Supporting Information for:

Phosphorous(V) Lewis Acids: Water-Base Tolerant P₃-trimethylated trications

J. M. Bayne, V. Fasano, K. M. Szkop, M. J. Ingleson*and D. W. Stephan*

* michael.ingleