), 7.15 – 6.91 (m, 5H), 6.56 – 6.41 (m, 1H), 6.35 (dd, J = 15.7, 7.6 Hz, 1H), 4.64 (dd, J = 9.5, 9.5 Hz, 1H), 2.14 (s, 3H), 1.99 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ = 135.94, 135.82 (d, $J_{\text{C-P}}$ = 7.3 Hz), 135.15, 134.43 (d, $J_{\text{C-P}}$ = 5.2 Hz), 132.83, 132.48, 132.37, 131.97, 131.89, 131.83, 131.59, 131.16, 131.08, 130.95, 130.44, 129.98, 129.44 (d, $J_{\text{C-P}}$ = 4.8 Hz), 128.58, 128.46, 128.23, 128.11, 127.51, 127.13, 126.57, 126.01, 125.96, 47.77 (d, $J_{\text{C-P}}$ = 66.1 Hz) 19.79, 19.52. ³¹P NMR (162 MHz, Chloroform-d) δ = 31.90. IR (KBr): 3005.97, 2955.24, 2923.15, 2868.71, 1645.32, 1275.43, 764.13, 748.82, 723.82, 695,97. HRMS (ESI/[M+H]+) Calcd. for: $C_{29}H_{28}OP$ 423.1878, found 423.1880.

(E)-(1,3-bis(4-fluorophenyl)allyl)diphenylphosphine oxide (3e)³

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3e** was isolated as white solid. Mp: 183-187 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 8.02 – 7.72 (m, 2H), 7.71 – 7.22 (m, 10H), 7.22 – 7.06 (m, 2H), 7.04 – 6.81 (m, 4H), 6.53 – 6.37 (m, 1H), 6.27 (dd, J = 15.7, 8Hz, 1H), 4.37 (dd, J = 9.2, 9.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ = 161.96 (d, J_{C-F} = 246.1 Hz), 162.33 (d, J_{C-F} = 247.2 Hz), 133.37, 133.26, 132.70, 131.92, 131.65, 131.56, 131.25, 131.16, 131.03, 130.97, 130.89, 128.59, 128.48, 128.37, 128.25, 127.94, 127.86, 124.13 (d, J_{C-P} = 5.5 Hz), 115.60, 115.48, 115.40, 115.27, 51.24 (d, J_{C-P} = 65.3 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.33. ¹°F NMR (376 MHz, Chloroform-d) δ = -114.00, -115.03. IR (KBr): 3055.84, 2988.53, 2901.28, 1645.32, 1223.56, 1158.75, 843.19, 818.56, 752.09, 718.92, 705.68, 693.26. HRMS (ESI/[M+H]+) Calcd. for: $C_{27}H_{22}F_{2}OP$ 431.1376, found 431.1376.

(E)-(1,3-bis(3-fluorophenyl)allyl)diphenylphosphine oxide (3f)³

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3f** was isolated as white solid. Mp: 187-190 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 7.91 – 7.80 (m, 2H), 7.66 – 7.56 (m, 2H), 7.56 – 7.44 (m, 3H), 7.44 – 7.38 (m, 1H), 7.37 – 7.28 (m, 2H), 7.24 – 7.02 (m, 4H), 6.97 (d, J = 7.8 Hz, 1H), 6.93 – 6.83 (m, 3H), 6.60 – 6.48 (m, 1H), 6.27 (dd, J = 15.8, 3.8 Hz, 1H), 4.36 (dd, J = 9.3, 9.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ = 162.92 (d, J_{C-F} = 245.5 Hz), 162.66 (d, J_{C-F} = 245.0 Hz), 138.75 (dd, J = 7.7, 2.4 Hz), 138.17 (dd, J = 7.3, 6.1 Hz), 133.59 (dd, J = 11.1, 2.6 Hz), 132.03, 131.80, 131.63, 131.54, 131.25, 131.17, 130.75 (d, J_{C-P} = 18.9 Hz), 130.04 (dd, J_{C-P} = 8.5, 1.6 Hz), 129.97, 129.88, 128.64, 128.53, 128.41, 128.29, 125.55 (d, J_{C-P} = 7.4 Hz), 125.14 (d, J_{C-P} = 5.9), 122.20, 116.40 (d, J_{C-P} = 22.3), 114.55 (d, J_{C-P} = 21.3 Hz), 114.23 (d, J_{C-P} = 21.0 Hz), 112.91 (d, J_{C-P} = 21.7 Hz), 51.91 (d, J_{C-P} = 64.4 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.09. ¹°F NMR (376 MHz, Chloroform-d) δ = -112.26, -113.37. IR (KBr): 3059.11, 2914.73, 1643,43, 1275.42, 1144.02, 748.45, 729.76, 719.73, 700.28. HRMS (ESI/[M+H]†) Calcd. for: $C_{27}H_{22}F_{2}OP$ 431.1376, found 431.1377.

(E)-(1,3-bis(2-fluorophenyl)allyl)diphenylphosphine oxide (3g)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3g** was isolated as white solid. Mp: 193-195 °C. ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 8.06 - 7.78$ (m, 3H), 7.74 – 7.28 (m, 9H), 7.21 – 7.06 (m, 3H), 7.06 – 6.80 (m, 3H), 6.69 – 6.56 (m, 1H), 6.51 (dd, J = 16.0, 7.9 Hz, 1H), 4.90 (dd, J = 7.9, 7.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) $\delta = 159.88$ (d, $J_{\text{C-F}} = 248.0$ Hz), 159.68 (d, $J_{\text{C-F}} = 248.0$ Hz), 131.94, 131.71, 131.55, 131.46, 130.95, 130.87, 130.69, 129.07 (d, $J_{\text{C-P}} = 8.3$ Hz), 128.75 (d, $J_{\text{C-P}} = 8.4$ Hz), 128.63, 128.51, 128.32, 128.20, 127.26, 125.83 (dd, $J_{\text{C-F,C-P}} = 7.3$, 3.9 Hz), 124.57, 124.25 (d, $J_{\text{C-P}} = 11.7$ Hz), 124.02 (d, $J_{\text{C-P}} = 3.4$ Hz), 123.21 (dd, $J_{\text{C-F,C-P}} = 14.5$, 4.9 Hz), 115.52 (d, $J_{\text{C-P}} = 22.0$ Hz), 115.11 (d, $J_{\text{C-P}} = 22.8$ Hz), 43.14 (d, $J_{\text{C-P}} = 65.7$ Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 31.90. ¹9F NMR (376 MHz, Chloroform-*d*) δ = -118.26, -118.48. IR (KBr): 2954.83, 2920.11, 1645.11, 1275.39, 763.46, 750.49, 721.37, 706.04, 695.57. HRMS (ESI/[M+H]†) Calcd. for: C₂₇H₂₂F₂OP 431.1376, found 431.1374.

(E)-(1,3-bis(4-bromophenyl)allyl)diphenylphosphine oxide (3h)³

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3h** was isolated as white solid. Mp: 209-211 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.88 – 7.80 (m, 2H), 7.64 – 7.54 (m, 2H), 7.53 – 7.37 (m, 4H), 7.37 – 7.29 (m, 6H), 7.28 – 7.20 (m, 2H), 7.08 – 6.99 (m, 2H), 6.57 – 6.42 (m, 1H), 6.21 (dd, J = 15.8, 3.8 Hz, 1H), 4.33 (dd, J = 9.2, 9.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 135.36, 134.82 (d, J _{C-P} = 5.9 Hz), 133.55, 133.44, 132.01, 131.83, 131.80, 131.73, 131.58, 131.52, 131.24, 131.15, 131.10, 131.04, 130.76 (d, J _{C-P} = 13.5 Hz), 128.63, 128.51, 128.46, 128.35, 127.87, 124.90 (d, J = 7.3 Hz), 121.61, 121.36, 51.59 (d, J _{C-P} = 64.6 Hz). ³¹P NMR (162 MHz,

Chloroform-*d*) δ = 30.95. IR (KBr): 2955.24, 2923.37, 2851.80,, 1654.60, 1275.37, 816.03, 749.73, 722.77, 707,41, 546.22, 518.87. HRMS (ESI/[M+H]⁺) Calcd. for: $C_{27}H_{22}Br_2OP$ 550.9775, found 550.9775.

(E)-(1,3-bis(3-bromophenyl)allyl)diphenylphosphine oxide (3i)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3i** was isolated as white solid. Mp: 127-129 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 7.90 – 7.81 (m, 2H), 7.64 – 7.55 (m, 2H), 7.55 – 7.42 (m, 4H), 7.42 – 7.25 (m, 7H), 7.13 – 7.03 (m, 3H), 6.59 – 6.47 (m, 1H), 6.23 (dd, J = 15.8, 3.7 Hz, 1H), 4.34 (dd, J = 9.2, 9.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ = 137.44, 136.97 (d, $J_{\text{C-P}}$ = 5.8 Hz), 132.33, 132.22, 131.27, 131.02, 130.81, 130.55, 130.46, 130.20, 130.11, 129.56 (d, $J_{\text{C-P}}$ = 15.9 Hz), 129.57, 129.30 (d, $J_{\text{C-P}}$ = 2.3 Hz), 129.07 (d, $J_{\text{C-P}}$ = 1.9 Hz), 128.93, 128.20, 127.61, 127.49, 127.37, 127.26, 126.92 (d, $J_{\text{C-P}}$ = 5.5 Hz), 124.53 (d, $J_{\text{C-P}}$ = 7.2 Hz), 123.92, 121.59, 121.42, 50.79 (d, $J_{\text{C-P}}$ = 64.2 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.17. IR (KBr): 3053.50, 2919.32, 1642.18, 1275.47, 792.33, 749.04, 721.70, 700,74, 557.48, 513.78. HRMS (ESI/[M+H]+) Calcd. for: C₂₇H₂₂Br₂OP 550.9775, found 550.9777.

(E)-(1,3-bis(4-(trifluoromethyl)phenyl)allyl)diphenylphosphine oxide (3j)

$$F_3C$$
 $P(O)Ph_2$
 CF_3

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3j** was isolated as white solid. Mp: 188-189 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.94 – 7.83 (m, 2H), 7.65 – 7.55 (m, 2H), 7.55 – 7.45 (m, 9H), 7.45 – 7.38 (m, 1H), 7.38 – 7.21 (m, 4H), 6.74 – 6.58 (m, 1H), 6.35 (dd, J = 15.8, 3.7 Hz, 1H), 4.48 (dd, J = 9.2, 9.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ = 139.91, 139.79, 133.71 (d, $J_{\text{C-P}}$ = 10.9 Hz), 132.28 (d, $J_{\text{C-P}}$ = 2.9 Hz), 132.08 (d, $J_{\text{C-P}}$ = 2.9 Hz), 131.69, 131.61, 131.56, 131.43, 131.26, 131.18, 130.59, 130.45, 129.86, 129.80, 129.54, 128.83, 128.72, 128.63, 128.51, 126.73, 126.64, 126.63, 125.63, 125.55, 122.81, 52.27 (d, $J_{\text{C-P}}$ = 63.4 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.06. ¹°F NMR (376 MHz, Chloroform-d) δ = -62.49. IR (KBr): 3062.97, 2914.48, 1614.36, 1330.53, 1225.68, 1066.33, 847.95, 832.39, 811.19, 720.08. HRMS (ESI/[M+H]+) Calcd. for: $C_{29}H_{22}F_6OP$ 531.1312, found 531.1326.

(E)-(1,3-bis(4-methoxyphenyl)allyl)diphenylphosphine oxide (3k)

Following the general procedure, the reaction was conducted at 30 °C for 12h. **3k** was isolated as white solid. Mp: 147-149 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 7.88 – 7.78 (m, 2H), 7.66 – 7.55 (m, 2H), 7.46 – 7.30 (m, 4H), 7.30 – 7.20 (m, 4H), 7.14 – 7.04 (m, 2H), 6.73 – 6.67 (m, 4H), 6.44 – 6.33 (m, 1H), 6.24 (dd, J = 15.8, 3.6 Hz, 1H), 4.34 (dd, J = 9.3, 9.3 Hz, 1H), 3.71 (s, 3H), 3.65 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ = 159.14, 158.59 (d, J _{C-P} = 2.2 Hz), 133.69 (d, J _{C-P} = 11.4 Hz), 132.25 (d, J _{C-P} = 30.7 Hz), 131.69, 131.60, 131.47, 131.33, 131.24, 131.14, 130.48, 130.43, 129.50,

128.47, 128.36, 128.29, 128.17, 127.92 (d, $J_{\text{C-P}} = 6.0 \text{ Hz}$), 127.52, 122.28 (d, $J_{\text{C-P}} = 6.8 \text{ Hz}$), 114.02, 113.79, 55.24, 55.13, 51.13 (d, $J_{\text{C-P}} = 66.2 \text{ Hz}$). ^{31}P NMR (162 MHz, Chloroform-d) $\delta = 31.80$. IR (KBr): 3055.44, 3031.68, 3002.49, 2954.91, 2935.35, 1644.69, 1250.82, 829.28, 812.85, 732.68, 720.15. HRMS (ESI/[M+H]⁺) Calcd. for: $C_{29}H_{28}O_{3}P$ 455.1776, found 455.1779.

(E)-(1,3-bis(4-(tert-butyl)phenyl)allyl)diphenylphosphine oxide (31)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **31** was isolated as white solid. Mp: 261-264 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 7.90 – 7.77 (m, 2H), 7.61 – 7.34 (m, 6H), 7.33 – 7.11 (m, 10H), 6.61 – 6.46 (m, 1H), 6.33 (dd, J=15.6, 7.8 Hz 1H), 4.35 (dd, J=9.6, 9.6 Hz, 1H), 1.27 (s, 9H), 1.25 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ = 150.73, 150.02 (d, $J_{\text{C-P}}$ = 2.6 Hz), 134.16, 134.03, 132.86, 132.80, 132.67, 131.96, 131.88, 131.83 (d, $J_{\text{C-P}}$ = 2.8 Hz), 131.71, 131.52, 131.43, 131.05, 129.12 (d, $J_{\text{C-P}}$ = 5.7 Hz), 128.58, 128.47, 128.26, 128.14, 126.21, 125.55, 125.44, 124.00 (d, $J_{\text{C-P}}$ = 6.8 Hz), 51.92 (d, $J_{\text{C-P}}$ = 65.4 Hz), 34.66, 34.53, 31.42, 31.37. ³¹P NMR (162 MHz, Chloroform-d) δ = 32.27. IR (KBr): 2962.57, 2929.36, 2906.16, 2866.40, 1646.67, 1266.14, 731.54, 717.99, 706.83. HRMS (ESI/[M+H] $^+$) Calcd. for: C₃₅H₄₀OP 507.2817, found 507.2802.

(E)-(1,3-di(thiophen-2-yl)allyl)diphenylphosphine oxide (3m)

Following the general procedure, the reaction was conducted at 30 °C for 12h. **3m** was isolated as white solid. Mp: 204-207 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.86 – 7.76 (m, 2H), 7.74 – 7.65 (m, 2H), 7.55 – 7.41 (m, 4H), 7.40 – 7.33 (m, 2H), 7.11 (dd, J = 13.7, 5.0 Hz, 2H), 7.04 (s, 1H), 6.93 – 6.84 (m, 2H), 6.80 (d, J = 3.2 Hz, 1H), 6.48 (dd, J = 15.6, 3.8 Hz, 1H), 6.35 – 6.19 (m, 1H), 4.68 (dd, J = 12.3, 8.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ = 141.36 (d, J_{C-P} = 3.1 Hz), 136.80 (d, J_{C-P} = 6.0 Hz), 132.00 (d, J_{C-P} = 2.8 Hz), 131.85 (d, J_{C-P} = 2.7 Hz), 131.78, 131.70, 131.53, 131.44, 130.66 (d, J_{C-P} = 30.4 Hz), 128.58, 128.46, 128.43, 128.31, 127.67 (d, J_{C-P} = 10.9 Hz), 127.31, 127.23 (d, J_{C-P} = 6.0 Hz), 127.11 (d, J_{C-P} = 2.3 Hz), 125.93 (d, J_{C-P} = 2.1 Hz), 124.97 (d, J_{C-P} = 2.5 Hz), 124.66, 123.36 (d, J_{C-P} = 6.7 Hz), 47.06 (d, J = 66.4 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 30.46. IR (KBr): 3104.06, 3054,70, 1636.36, 1275.40, 749.72, 722.10, 695.83. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₃H₂₀OPS₂ 407.0693, found 407.0695.

(E)-(1,3-bis(2,4-dichlorophenyl)allyl)diphenylphosphine oxide (3n)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3n** was isolated as white solid. Mp: 160-164 °C. 1 H NMR (400 MHz, Chloroform-d) δ 8.07 (dd, J = 8.3, 1.8 Hz, 1H), 7.94 -7.84 (m, 2H), 7.66 -7.57 (m, 2H), 7.56 -7.47 (m, 3H), 7.45 -7.39 (m, 1H), 7.37 -7.29 (m, 3H), 7.28 -7.22 (m, 3H), 7.12 (dd, J = 8.5, 2.1 Hz, 1H), 6.60 (dd, J = 15.7, 3.9 Hz, 1H), 6.42 -6.30 (m, 1H),

5.07 (dd, $J_{\text{H-P}}$ = 8.8, 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 134.35, 134.27, 133.98, 133.79 (d, $J_{\text{C-P}}$ = 2.4 Hz), 133.44 (d, $J_{\text{C-P}}$ = 1.9 Hz), 133.16, 133.13, 132.48 (d, $J_{\text{C-P}}$ = 4.2 Hz), 132.22 (d, $J_{\text{C-P}}$ = 2.9 Hz), 132.06 (d, $J_{\text{C-P}}$ = 2.9 Hz), 131.65, 131.60, 131.55, 131.46, 130.98, 130.66, 130.63, 130.55, 129.31, 128.88, 128.76, 128.57, 128.46, 127.89, 127.25, 126.61 (d, $J_{\text{C-P}}$ = 7.4 Hz), 46.89 (d, $J_{\text{C-P}}$ = 65.5 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ = 32.19. IR (KBr): 3094.36, 3075.78, 3052.29, 2921.75, 1632.75, 1258.72, 773.30, 749.19, 724.75, 699.44. HRMS (ESI/[M+H]⁺) Calcd. for: $C_{27}H_{20}Cl_4OP$ 531.0006, found 531.0008.

(E)-(1,3-bis(3,5-dimethylphenyl)allyl)diphenylphosphine oxide (30)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **30** was isolated as white solid. Mp: 193-196 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.88 – 7.79 (m, 2H), 7.61 – 7.53 (m, 2H), 7.51 – 7.33 (m, 4H), 7.33 – 7.22 (m, 2H), 6.91 (s, 2H), 6.85 (s, 2H), 6.80 (d, J = 8.2 Hz, 2H), 6.65 – 6.50 (m, 1H), 6.25 (dd, J = 15.7, 3.8 Hz, 1H), 4.28 (dd, J = 9.5, 9.5 Hz, 1H), 2.23 (s, 6H), 2.19 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ = 137.90 (d, J_{C-P} = 1.8 Hz), 137.84, 136.71 (d, J_{C-P} = 2.4 Hz), 135.82 (d, J_{C-P} = 5.9 Hz), 134.30 (d, J_{C-P} = 11.5 Hz), 132.38 (d, J_{C-P} = 37.3 Hz), 131.82, 131.74, 131.68 (d, J_{C-P} = 2.8 Hz), 131.42 (d, J_{C-P} = 37.2 Hz), 131.51, 131.42, 129.28, 128.75 (d, J_{C-P} = 2.3 Hz), 128.44, 128.32, 128.12, 128.01, 127.23 (d, J_{C-P} = 5.8 Hz), 124.37, 124.30, 52.28 (d, J_{C-P} = 65.3 Hz), 21.30, 21.22. ³¹P NMR (162 MHz, Chloroform-d) δ = 31.48. IR (KBr): 3054.01, 2955.16, 2922.20, 2850.71, 1645.52, 1264.48, 722.77, 703.77. HRMS (ESI/[M+H]+) Calcd. for: C₃₁H₃₂OP 451.2191, found 451.2189.

(E)-(2-methyl-1,3-diphenylallyl)diphenylphosphine oxide (3p)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3p** was isolated as white solid. Mp: 226-229 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.89 – 7.83 (m, 2H), 7.63 – 7.56 (m, 2H), 7.55 – 7.43 (m, 5H), 7.42 – 7.35 (m, 1H), 7.34 – 7.27 (m, 2H), 7.26 – 7.17 (m, 5H), 7.17 – 7.12 (m, 1H), 6.95 (d, J = 7.2 Hz, 2H), 6.68 (s, 1H), 4.22 (d, J = 8.8 Hz, 1H), 1.89 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ = 137.70, 135.62 (d, $J_{\text{C-P}}$ = 4.6 Hz), 134.54 (d, $J_{\text{C-P}}$ = 5.8 Hz), 133.36 (d, $J_{\text{C-P}}$ = 26.5 Hz), 132.39 (d, $J_{\text{C-P}}$ = 24.8 Hz), 131.48 (d, $J_{\text{C-P}}$ = 2.7 Hz), 131.34, 131.26, 131.19, 131.10, 130.79 (d, $J_{\text{C-P}}$ = 9.2 Hz), 130.19, 130.12, 128.79, 128.42, 128.36, 128.30, 128.17, 127.89, 127.12, 126.33, 56.46 (d, $J_{\text{C-P}}$ = 66.6 Hz), 18.07 (d, $J_{\text{C-P}}$ = 4.8 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.46. IR (KBr): 3052.01, 3022.26, 2918.71, 2851.81, 1647.61, 1275.80, 741.66, 722.09, 700.11. HRMS (ESI/[M+H]†) Calcd. for: C₂₈H₂₆OP 409.1721, found 409.1712.

(E)-(1-(benzo[d][1,3]dioxol-5-yl)-4,4-dimethylpent-1-en-3-yl)diphenylphosphine oxide (3q)

Following the general procedure, the reaction was conducted at 100 °C for 12h. 3q was isolated as white solid. Mp: 246-248 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.84 – 7.78 (m, 2H), 7.65 – 7.58 (m, 2H), 7.52 – 7.38 (m, 4H), 7.36 – 7.30 (m, 2H), 6.90 (dd, J = 1.6, 1.6 Hz, 1H), 6.72 – 6.68 (m, 1H), 6.63 (d, J = 8.0 Hz, 1H), 5.88 (s, 2H), 5.71 – 5.59 (m, 1H), 5.34 (dd, J = 15.8, 4.3 Hz, 1H), 4.05 (dd, J = 9.3, 9.3 Hz, 1H), 0.79 (s, 9H). ¹³C NMR (101 MHz, Chloroform-D) δ = 147.66, 147.00, 146.89, 146.57, 132.70, 132.28, 131.91, 131.82, 131.75, 131.56, 131.53, 131.50, 131.38, 131.32, 131.30, 130.18, 130.11, 128.35, 128.34, 128.24, 122.64, 122.58, 119.49, 119.43, 109.81, 109.75, 108.27, 108.25, 101.00, 52.08, 51.43, 33.28, 29.20, 29.18. ¹³C NMR (101 MHz, Chloroform-d) δ 147.65 (d, J = 1.9 Hz), 146.94 (d, J_{C-P} = 11.0 Hz), 146.57, 132.49 (d, J_{C-P} = 42.2 Hz), 122.61 (d, J_{C-P} = 6.7 Hz), 119.46 (d, J_{C-P} = 6.4 Hz), 109.78 (d, J_{C-P} = 5.3 Hz), 108.26 (d, J_{C-P} = 1.9 Hz), 51.76 (d, J_{C-P} = 65.7 Hz), 29.19 (d, J_{C-P} = 1.8 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.31. IR (KBr): 3055.14, 3024.02, 2958.16, 2924.47, 1607.12, 1250.39, 812.61, 752.18, 719.58. HRMS (ESI/[M+H]†) Calcd. for:C₂₆H₂₈O₃P 419.1776, found 419.1774.

(E)-(1-(4-bromophenyl)-3-phenylallyl)diphenylphosphine oxide (3s) and (E)-(3-(4-bromophenyl)-1-phenylallyl)diphenylphosphine oxide (3s')

P(O)Ph₂
Ph 3s + Ph Ar 3s'
$$Ar = 4-BrC_6H_4$$

Following the general procedure, the reaction was conducted at 100 °C for 12h. A mixture of 3s and 3s' was isolated as white solid, Mp: 178-180 °C. (A trace amount of mixture 3s'/3s = 9/1 was isolated through PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 2:1) for five times, and 3s' was selected as reference. Then we assign the pick for 3s and 3s' by combination of spectrum of DEPT-135 and 3s' (¹H NMR, ¹³C NMR and ³¹P NMR)). ¹H NMR (400 MHz, Chloroform-d, mixture of **3s** and **3s'**) δ 7.90 -7.80 (m, 2H (3s) + 2H (3s')), 7.65 - 7.52 (m, 2H (3s) + 2H (3s')), 7.52 - 7.40 (m, 2H (3s) + 4H (3s')),7.40 - 7.27 (m, $7H(3s) + 4H(3s^2)$), 7.26 - 7.13 (m, $4H(3s) + 7H(3s^2)$), 7.07 - 7.01 (m, 2H(3s)), 6.63-6.54 (m, 1H (3s)), 6.54 - 6.46 (m, 1H (3s')), 6.31 (dd, J = 15.8, 3.7 Hz, 1H (3s)), 6.23 (dd, J = 15.8, 3.9 Hz, 1H (3s')), 4.37 (d, J = 9.3, 1H (3s)), 4.37 (d, J = 9.3, 1H (3s')). ¹³C NMR (101 MHz, Chloroform-*d*) $\delta = 136.54$ (d, J = 2.2 Hz (3s)), 135.71 (d, J = 6.5 Hz (3s)), 135.66 (d, J = 2.2 Hz (3s)), 135.17 (d, J = 5.9 Hz (3s')), 134.93 (3s'), 134.82 (3s'), 133.33 (3s), 133.22 (3s), 132.05 (3s'), 131.86 (3s'), 131.83 (3s'), 131.75 (3s' + 3s), 131.70 (3s' + 3s), 131.62 (3s), 131.42 (3s), 131.36 (3s'), 131.33 (3s), 131.27 (3s'), 131.22 (3s), 131.18 (3s'), 131.12 (3s'), 131.08 (d, J = 9.8 Hz (3s)), 130.87 (d, J = 9.8 Hz (3s) 24.6 Hz (3s')), 129.53 (d, J = 5.8 Hz (3s)), 128.75 (3s), 128.70 (3s'), 128.66 (3s), 128.59 (3s'), 128.54 (3s), 128.39 (3s), 128.27 (3s), 127.99 (d, J = 1.4 Hz (3s)), 127.89 (3s), 127.35 (d, J = 2.1 Hz (3s)), $126.47 (d, J = 1.4 Hz (3s + 3s^2)), 125.55 (d, J = 7.5 Hz (3s)), 124.03 (d, J = 7.0 Hz (3s^2)), 121.50 (3s),$ 121.32 (3s³), 52.38 (d, J = 64.6 Hz (3s)), 51.64 (d, J = 64.7 Hz (3s³)). ³¹P NMR (162 MHz, Chloroform-d, mixture of 3s and 3s' (3s/3s' = 1/1)) $\delta = 32.18$ (3s), 31.82 (3s'). HRMS $(ESI/[M+H]^+)$ Calcd. for: C₂₇H₂₃BrOP 473.0670, found 473.0674.

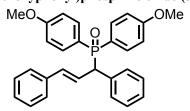
((2E,4E)-1,5-diphenylpenta-2,4-dien-1-yl)diphenylpiihosphine oxide (3t) and ((1E,4E)-1,5-diphenylpenta-1,4-dien-3-yl)diphenylphosphine oxide (3t')

Following the general procedure, the reaction was conducted at 30 °C for 12h. A mixture of 3t and 3t' (3t/3t' = 2/1) was isolated as white solid. Mp: 181-183 °C. Then the two isomer can be further separated by carefully PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 2:1) for five times, 10 mg 3t' and 12 mg pure 3t was obtained to check the NMR. For 3t: ¹H NMR (400 MHz, Chloroform-d) δ 7.90 - 7.80 (m, 2H), 7.57 - 7.43 (m, 5H), 7.40 - 7.33 (m, 1H), 7.32 - 7.24 (m, 8H), 7.23 - 7.13 (m, 4H), 6.68 (dd, J = 15.6, 9.7 Hz, 1H), 6.32 (dd, J = 15.6, 1.6 Hz, 1H), 6.24 – 6.03 (m, 2H), 4.30 (dd, J = 15.6) 10.2, 8.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) $\delta = 137.11$ (d, J = 1.4 Hz), 135.82 (d, J = 6.2Hz), 134.99, 134.87, 132.51, 132.13 (d, *J* = 33.7 Hz), 131.94, 131.81, 131.73, 131.61, 131.32, 131.00, 129.57, 129.51, 128.66, 128.53, 128.36 (d, J = 3.6 Hz), 128.30, 128.22, 128.19, 127.66, 127.22 (d, J = 129.57, 129.51, 128.66, 129.512.4 Hz), 126.40, 52.24 (d, J = 65.3 Hz). ³¹P NMR (162 MHz, Chloroform-d) $\delta = 32.00$. For **3t':** ¹H NMR (400 MHz, Chloroform-d) δ 7.86 – 7.84 (m, 1H), 7.84 – 7.81 (m, 2H), 7.81 – 7.79 (m, 1H), 7.54 -7.48 (m, 2H), 7.47 - 7.40 (m, 4H), 7.27 - 7.23 (m, 8H), 7.22 - 7.16 (m, 2H), 6.47 - 6.31 (m, 4H), 4.18 - 4.06 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) $\delta = 136.82$ (d, J = 2.5 Hz), 134.69, 134.58, 132.02, 131.91, 131.76, 131.68, 130.95, 128.64, 128.53, 127.79, 126.46, 123.15, 123.07, 49.90 (d, J = 120.00)66.0 Hz). ³¹P NMR (162 MHz, Chloroform-d) $\delta = 32.28$. HRMS (ESI/[M+H]⁺) Calcd. for:C₂₉H₂₆OP 427.1721, found 427.1721.

(E)-(1,3-diphenylallyl)bis(4-fluorophenyl)phosphine oxide (3u)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3u** was isolated as white solid. Mp: 194-196 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 7.92 – 7.77 (m, 2H), 7.61 – 7.46 (m, 2H), 7.38 – 7.28 (m, 2H), 7.28 – 7.12 (m, 10H), 7.04 – 6.95 (m, 2H), 6.71 – 6.46 (m, 1H), 6.35 (dd, J = 15.8, 3.6 Hz, 1H), 4.33 (dd, J = 9.3, 9.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ = 164.99 (dd, $J_{\text{C-P,C-F}}$ = 253.6, 3.1 Hz), 164.76 (dd, $J_{\text{C-P,C-F}}$ = 253.5, 3.1 Hz), 136.44 (d, $J_{\text{C-P}}$ = 2.4 Hz), 135.56 (d, $J_{\text{C-P}}$ = 5.9 Hz), 134.77, 134.65, 134.23, 134.14, 134.05, 133.84, 133.74, 133.65, 129.36 (d, J = 5.8 Hz), 128.73, 128.71, 128.52, 127.90 (d, $J_{\text{C-P}}$ = 33.4 Hz), 127.83, 127.38 (d, $J_{\text{C-P}}$ = 2.2 Hz), 126.92 (d, $J_{\text{C-P}}$ = 31.1 Hz), 126.39, 124.07 (d, $J_{\text{C-P}}$ = 7.3 Hz), 116.00, 115.65, 52.60 (d, $J_{\text{C-P}}$ = 66.4 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 30.32. ¹°F NMR (376 MHz, Chloroform-d) δ = -106.42, -106.67. IR (KBr): 3059.78, 3027.91, 3004.30, 2955.54, 2869.01, 1670.10, 1275.42, 748.44, 724.31. HRMS (ESI/[M+H]+) Calcd. for: $C_{27}H_{22}F_2\text{OP}$ 431.1376, found 431.1374.

(E)-(1,3-diphenylallyl)di-p-tolylphosphine oxide (3v)


Following the general procedure, the reaction was conducted at 100 °C for 12h. **3v** was isolated as white solid. Mp: 219-220 °C. ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.75 - 7.67$ (m, 2H), 7.50 - 7.40 (m, 2H), 7.39 - 7.31 (m, 2H), 7.27 - 7.19 (m, 8H), 7.18 - 7.13 (m, 2H), 7.12 - 7.03 (m, 2H), 6.67 - 6.53 (m, 1H), 6.33 (dd, J = 15.8, 3.5 Hz, 1H), 4.34 (dd, J = 9.6, 9.6 Hz, 1H), 2.35 (s, 3H), 2.27 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ = 142.08 (d, $J_{\text{C-P}}$ = 2.6 Hz), 141.80 (d, $J_{\text{C-P}}$ = 2.6 Hz), 136.84 (d, $J_{\text{C-P}}$ = 2.2 Hz), 136.25 (d, $J_{\text{C-P}}$ = 5.8 Hz), 134.16 (d, $J_{\text{C-P}}$ = 11.3 Hz), 131.76, 131.67, 131.39, 131.30, 129.52 (d, $J_{\text{C-P}}$ = 5.6 Hz), 129.28, 129.24, 129.12, 128.98, 128.86, 128.52, 128.41, 127.90, 127.53, 127.02 (d, $J_{\text{C-P}}$ = 2.1 Hz), 126.40, 125.00 (d, $J_{\text{C-P}}$ = 7.0 Hz), 52.47 (d, $J_{\text{C-P}}$ = 65.0 Hz), 21.62, 21.55. ³¹P NMR (162 MHz, Chloroform-*d*) δ = 31.72. IR (KBr): 3080.97, 3057.63, 3025.30, 3004.65, 2988.95, 2919.17, 1656.75, 1275.53, 747.87, 721.95. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₉H₂₈OP 423.1878, found 423.1878.

(E)-bis(4-(tert-butyl)phenyl)(1,3-diphenylallyl)phosphine oxide (3w)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3w** was isolated as white solid. Mp: 248-249 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.80 – 7.66 (m, 2H), 7.54 – 7.42 (m, 4H), 7.38 – 7.27 (m, 4H), 7.25 – 7.12 (m, 8H), 6.68 – 6.48 (m, 1H), 6.34 – 6.17 (m, 1H), 4.34 (dd, J = 9.4, 9.4 Hz, 1H), 1.30 (s, 9H), 1.24 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 155.02 (d, J_{C-P} = 2.8 Hz), 154.79 (d, J_{C-P} = 2.8 Hz), 136.92, 136.35 (d, J_{C-P} = 5.8 Hz), 134.15 (d, J_{C-P} = 11.2 Hz), 131.69, 131.60, 131.31, 131.22, 129.52 (d, J_{C-P} = 5.7 Hz), 129.13 (d, J_{C-P} = 34.2 Hz), 128.46, 128.38, 128.15 (d, J_{C-P} = 34.0 Hz), 127.48, 126.98, 126.37, 125.44, 125.32, 125.20, 125.15, 125.08, 52.59 (d, J_{C-P} = 64.9 Hz), 34.98, 34.88, 31.15, 31.08. ³¹P NMR (162 MHz, Chloroform-*d*) δ = 31.66. IR (KBr): 3080.80, 3060.65, 3026.27, 2867.81, 1663.72, 1268.66, 825.48, 745.04, 699,51. HRMS (ESI/[M+H]†) Calcd. for: C₃₅H₄₀OP 507.2817 found 507.2817.

(E)-(1,3-diphenylallyl)bis(4-methoxyphenyl)phosphine oxide (3x)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3x** was isolated as white solid. Mp: 223-226 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 7.78 – 7.67 (m, 2H), 7.52 – 7.40 (m, 2H), 7.38 – 7.28 (m, 2H), 7.28 – 7.11 (m, 8H), 7.02 – 6.91 (m, 2H), 6.85 – 6.73 (m, 2H), 6.65 – 6.50 (m, 1H), 6.34 (dd, J = 3.8, 0.9 Hz, 1H), 4.29 (dd, J = 9.6, 9.6 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ = 162.21 (d, J_{C-P} = 2.9 Hz), 161.97 (d, J_{C-P} = 2.8 Hz), 136.83, 136.34 (d, J_{C-P} = 5.8 Hz), 134.08 (d, J_{C-P} = 11.3 Hz), 133.61, 133.51, 133.24, 133.14, 129.51, 129.45, 128.52, 128.42, 127.52, 127.02, 126.39, 126.38, 125.09 (d, J_{C-P} = 7.1 Hz), 123.61 (d, J_{C-P} = 56.5 Hz), 122.58 (d, J_{C-P} = 56.6 Hz), 114.01, 113.89, 113.76, 113.63, 55.30, 55.22, 52.89 (d, J = 65.8 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 31.43. IR (KBr): 3058.34, 3025.82, 2962.21, 2905.86, 1645.20, 1251.56, 825.00, 801.23, 726.66, 728.87. HRMS (ESI/[M+H]+) Calcd. for: C₂₉H₂₈O₃P 455.1776, found 455.1776.

(E)-bis(3,5-dimethylphenyl)(1,3-diphenylallyl)phosphine oxide (3y)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3y** was isolated as white solid. Mp: 209-211 °C. ¹H NMR (400 MHz, Chloroform-d) δ = 7.47 – 7.40 (m, 2H), 7.39 – 7.33 (m, 2H), 7.27 – 7.19 (m, 6H), 7.19 – 7.13 (m, 4H), 7.10 (s, 1H), 6.99 (s, 1H), 6.64 – 6.50 (m, 1H), 6.30 (dd, J = 15.8, 3.8 Hz, 1H), 4.33 (dd, J = 9.5, 9.5 Hz, 1H), 2.30 (s, 6H), 2.20 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ = 138.02, 137.90, 137.75, 137.62, 136.87 (d, J_{C-P} = 2.5 Hz), 136.26 (d, J_{C-P} = 6.0 Hz), 134.26, 134.15, 133.43 (d, J_{C-P} = 2.9 Hz), 133.17 (d, J_{C-P} = 2.9 Hz), 131.84 (d, J_{C-P} = 27.4 Hz), 130.89 (d, J_{C-P} = 27.6 Hz), 129.58, 129.53, 129.43, 129.34, 129.06, 128.98, 128.46, 128.37, 127.48, 126.99 (d, J_{C-P} = 2.4 Hz), 126.39, 125.03 (d, J_{C-P} = 7.1 Hz), 52.33 (d, J_{C-P} = 64.3 Hz), 21.37, 21.25. ³¹P NMR (162 MHz, Chloroform-d) δ = 32.03. IR (KBr): 3057.14, 3024.09, 2954.84, 2920.54, 2853.57, 1645.20, 1274.09, 750.00, 727.98, 699,89. HRMS (ESI/[M+H]+) Calcd. for: C₃₁H₃₂OP 451.2191, found 451.2193.

(E)-(1,3-diphenylallyl)di-m-tolylphosphine oxide (3z)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3z** was isolated as white solid. Mp: 171-173 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, J = 11.4 Hz, 1H), 7.59 (dd, J = 8.4, 8.4 Hz, 1H), 7.41 – 7.27 (m, 6H), 7.25 – 7.20 (m, 6H), 7.20 – 7.14 (m, 4H), 6.63 – 6.51 (m, 1H), 6.30 (dd, J = 15.7, 3.7 Hz, 1H), 4.34 (dd, J = 9.1, 9.1 Hz, 1H), 2.34 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 138.46, 138.35, 138.18, 138.07, 136.85 (d, J _{C-P} = 2.5 Hz), 136.13 (d, J _{C-P} = 5.9 Hz), 134.45, 134.34, 132.71, 132.63, 132.38, 132.28, 132.20, 131.96 (d, J _{C-P} = 31.9 Hz), 131.00 (d, J _{C-P} = 31.9 Hz), 129.61, 129.55, 128.59, 128.48, 128.35, 128.26, 128.17, 128.08, 127.95, 127.63, 127.15 (d, J _{C-P} = 2.4 Hz), 126.48, 124.84 (d, J _{C-P} = 7.3 Hz), 52.44 (d, J _{C-P} = 64.9 Hz), 21.52, 21.40. ³¹P NMR (162 MHz, Chloroform-*d*) δ = 32.52. IR (KBr): 3024.29, 2917.75, 2850.05, 1645.20, 1275.85, 747.41, 732.91. HRMS (ESI/[M+H]+) Calcd. for: C₂₉H₂₈OP 423.1878, found 423.1862.

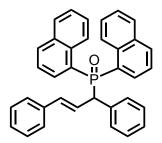
(E)-(1,3-diphenylallyl)di-o-tolylphosphine oxide (3aa)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3aa** was isolated as white solid. Mp: 170-173 °C. 1 H NMR (400 MHz, Chloroform-*d*) $\delta = 7.84 - 7.72$ (m, 1H), 7.51 - 7.31 (m, 4H), 7.31 - 7.13 (m, 11H), 7.09 - 6.96 (m, 2H), 6.87 - 6.70 (m, 1H), 6.54 - 6.44 (m, 1H), 4.52 (dd,

J = 8.6, 8.6 Hz, 1H), 2.37 (s, 3H), 2.19 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ = 143.15 (d, $J_{\text{C-P}}$ = 7.2 Hz), 142.65 (d, $J_{\text{C-P}}$ = 7.7 Hz), 137.09 (d, $J_{\text{C-P}}$ = 5.4 Hz), 136.96 (d, $J_{\text{C-P}}$ = 1.6 Hz), 134.31, 134.20, 132.16, 132.04, 132.01, 131.94, 131.70, 131.64, 131.61, 131.59, 131.41, 131.38, 130.88 (d, $J_{\text{C-P}}$ = 38.8 Hz), 129.74, 129.69, 128.55, 127.70, 127.09 (d, $J_{\text{C-P}}$ = 2.2 Hz), 126.51, 125.81 (d, $J_{\text{C-P}}$ = 6.3 Hz), 125.35 (d, $J_{\text{C-P}}$ = 11.8 Hz), 125.14 (d, $J_{\text{C-P}}$ = 12.1 Hz), 50.80 (d, $J_{\text{C-P}}$ = 65.7 Hz), 21.43 (d, $J_{\text{C-P}}$ = 3.8 Hz), 21.13 (d, $J_{\text{C-P}}$ = 3.8 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 35.66. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₉H₂₇OP 423.1878, found 423.1865.

(E)-(1,3-diphenylallyl)bis(2-methoxyphenyl)phosphine oxide (3ab)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3ab** was isolated as white solid. Mp: 181-182 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.86 (dd, J = 12.8, 7.6 Hz, 1H), 7.61 (dd, J = 13.0, 7.6 Hz, 1H), 7.45 (d, J = 7.6 Hz, 2H), 7.38 (dd, J = 8.4, 8.4 Hz, 1H), 7.32 – 7.03 (m, 9H), 6.97 (dd, J = 7.5, 7.5 Hz, 1H), 6.87 – 6.64 (m, 4H), 6.46 (dd, J = 15.8, 2.6 Hz, 1H), 4.97 (dd, $J_{\text{H-P}}$ = 10.6, 10.6 Hz, 1H), 3.69 (s, 3H), 3.61 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ = 160.35 (d, $J_{\text{C-P}}$ = 3.4 Hz), 159.95 (d, $J_{\text{C-P}}$ = 3.4 Hz), 138.09 (d, $J_{\text{C-P}}$ = 5.7 Hz), 137.45 (d, $J_{\text{C-P}}$ = 2.0 Hz), 134.62 (d, $J_{\text{C-P}}$ = 6.2 Hz), 134.30 (d, $J_{\text{C-P}}$ = 6.2 Hz), 133.35, 133.16, 132.77 (d, $J_{\text{C-P}}$ = 12.5 Hz), 129.46, 129.40, 128.46, 128.26, 127.32, 127.19 (d, $J_{\text{C-P}}$ = 6.7 Hz), 126.70, 126.68, 126.42, 126.41, 121.80 (d, J = 13.7 Hz), 120.83 (d, $J_{\text{C-P}}$ = 14.1 Hz), 120.76 (d, $J_{\text{C-P}}$ = 11.1 Hz), 120.45 (d, $J_{\text{C-P}}$ = 11.1 Hz), 110.98 (d, $J_{\text{C-P}}$ = 6.8 Hz), 110.51 (d, $J_{\text{C-P}}$ = 6.8 Hz), 55.51, 55.27, 51.09 (d, $J_{\text{C-P}}$ = 69.4 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 33.22. IR (KBr): 3060.19, 3024.40, 2966.46, 2937.53, 1645.32, 1274.32, 800.76, 749.01, 726.76. HRMS (ESI/[M+H]†) Calcd. for: $C_{\text{29}}H_{\text{28}}O_{\text{3}}P$ 455.1776, found 455.1771.


(E)-(1,3-diphenylallyl)bis(3-methoxyphenyl)phosphine oxide (3ac)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3ac** was isolated as white solid. Mp: 173-175 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.45 – 7.34 (m, 5H), 7.26 – 7.15 (m, 9H), 7.14 – 7.00 (m, 3H), 6.95 – 6.88 (m, 1H), 6.66 – 6.55 (m, 1H), 6.34 (dd, J = 15.8, 3.8 Hz, 1H), 4.33 (dd, J = 9.4, 9.4 Hz, 1H), 3.74 (s, 3H), 3.63 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ = 159.63 (d, J_{C-P} = 14.0 Hz), 159.32 (d, J_{C-P} = 14.3 Hz), 136.78 (d, J_{C-P} = 2.8 Hz), 136.11 (d, J_{C-P} = 6.1 Hz), 134.54, 134.43, 133.45 (d, J_{C-P} = 39.0 Hz), 132.49 (d, J_{C-P} = 39.0 Hz), 129.74, 129.59, 129.46, 129.33, 128.70, 128.54, 127.74, 127.25 (d, J_{C-P} = 2.7 Hz), 126.51, 124.68 (d, J_{C-P} = 7.5 Hz), 123.72, 123.63, 123.47, 123.37, 118.41 (d, J_{C-P} = 3.1 Hz), 118.33 (d, J_{C-P} = 3.0 Hz), 116.72 (d, J_{C-P} = 9.1 Hz), 16.05 (d, J_{C-P} = 9.3 Hz), 55.49, 55.39, 52.51 (d, J_{C-P} = 65.1 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.46. IR (KBr): 3057.44, 3021.59, 2959.12, 2919.49, 1647.15, 1286.03, 749.08, 725.56. HRMS (ESI/[M+H]†) Calcd. for: C₂₉H₂₈O₃P 455.1776, found 455.1786.

(E)-(1,3-diphenylallyl)di(naphthalen-2-yl)phosphine oxide (3ad)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3ad** was isolated as white solid. Mp: 217-218 °C. ¹H NMR (400 MHz, Chloroform-d) δ 8.53 (d, J = 13.0 Hz, 1H), 8.22 (d, J = 13.3 Hz, 1H), 7.98 – 7.84 (m, 4H), 7.83 – 7.74 (m, 3H), 7.70 – 7.63 (m, 1H), 7.63 – 7.41 (m, 6H), 7.27 – 7.11 (m, 8H), 6.79 – 6.66 (m, 1H), 6.45 (dd, J = 15.7, 3.8 Hz, 1H), 4.67 (dd, J = 9.4, 9.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ = 136.75 (d, J_{C-P} = 2.4 Hz), 136.08 (d, J_{C-P} = 5.8 Hz), 134.74, 134.62, 134.54, 134.34, 134.27, 133.83, 133.75, 132.70 (d, J_{C-P} = 12.5 Hz), 132.49 (d, J_{C-P} = 12.6 Hz), 129.55 (d, J_{C-P} = 35.0 Hz), 129.70, 129.65, 129.12, 129.01, 128.80, 128.59 (d, J_{C-P} = 35.1 Hz), 128.53, 128.24, 128.16, 128.10, 127.98, 127.92, 127.83, 127.74, 127.36 (d, J_{C-P} = 2.5 Hz), 127.04, 126.87, 126.53, 126.44 (d, J_{C-P} = 9.7 Hz), 126.23 (d, J_{C-P} = 9.7 Hz), 124.75 (d, J_{C-P} = 7.2 Hz), 52.37 (d, J_{C-P} = 65.0 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 32.29. IR (KBr): 3054.09, 3022.17, 2913.91, 1624.80, 1271.41, 859.51, 819.83, 743.50, 710.17. HRMS (ESI/[M+H]⁺) Calcd. for: C₃₅H₂₈OP 495.1878, found 495.1877.

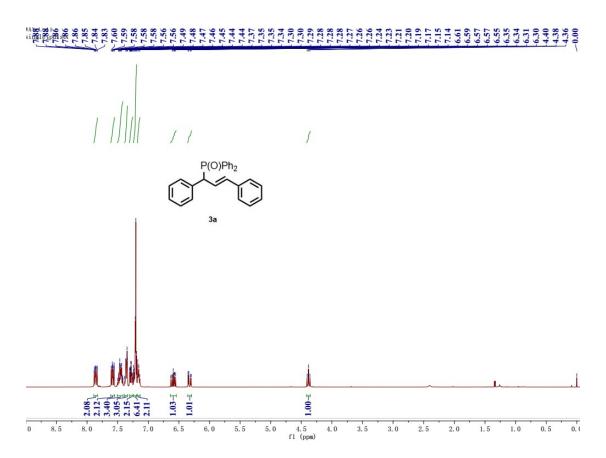
(E)-(1,3-diphenylallyl)di(naphthalen-1-yl)phosphine oxide (3ae)

Following the general procedure, the reaction was conducted at 100 °C for 12h. **3ae** was isolated as white solid. Mp: 246-248 °C. ¹H NMR (400 MHz, Chloroform-d) δ 8.76 (d, J = 8.5 Hz, 1H), 8.59 (d, J = 8.5 Hz, 1H), 8.13 (dd, J = 14.3, 7.1 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.88 – 7.76 (m, 3H), 7.73 (d, J = 8.2 Hz, 1H), 7.47 (dd, J = 6.8, 6.8 Hz, 1H), 7.41 – 7.25 (m, 7H), 7.25 – 7.02 (m, 8H), 6.83 – 6.72 (m, 1H), 6.38 (dd, J = 15.7, 3.8 Hz, 1H), 4.78 (dd, J = 9.0, 9.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ = 136.95 (d, J _{C-P} = 5.7 Hz), 136.84 (d, J _{C-P} = 2.4 Hz), 134.40, 134.26 (d, J _{C-P} = 7.6 Hz), 134.03, 133.98 (d, J _{C-P} = 9.0 Hz), 133.96 (d, J _{C-P} = 7.8 Hz), 133.70, 133.61, 133.12 (d, J _{C-P} = 3.4 Hz), 132.88 (d, J _{C-P} = 3.3 Hz), 132.18 (d, J _{C-P} = 2.4 Hz), 132.08 (d, J _{C-P} = 2.4 Hz), 130.03 (d, J _{C-P} = 22.7 Hz), 129.73, 129.68, 129.10 (d, J _{C-P} = 23.2 Hz), 128.88, 128.70, 128.55, 128.43, 127.64, 127.30, 127.17, 127.08, 126.67 (d, J _{C-P} = 4.8 Hz), 126.50, 126.48, 126.34, 126.16, 125.84 (d, J _{C-P} = 6.6 Hz), 124.40 (d, J _{C-P} = 13.5 Hz), 124.22 (d, J _{C-P} = 13.6 Hz), 52.06 (d, J _{C-P} = 66.9 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ = 36.68. IR (KBr): 3078.68, 3024.10, 2921.02, 2880.94, 1641.60, 1274.95, 831.53, 749.63, 699.15. HRMS (ESI/[M+H]†) Calcd. for: C₃₅H₂₈OP 495.1878, found 495.1880.

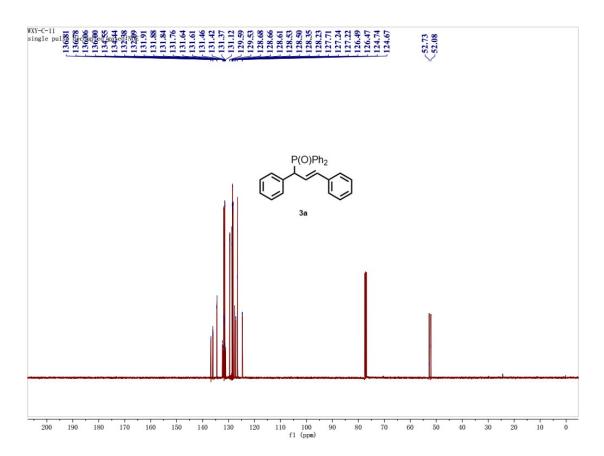
(E)-6-(1,3-diphenylallyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (3af) (diastereoisomers)

Following the general procedure, the reaction was conducted at 100 °C for 12h. 3af was isolated as white solid. Mp: 163-166 °C. Then the two isomer can be further separated by carefully PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 2:1) for five times, one of the pure isomer was obtained in 6 mg and the NMR was checked and set as reference to assign picks of this two isomer. ¹H NMR (400 MHz, Chloroform-d) δ 8.00 – 7.88 (m, 2H), 7.78 (dd, J = 11.8, 7.5 Hz, 1H), 7.73 – 7.64 (m, 1H), 7.40 (td, J = 7.5, 3.0 Hz, 1H), 7.35 - 7.20 (m, 10H), 7.19 - 7.16 (m, 2H), 6.98 (dd, J = 8.1, 1.2 Hz, 1H),6.47 (ddd, J = 16.3, 9.6, 7.2 Hz, 1H), 6.22 (dd, J = 15.7, 4.8 Hz, 1H), 4.01 (dd, J = 16.2, 9.5 Hz, 1H). 13 C NMR (101 MHz, Chloroform-d) δ = 150.06 (d, J = 8.2 Hz), 136.58, 136.31, 135.46, 135.32, 134.50, 133.74, 132.58 (d, J = 8.3 Hz), 130.89, 129.30, 128.91, 128.66, 128.27, 128.15, 128.04, 127.72, 126.57, 125.33, 124.72, 124.08, 123.88, 123.78, 122.67, 120.82 (d, J = 6.6 Hz), 51.77 (d, J = 86.8 Hz). 31 P NMR (162 MHz, Chloroform-d) $\delta = 33.42$. Another diastereoisomer: ¹H NMR (400 MHz, Chloroformd) δ 7.93 - 7.83 (m, 2H), 7.71 - 7.58 (m, 1H), 7.49 - 7.35 (m, 2H), 7.31 - 7.25 (m, 7H), 7.23 - 7.19 (m, 6H), 6.64 - 6.51 (m, 1H), 6.46 - 6.35 (m, 1H), 4.01 (dd, J = 16.4, 9.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) $\delta = 149.87$ (d, J = 3.1 Hz), 136.49, 136.20, 134.78, 134.66, 134.40, 133.58, 131.76 (d, J = 3.1 Hz) = 8.7 Hz), 130.82, 129.35, 128.80, 128.64, 128.18, 128.05, 127.96, 127.66, 124.71, 124.61, 123.94, 123.61, 123.51, 122.92, 122.68, 122.55, 122.49, 120.57 (d, J = 6.6 Hz), 51.74 (d, J = 86.8 Hz). ³¹P NMR (162 MHz, Chloroform-d) $\delta = 34.06$. IR (KBr): 3058.03, 3025.09, 2961.19, 2912.32, 1639.70, 1275.98, 753.85, 714.91. HRMS (ESI/[M+H]⁺) Calcd. for: C₂₇H₂₂O₂P 409.1357, found 409.1348.

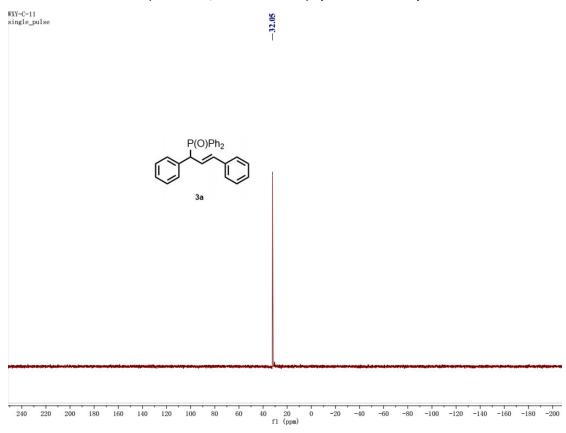
With the attempt the get more information of this reaction, other P-H species (such as diethyl (dibutyl or phenyl) phosphite etc.) was investigated. Unfortunately, under the identity condition, no desired products can be isolated.

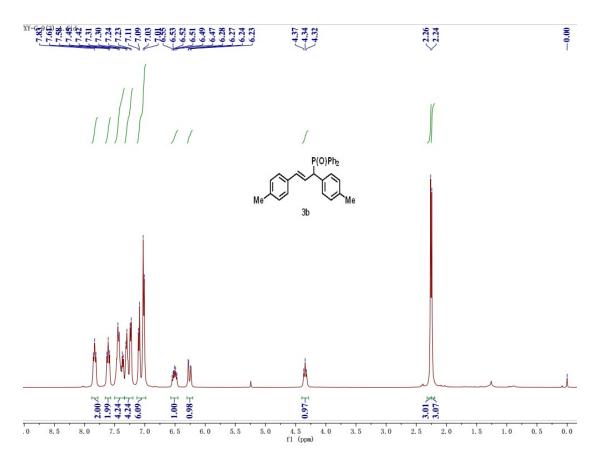

5. References

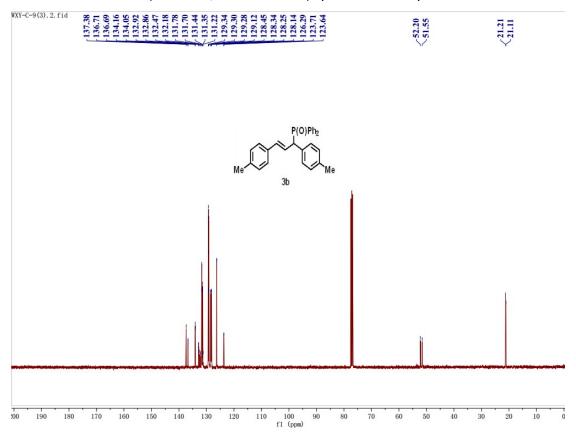
[1] C. C. Chen, J. Waser, Chem. Commun. 2014, 50, 12923.

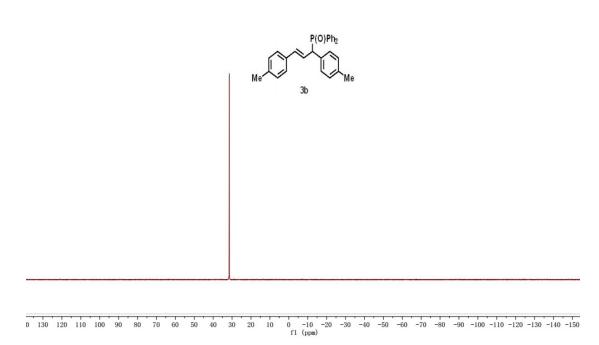

[2] a) Liu, S.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 6918; b) Fukuzawa, S.; Fujinami, T.; Yamauchi, S.; Sakai, S. J. Chem. Soc. Perkin. Trans. 1986, 1, 1929.

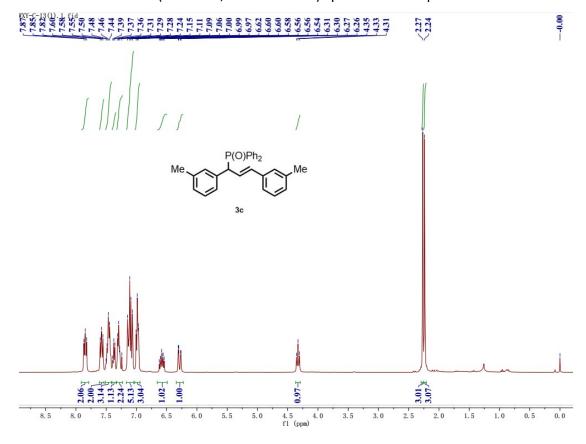
[3] L. Zhang, W. Liu, X. Zhao, Eur. J. Org. Chem. 2014, 31, 6846-6849.

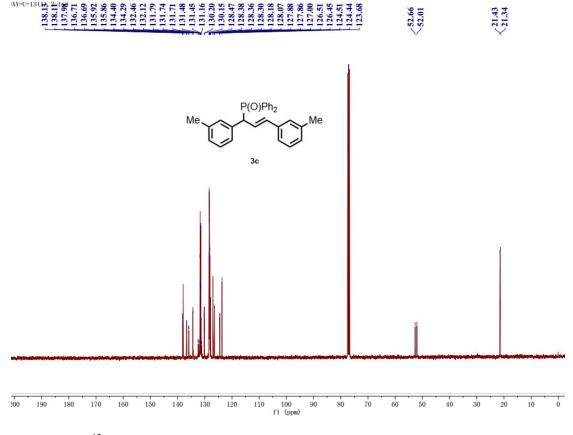

6.NMR Spectra for New Compounds

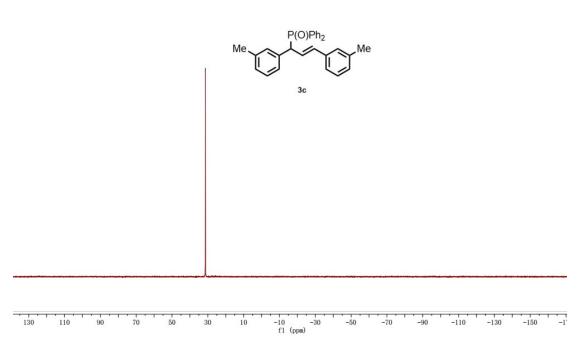

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3a.**

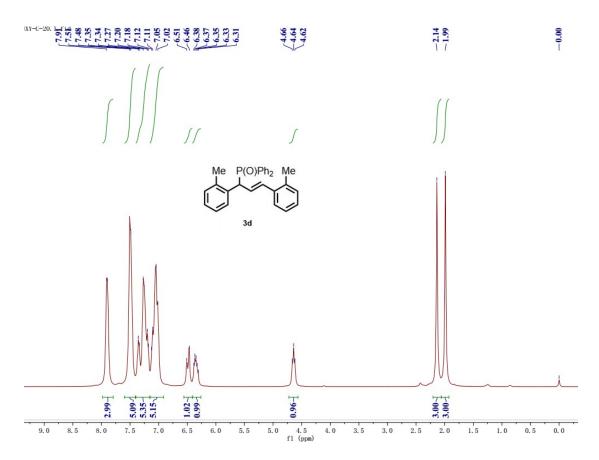

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3a.**

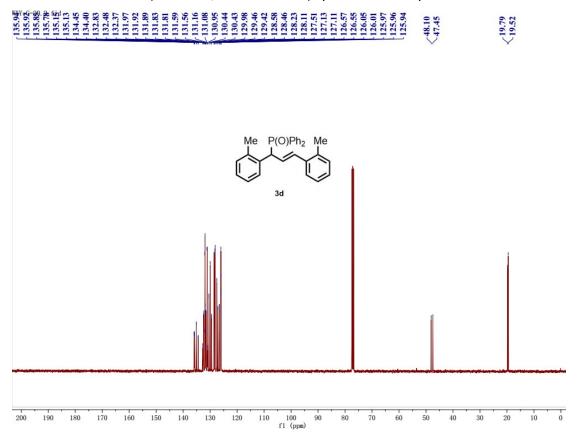

 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3a.**

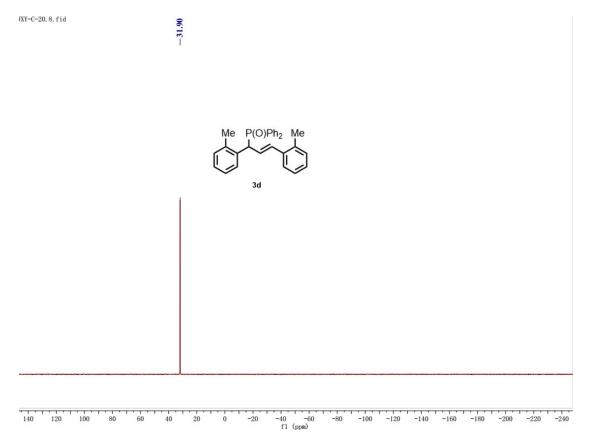

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3b.**

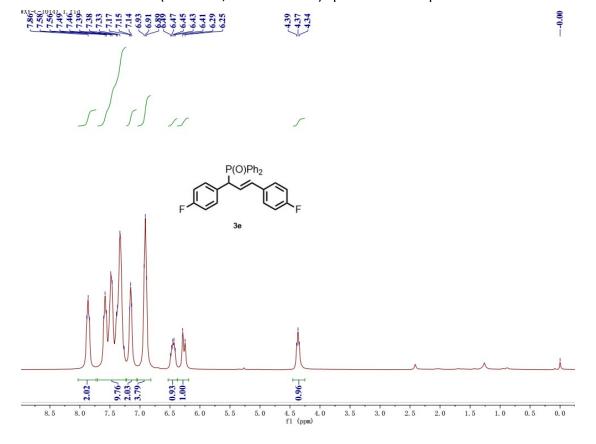

 ^{13}C NMR (101 MHz, Chloroform-d) spectra for compound **3b.**


 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3b.**

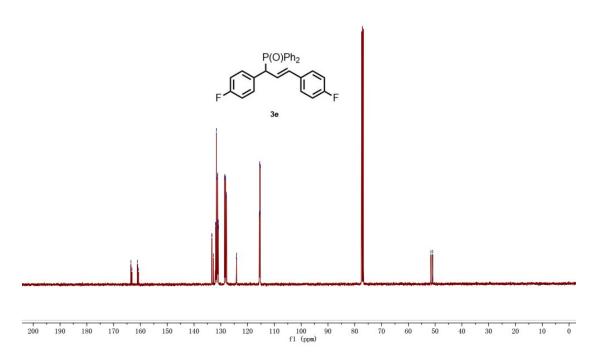

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3c.**


13C NMR (101 MHz, Chloroform-d) spectra for compound **3c.**XY-C-13(1). 8. fid

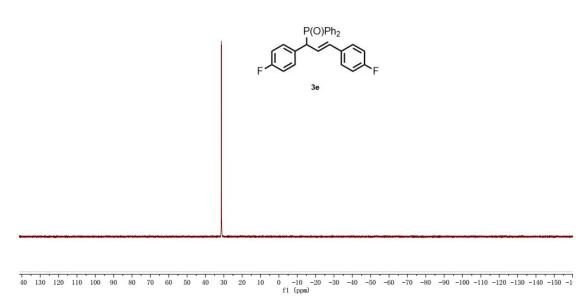

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3c.**

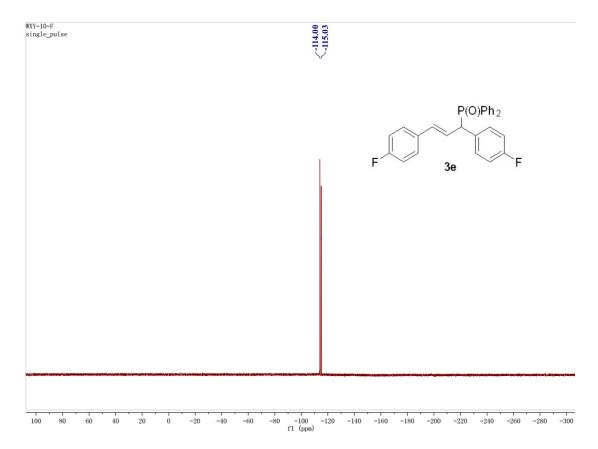

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3d.**

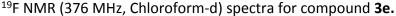
 ^{13}C NMR (101 MHz, Chloroform-d) spectra for compound **3d.**

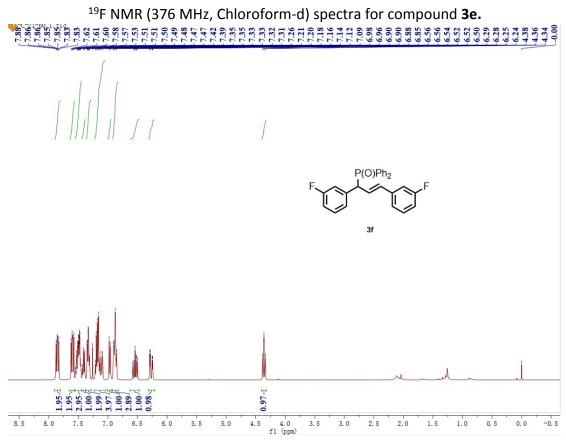

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3d.**

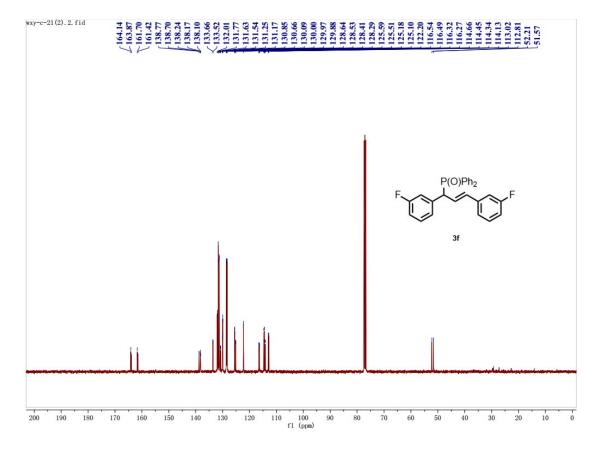
¹H NMR (400 MHz, Chloroform-d) spectra for compound **3e.**

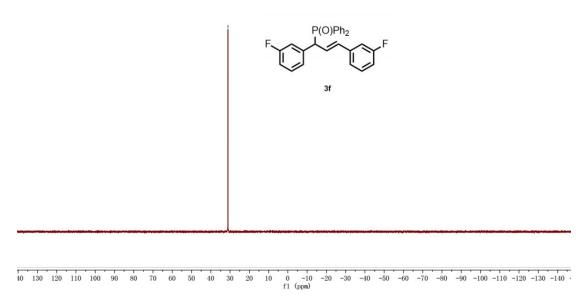



¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3e.**

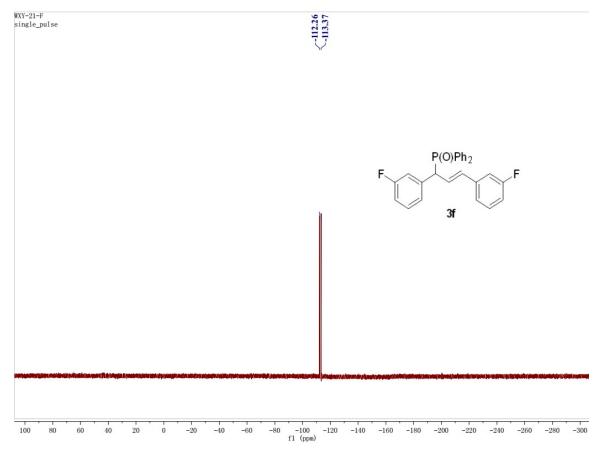

WXY-C-10(4).8.fid




 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3e.**

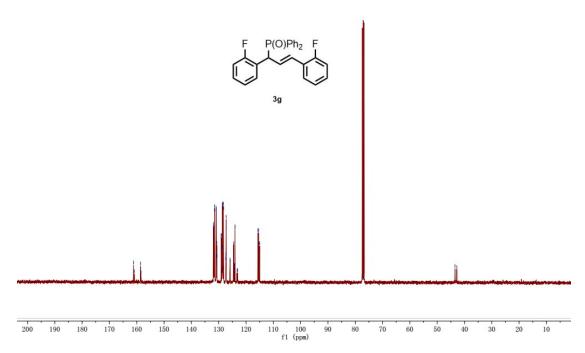


¹H NMR (400 MHz, Chloroform-d) spectra for compound **3f.**

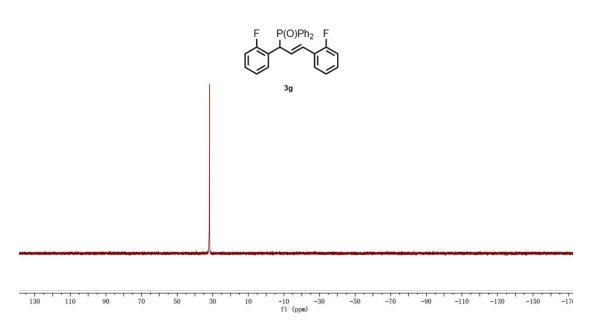


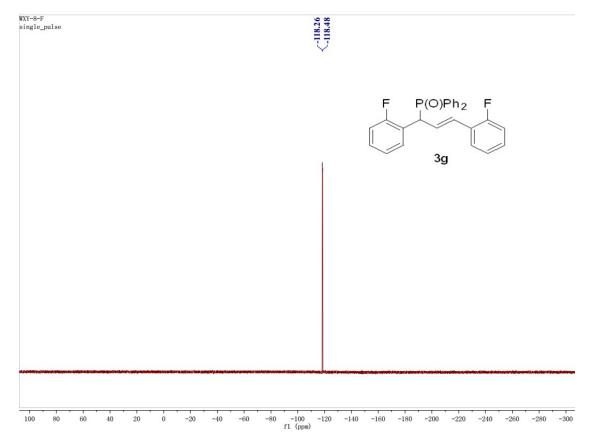
¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3f.**

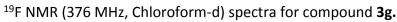
³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3f.**

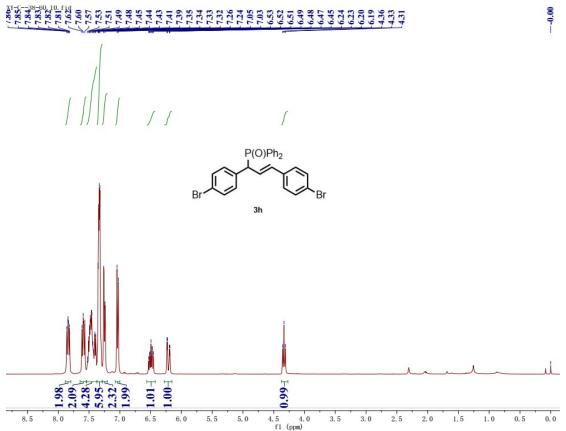


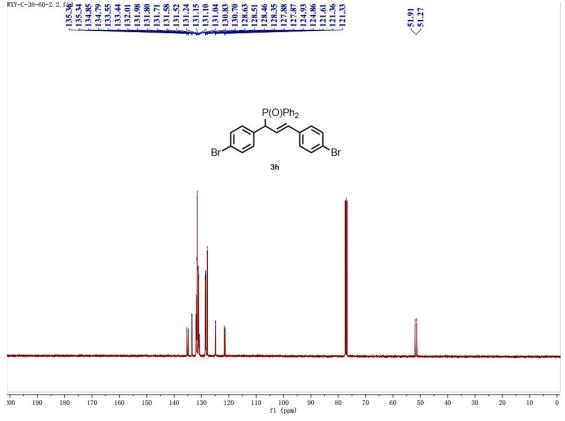
¹⁹F NMR (376 MHz, Chloroform-d) spectra for compound **3f.**

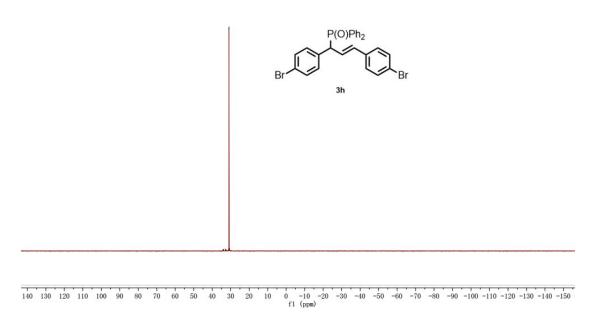

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3g.**



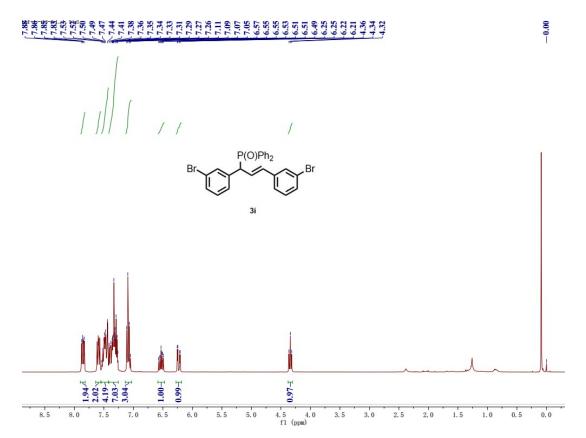

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3g.**



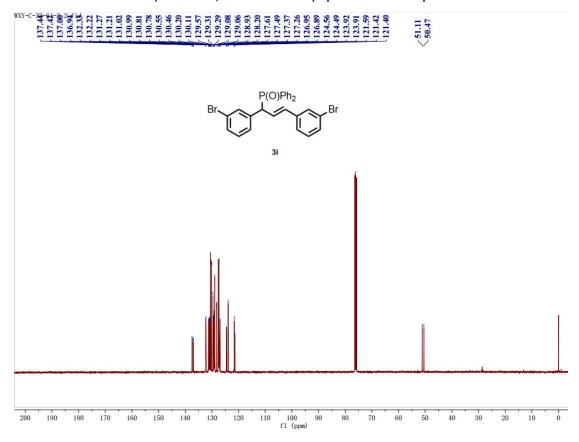

 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3g.**



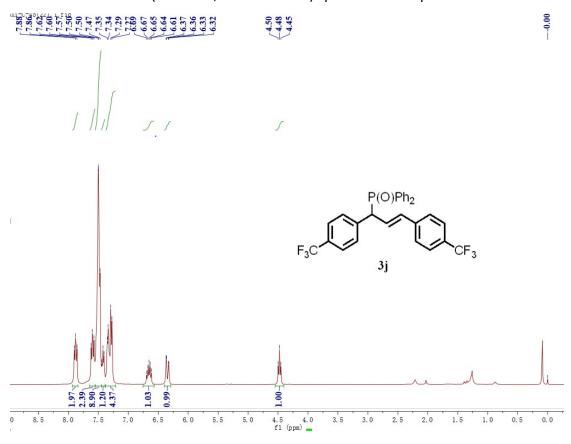
¹H NMR (400 MHz, Chloroform-d) spectra for compound **3h.**

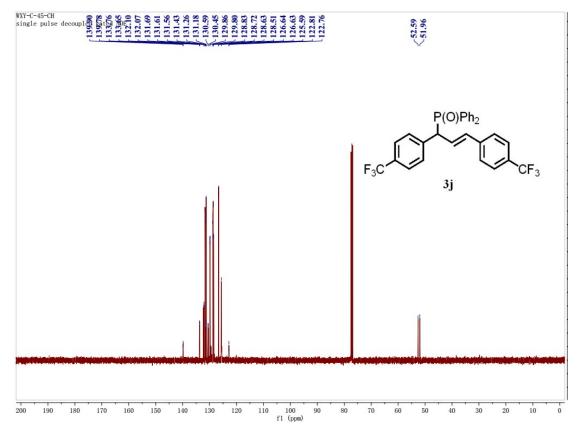


¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3h.**

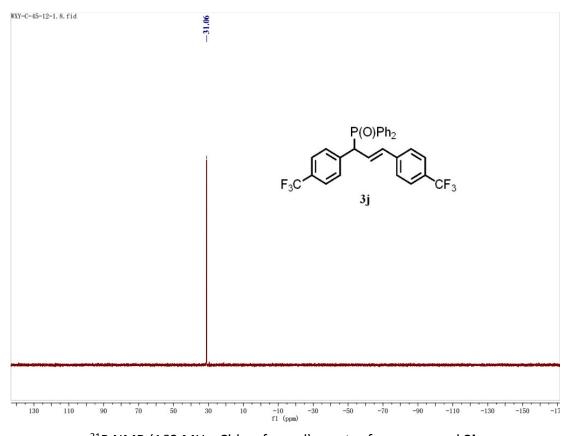


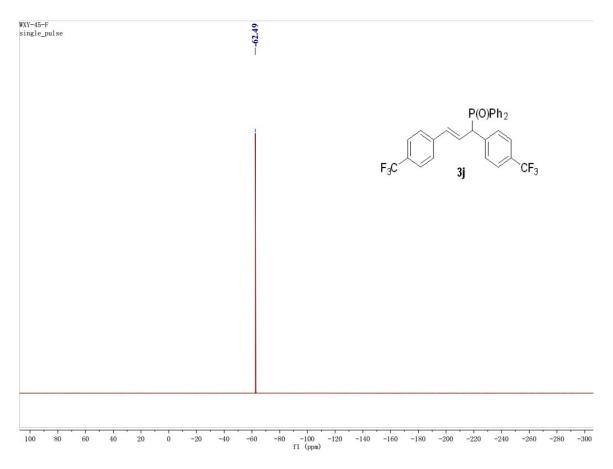
 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3h.**

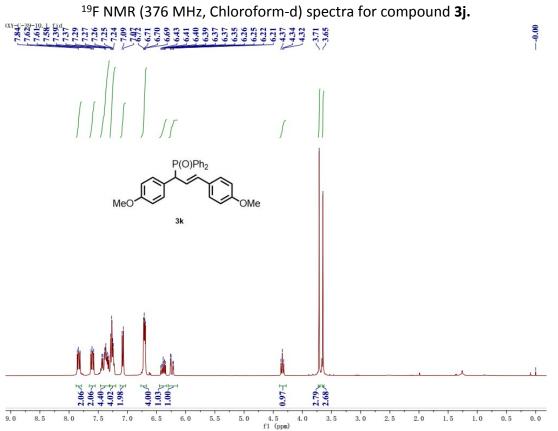

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3i.**


 ^{13}C NMR (101 MHz, Chloroform-d) spectra for compound **3i.**

10 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 (ppm)

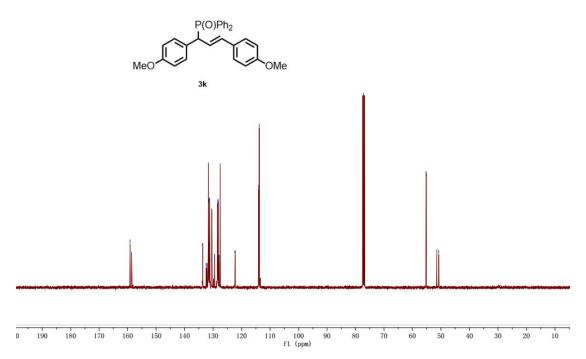

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3i.**

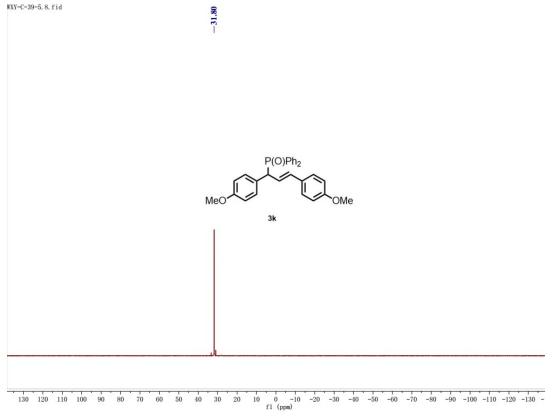

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3j.**

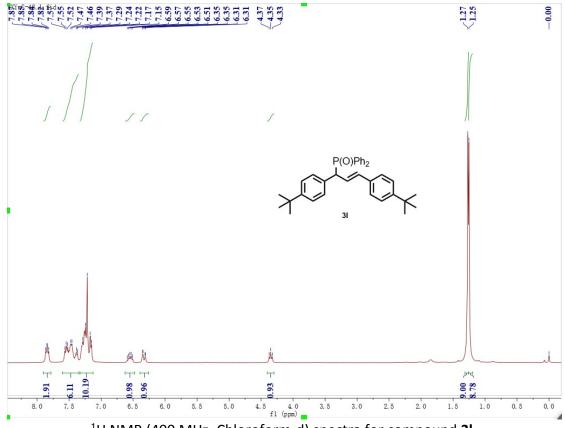


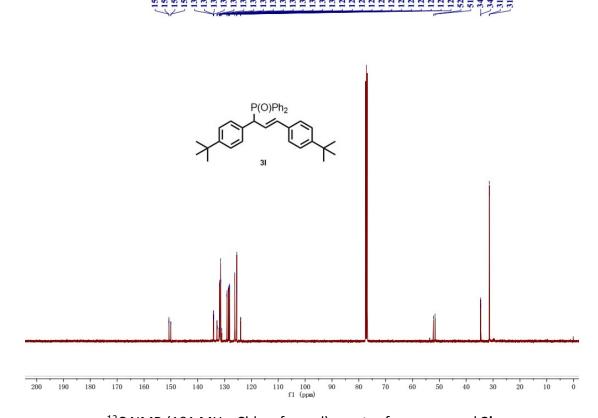
¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3j.**

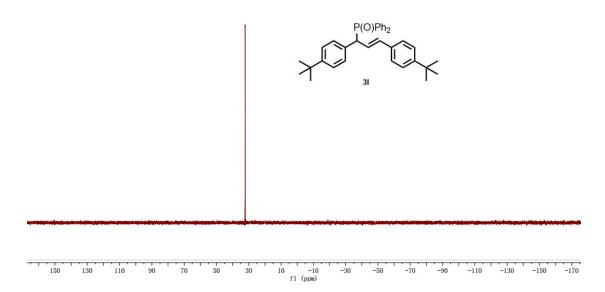
³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3j.**

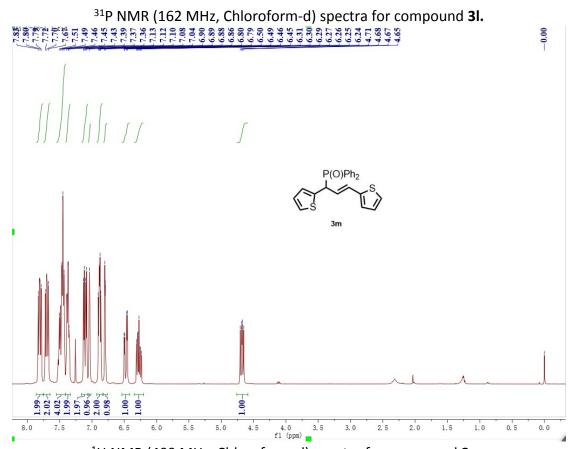



¹H NMR (400 MHz, Chloroform-d) spectra for compound **3k.**

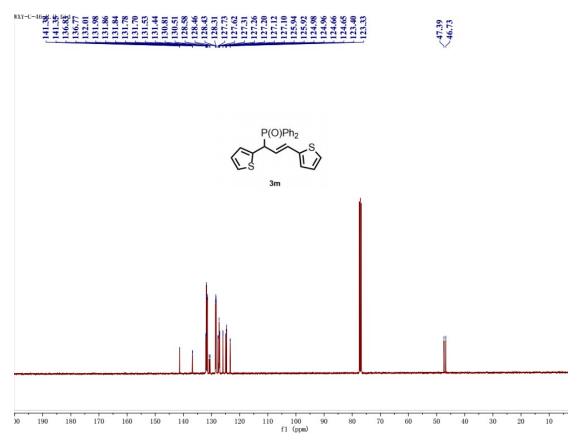

159.14 133.65 133.65 133.60 131.00 131.00 131.00 131.31 131.33 131.34


 13 C NMR (101 MHz, Chloroform-d) spectra for compound **3k.**

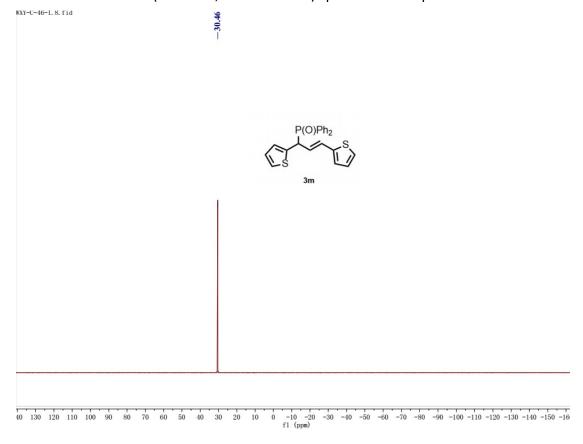

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3k.**

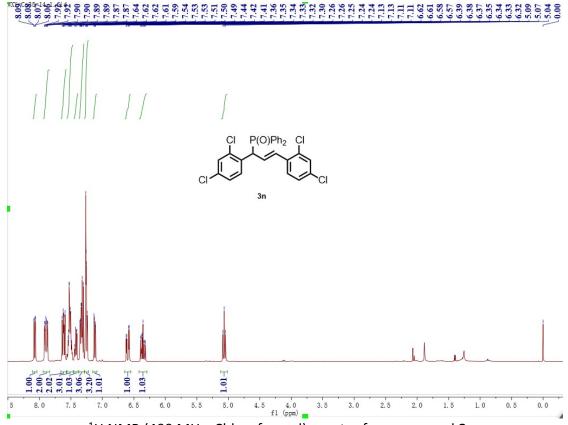


¹H NMR (400 MHz, Chloroform-d) spectra for compound **31.**



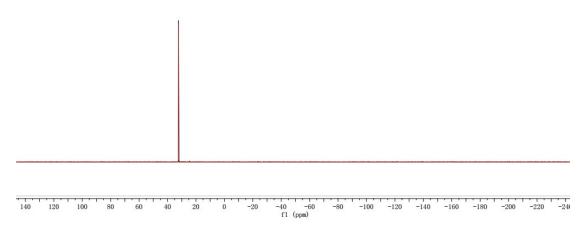
¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3l.**



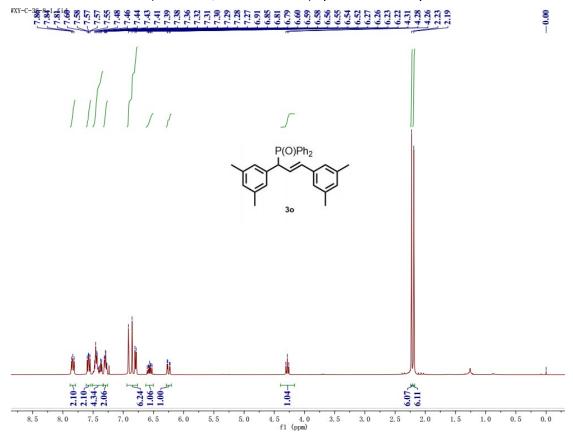

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3m.**

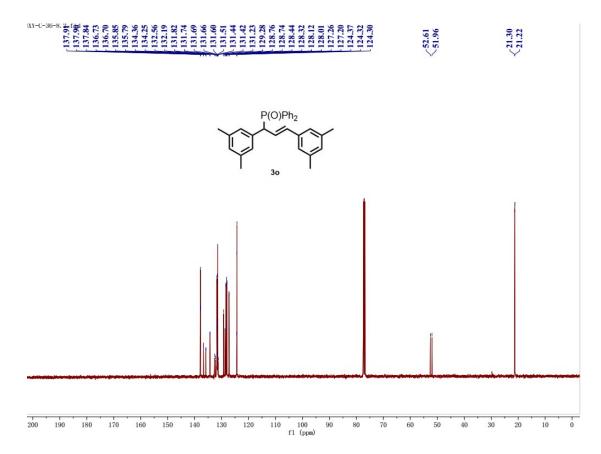
 ^{13}C NMR (101 MHz, Chloroform-d) spectra for compound **3m.**

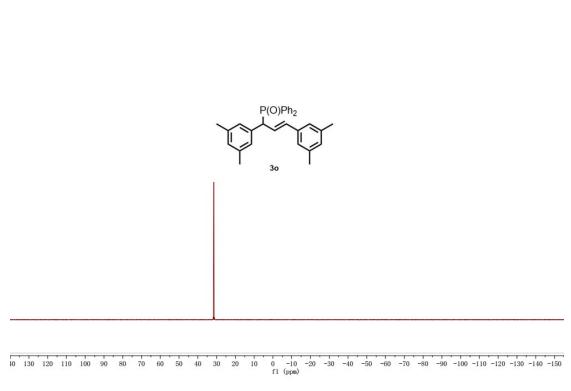
 $^{31}\mbox{P}$ NMR (162 MHz, Chloroform-d) spectra for compound **3m.**

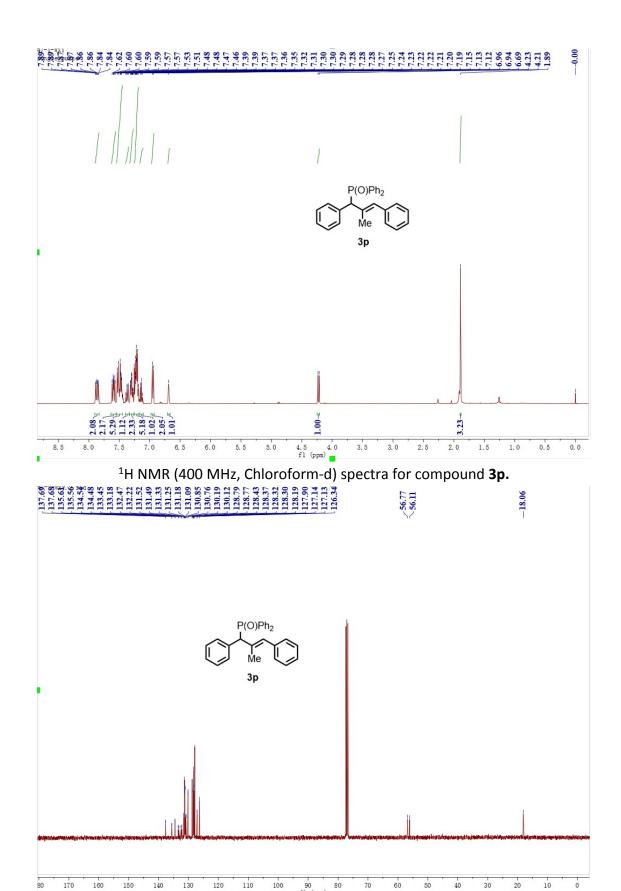


¹H NMR (400 MHz, Chloroform-d) spectra for compound **3n.**

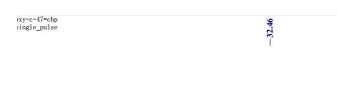


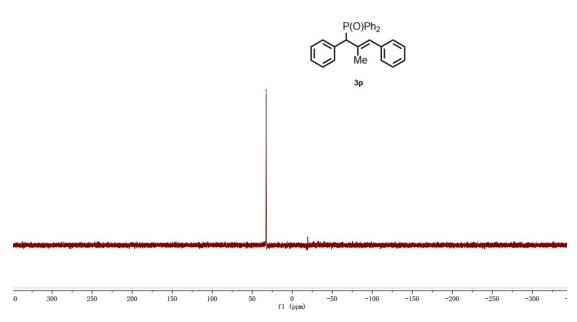

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3n.**


¹H NMR (400 MHz, Chloroform-d) spectra for compound **30.**

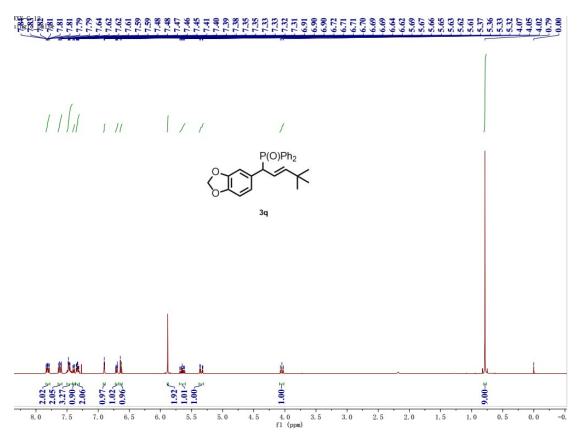

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **30.**

-31.48

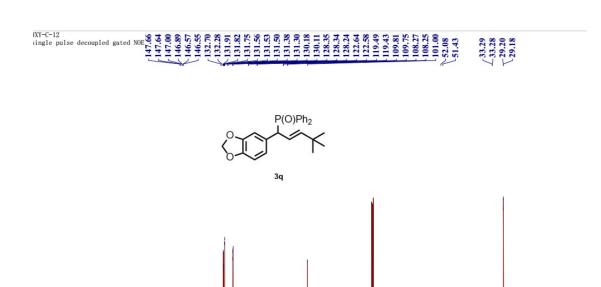

XY-C-36-2.8.fid



 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **30.**

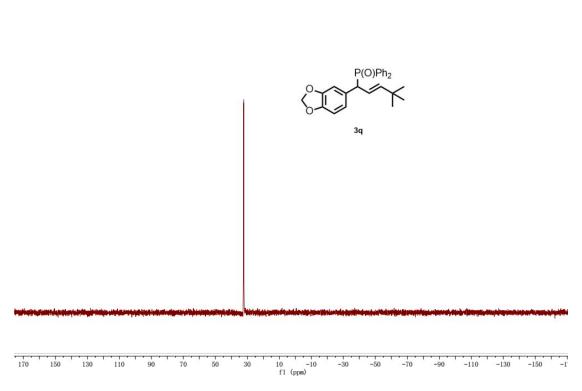


¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3p.**

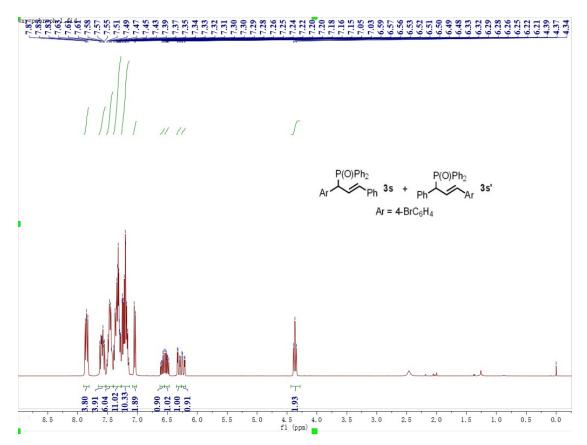


 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3p.**

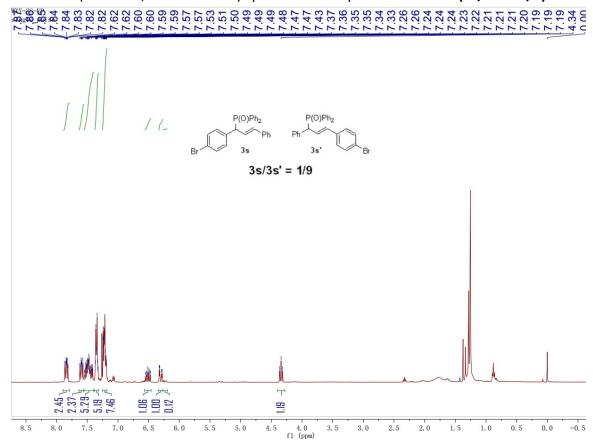
¹H NMR (400 MHz, Chloroform-d) spectra for compound **3q.**

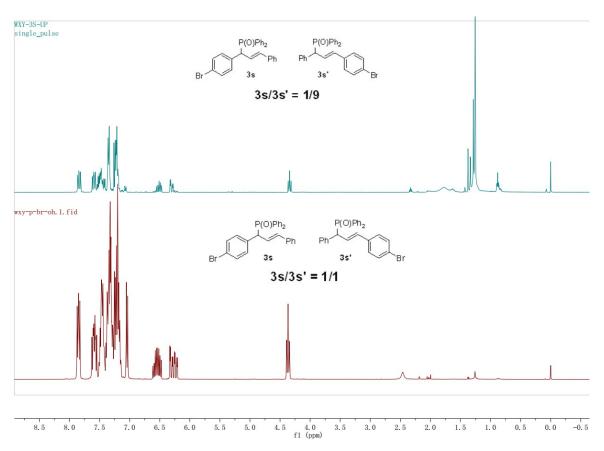


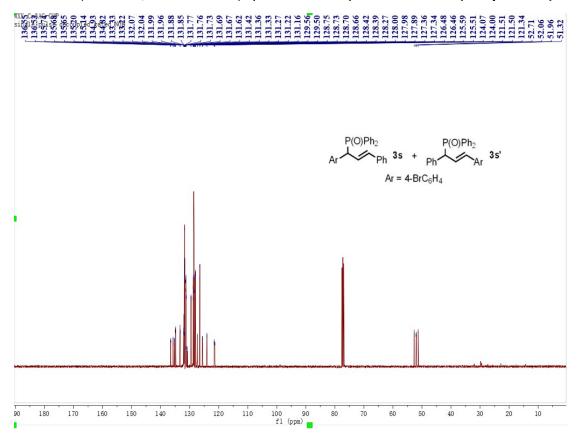
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

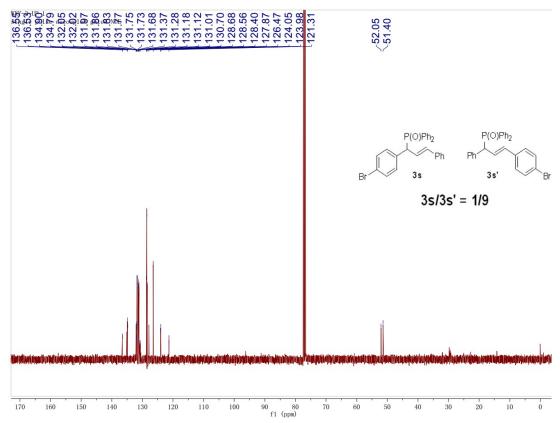

 ^{13}C NMR (101 MHz, Chloroform-d) spectra for compound **3q.**

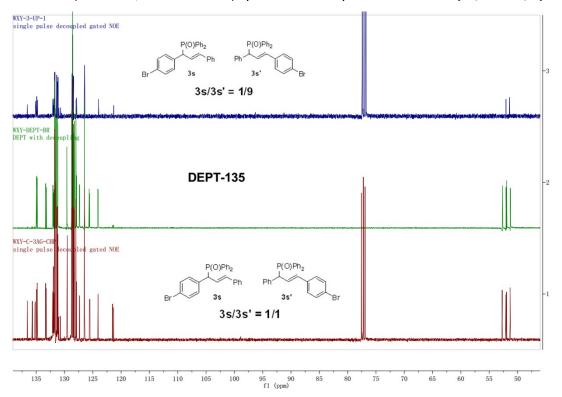
-32.31

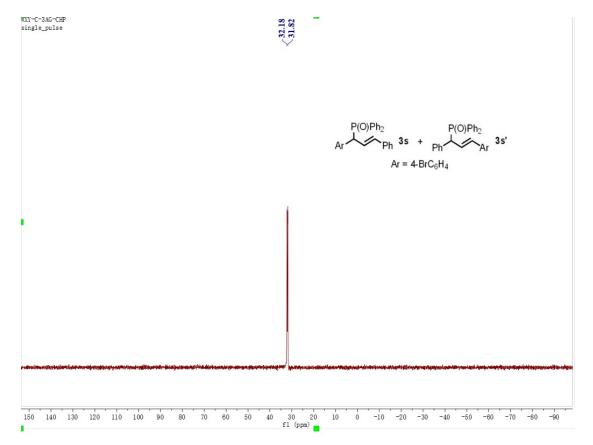

WXY-C-12 single_pulse

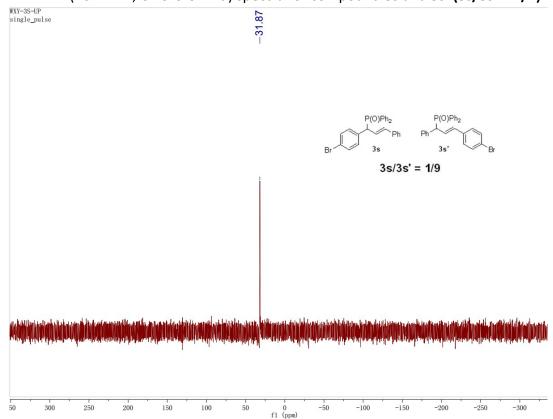

 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3q.**

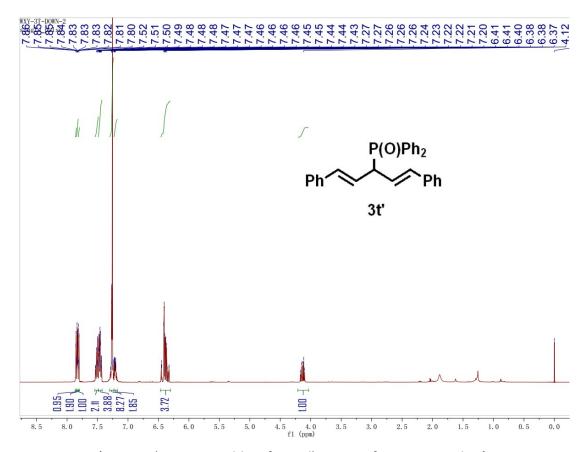

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3s** and **3s'(3s/3s' = 1/1).**

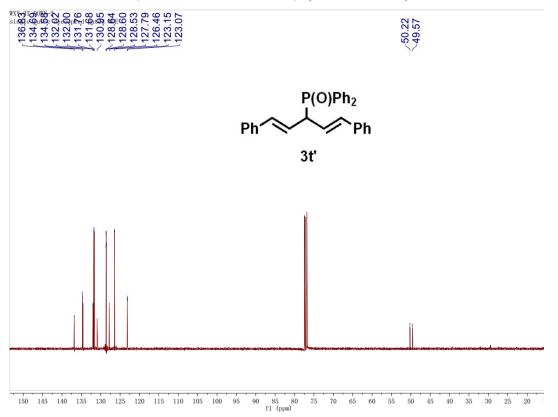

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3s** and **3s'(3s/3s' = 1/9).**

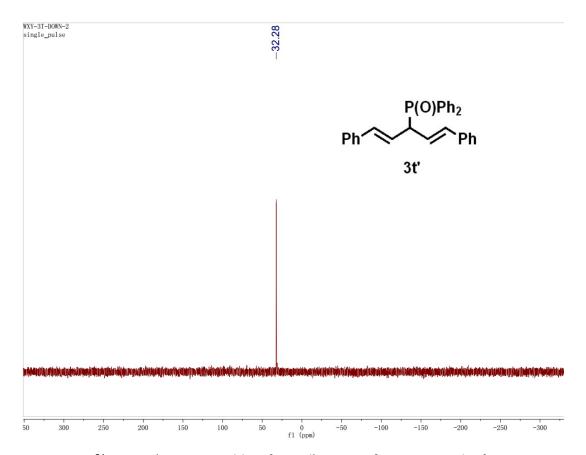

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3s** and **3s'(comparation).**

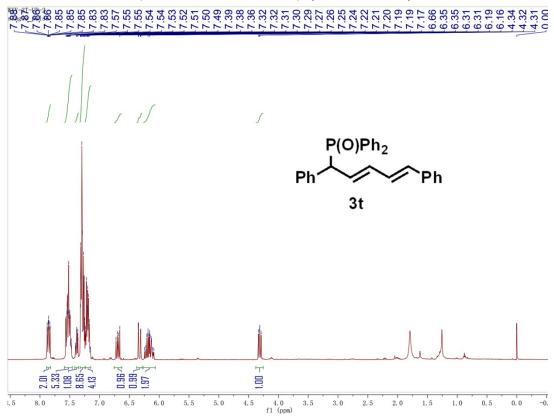

 13 C NMR (101 MHz, Chloroform-d) spectra for compound **3s** and **3s'** (**3s/3s'** = **1/1**).

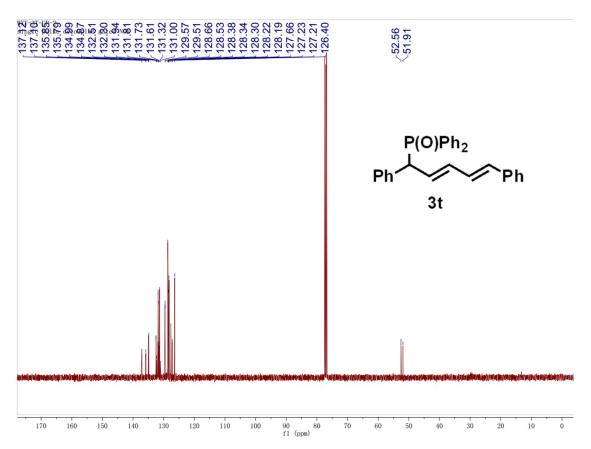

 13 C NMR (101 MHz, Chloroform-d) spectra for compound **3s** and **3s'** (**3s/3s'** = **1/9**).

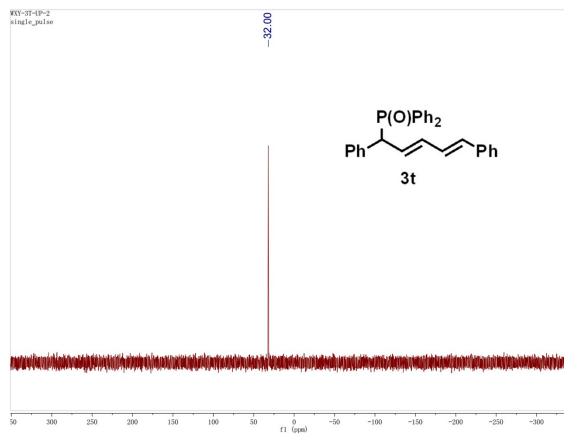

¹³C NMR (101 MHz, Chloroform-d) spectra.

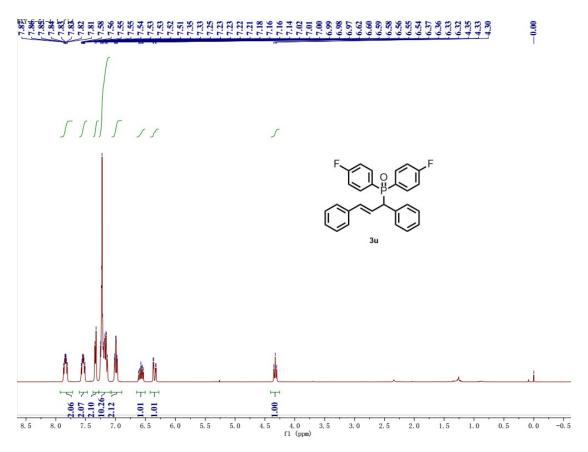


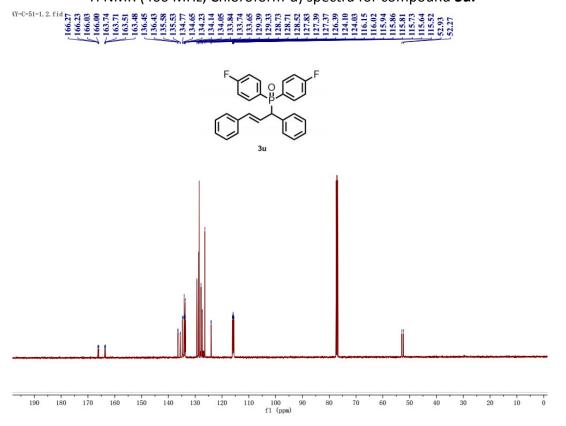

 31 P NMR (162 MHz, Chloroform-d) spectra for compound **3s** and **3s'** (**3s/3s'** = **1/9**).

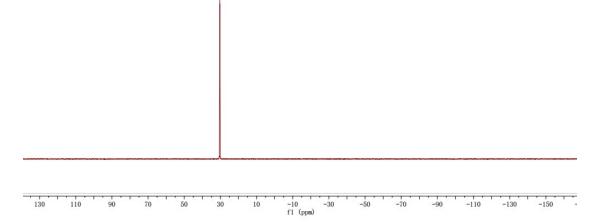

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3t'**.

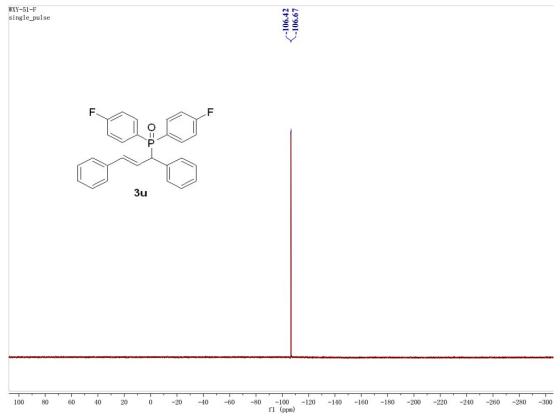

¹³C NMR (101 MHz, Chloroform-d) spectra for compound 3t'.

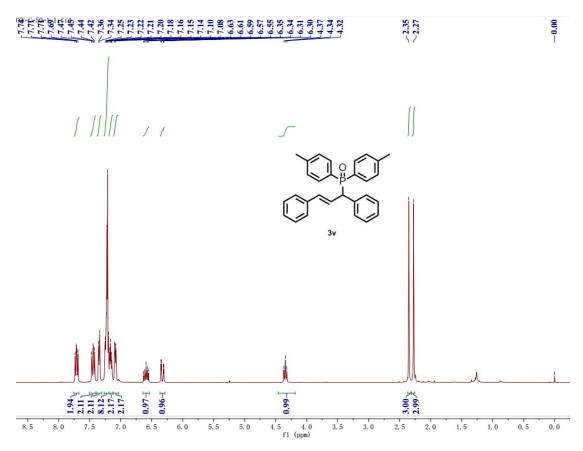

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3t'**.

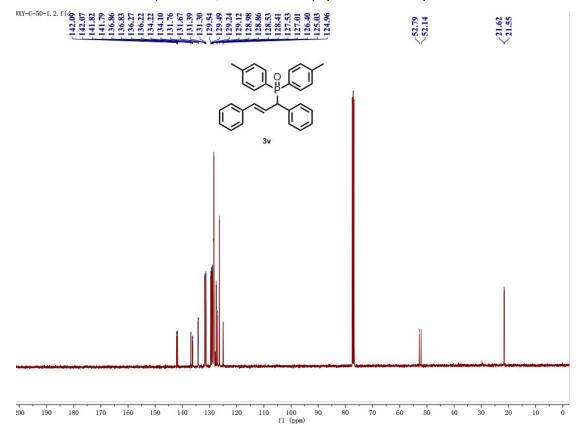

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3t.**

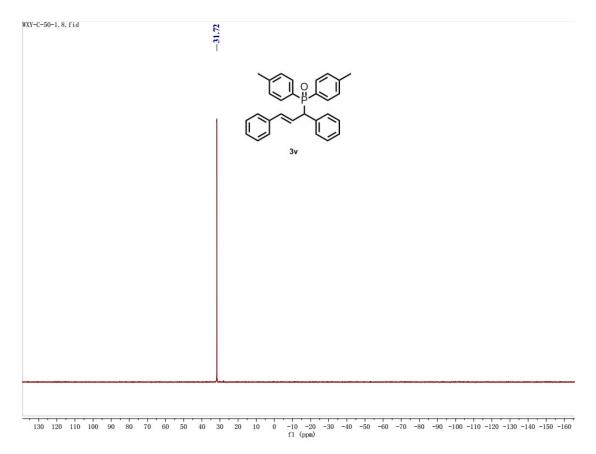

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3t.**

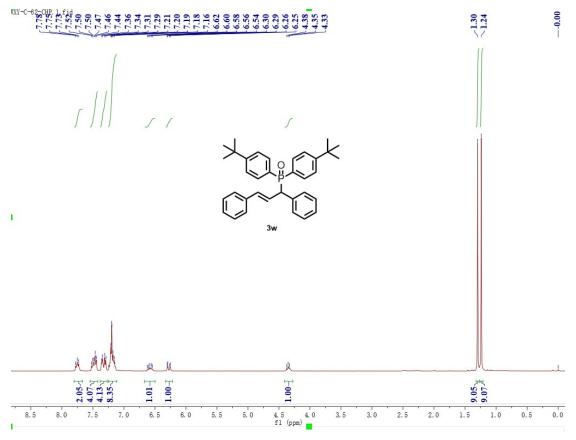

³¹P NMR (162 MHz, Chloroform-d) spectra for compound 3t'.

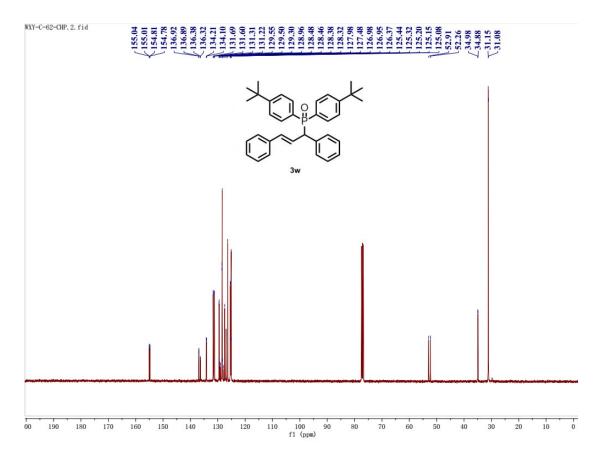

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3u**.

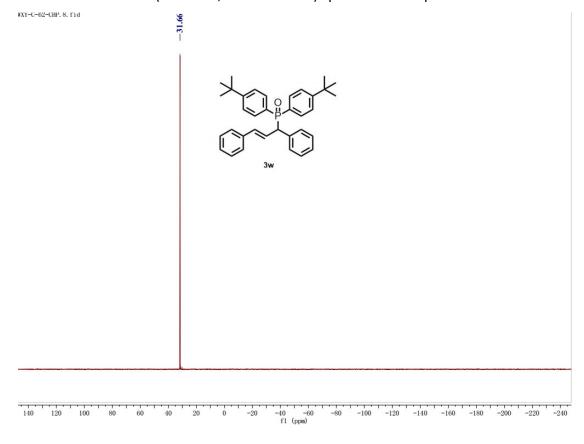

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3u**.

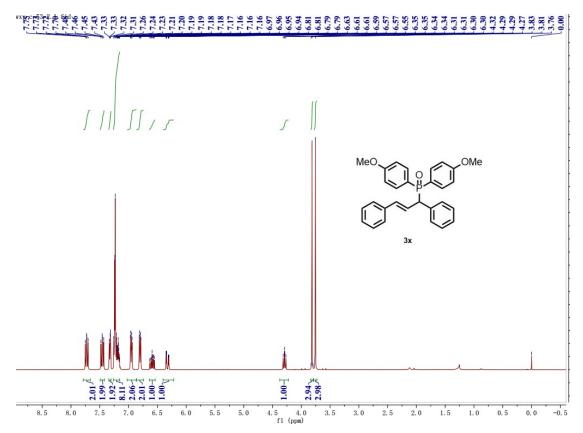

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3u.**

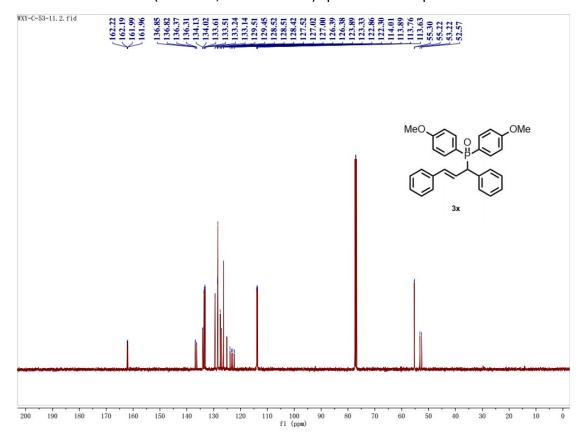

 $^{19}\mbox{F}$ NMR (376 MHz, Chloroform-d) spectra for compound $\mbox{3u.}$

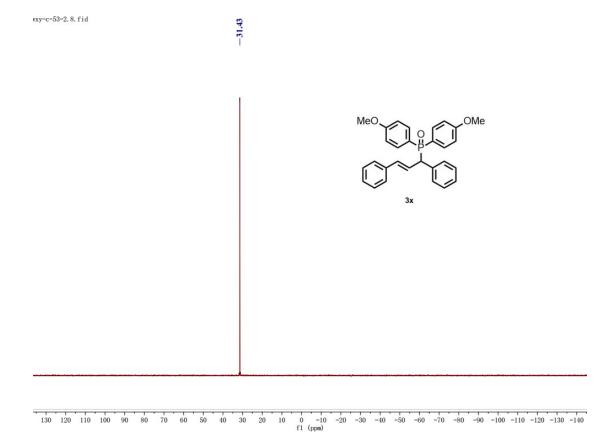

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3v.**

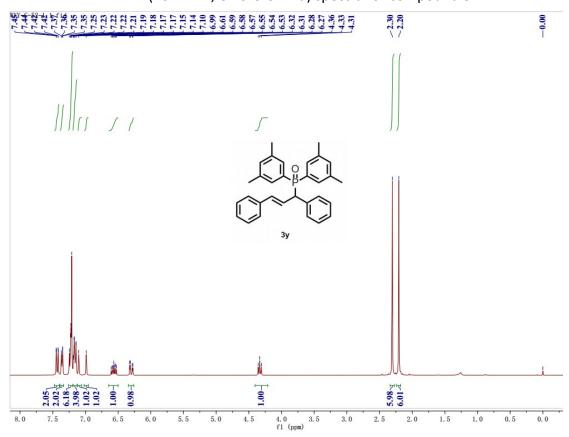

 ^{13}C NMR (101 MHz, Chloroform-d) spectra for compound $\pmb{3v}.$

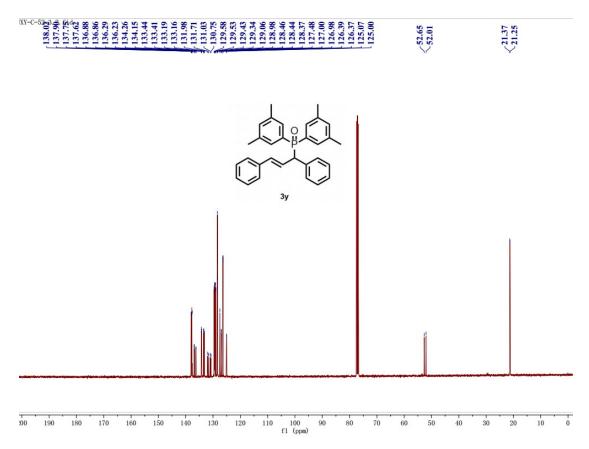

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3v.**

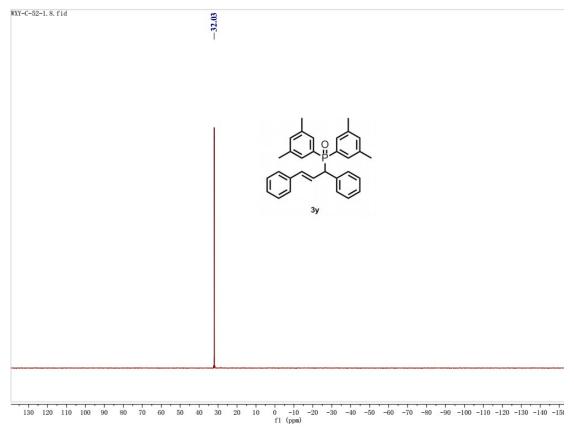

 $^1\mbox{H}$ NMR (400 MHz, Chloroform-d) spectra for compound $\mbox{3w.}$

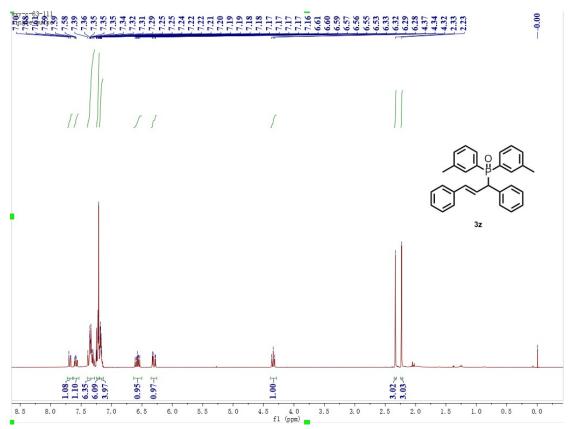

 $^{13}\mbox{C}$ NMR (101 MHz, Chloroform-d) spectra for compound $\pmb{3w}.$

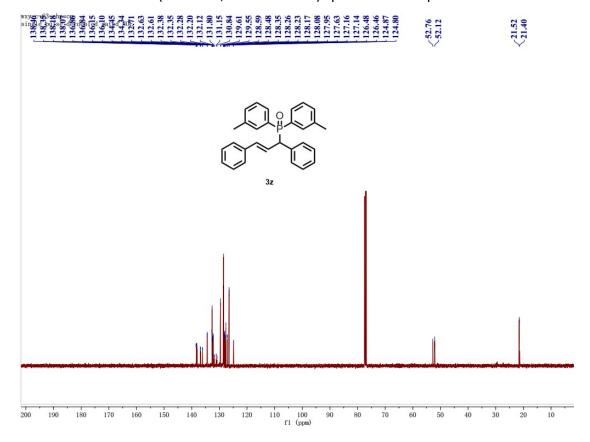

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3w.**

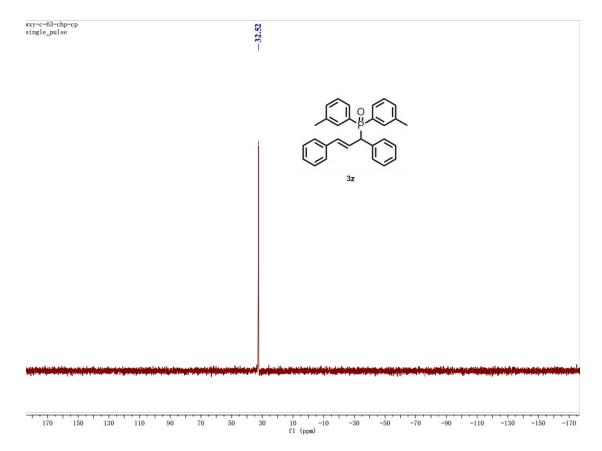

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3x.**

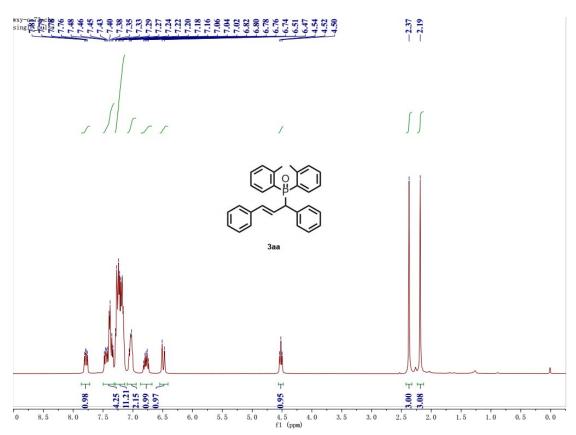

 ^{13}C NMR (101 MHz, Chloroform-d) spectra for compound 3x.

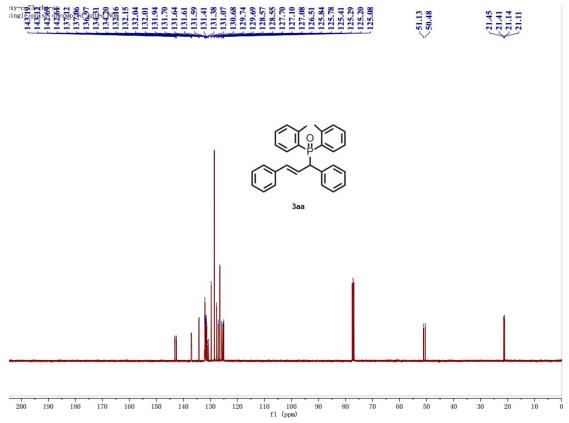

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3x.**

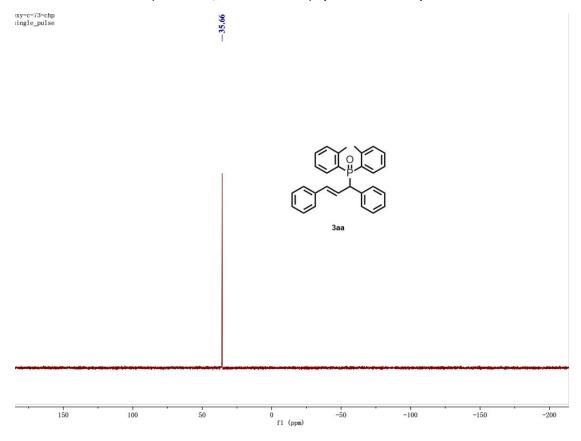

 ^{1}H NMR (400 MHz, Chloroform-d) spectra for compound **3y.**

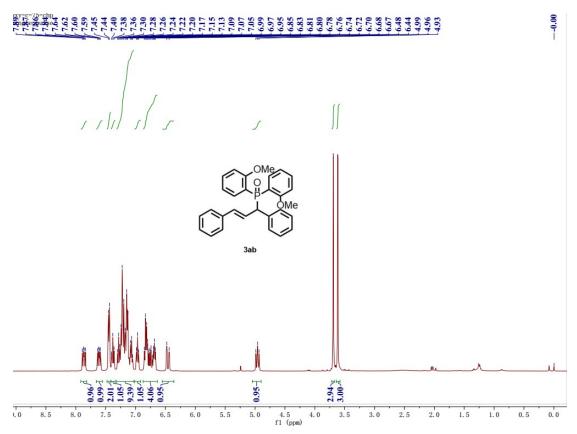

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3y.**

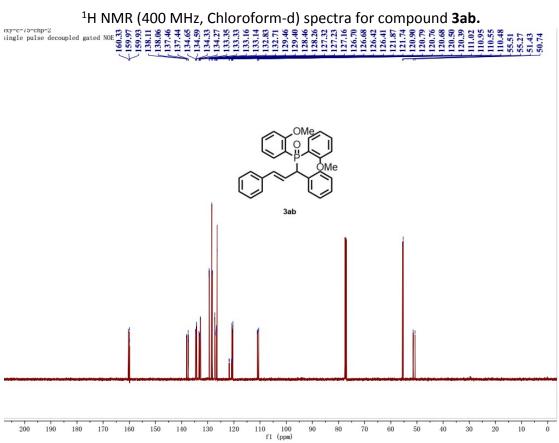

 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3y.**

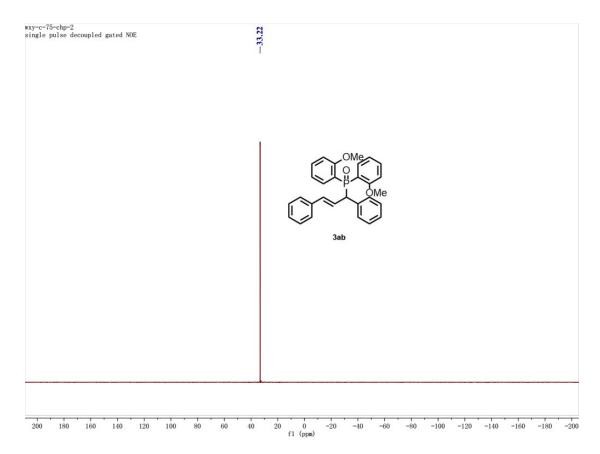

 ^{1}H NMR (400 MHz, Chloroform-d) spectra for compound **3z.**

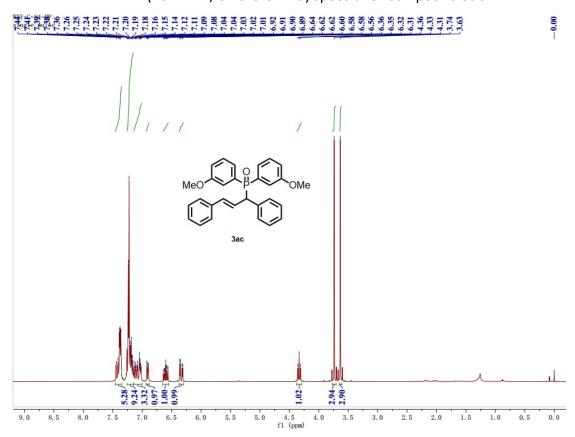

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3z.**

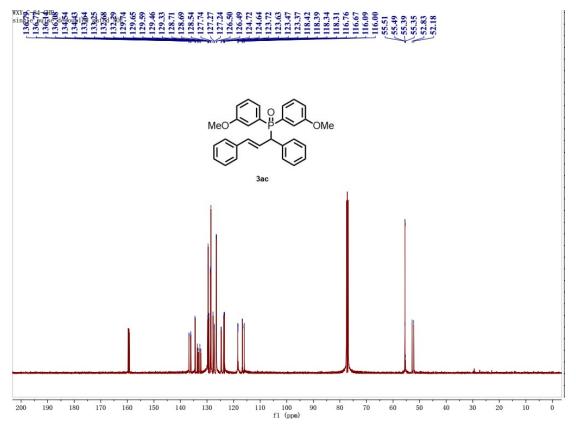

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3z.**

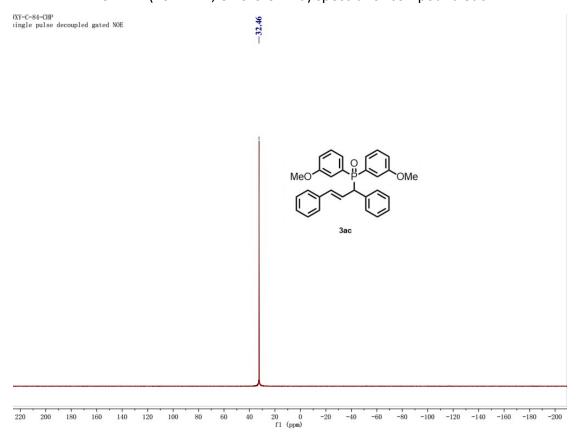

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3aa.**

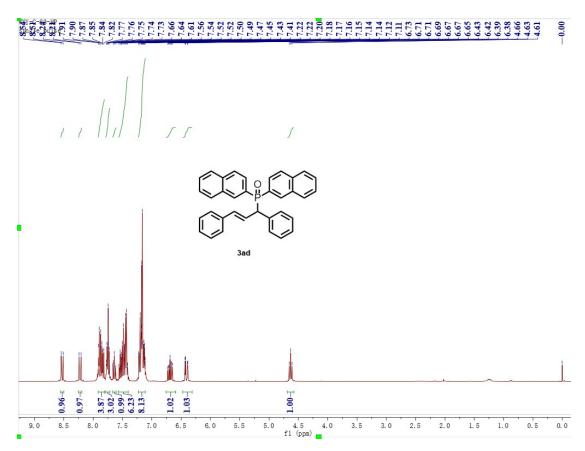


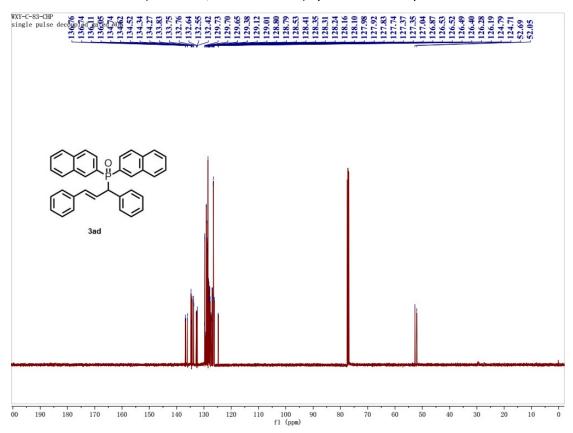

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3aa.**

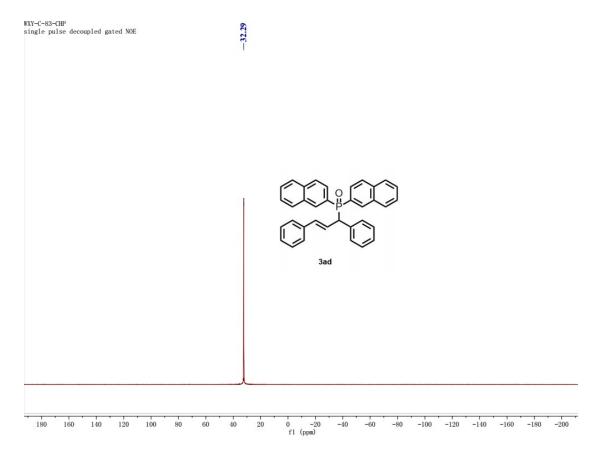

 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3aa.**

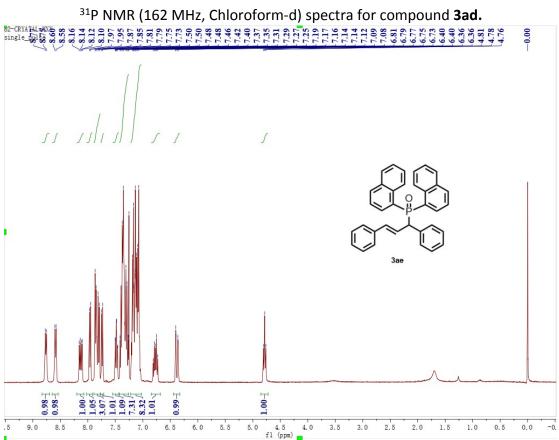


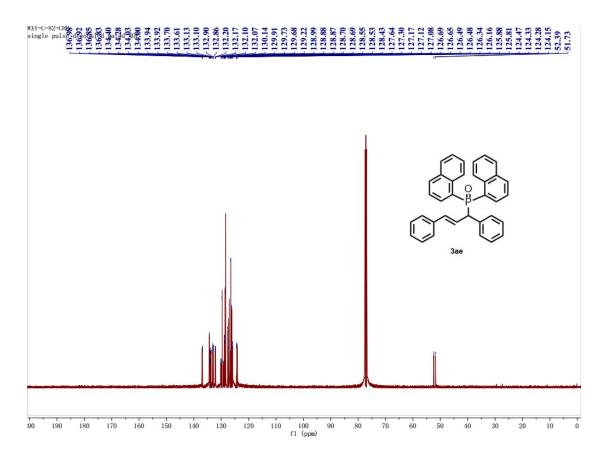

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3ab.**

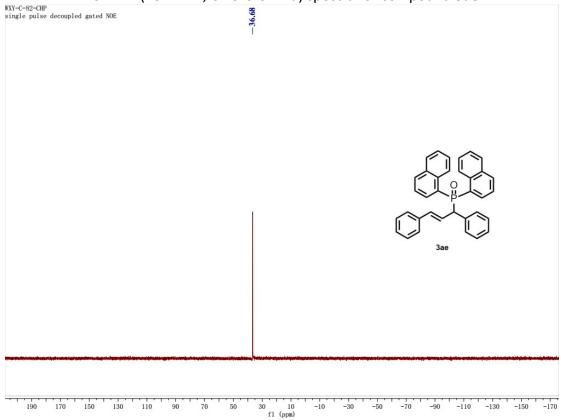

 $^1\mbox{H}$ NMR (400 MHz, Chloroform-d) spectra for compound $\mbox{\bf 3ac.}$

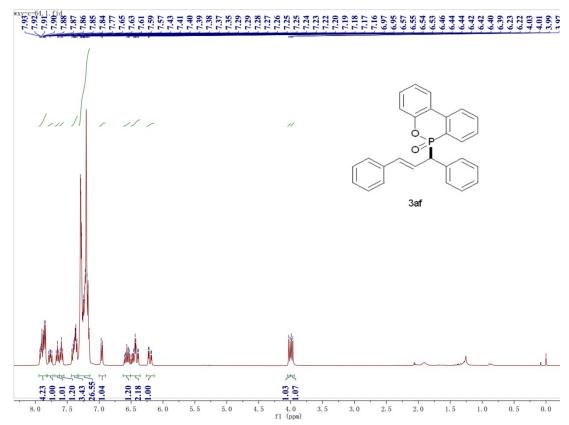

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3ac.**

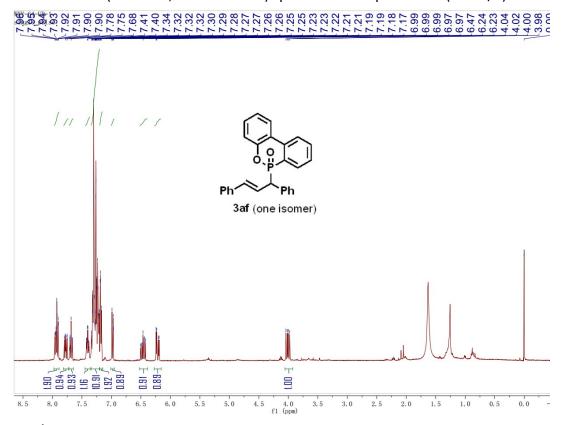

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3ac.**

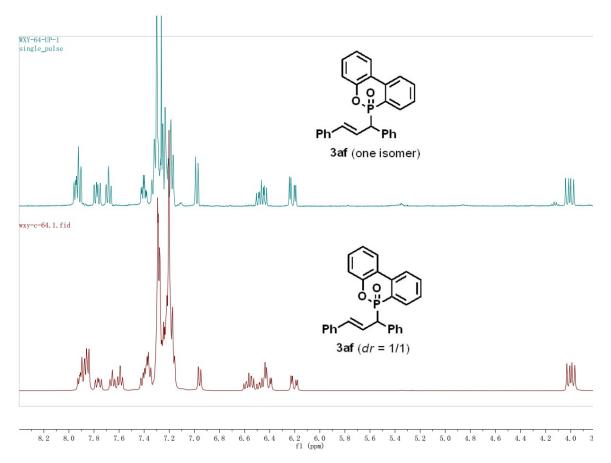

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3ad.**

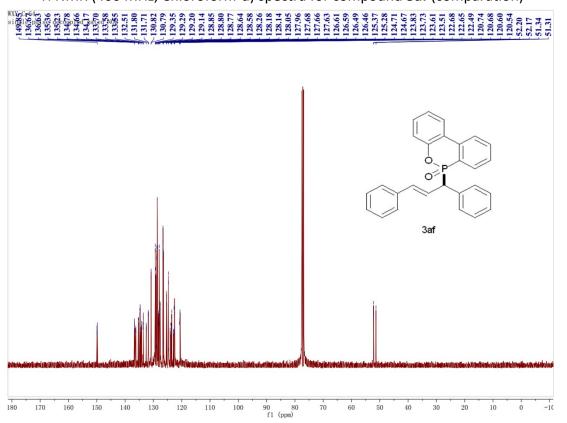

¹³C NMR (101 MHz, Chloroform-d) spectra for compound **3ad.**

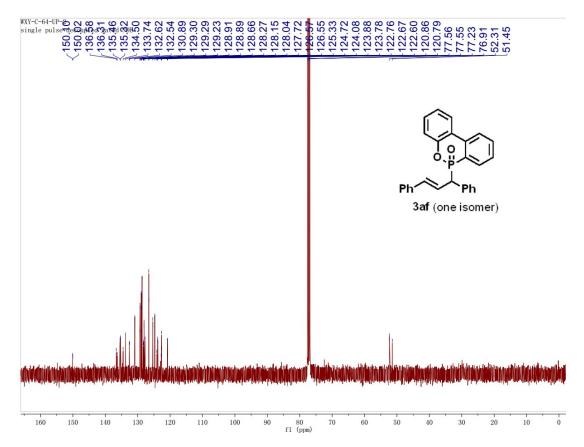


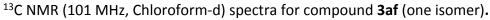

¹H NMR (400 MHz, Chloroform-d) spectra for compound **3ae.**

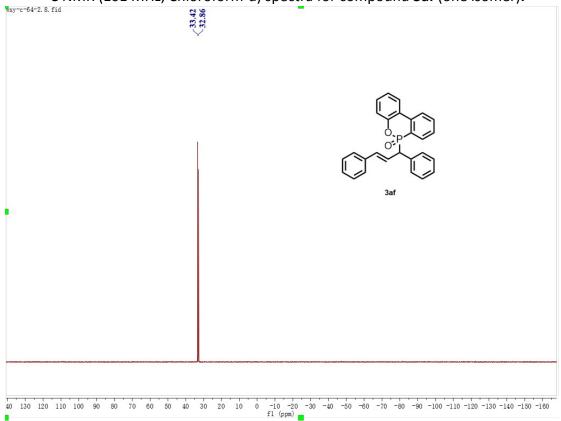


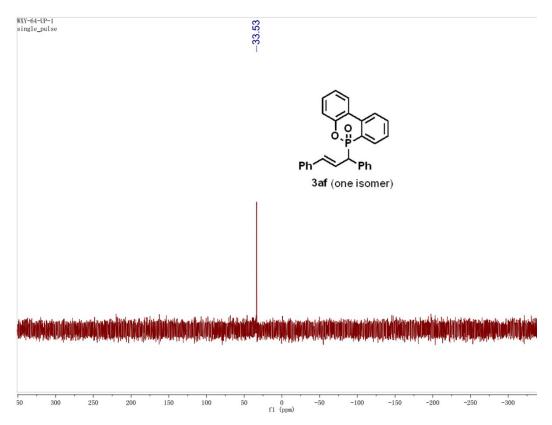

³¹P NMR (162 MHz, Chloroform-d) spectra for compound **3ae.**


 1 H NMR (400 MHz, Chloroform-d) spectra for compound **3af** (dr = 1/1).


¹H NMR (400 MHz, Chloroform-d) spectra for compound **3af** (one isomer).




¹H NMR (400 MHz, Chloroform-d) spectra for compound **3af** (comparation)


 13 C NMR (101 MHz, Chloroform-d) spectra for compound **3af** (dr = 1/1).

 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3af** (dr = 1/1).

 ^{31}P NMR (162 MHz, Chloroform-d) spectra for compound **3af** (one isomer).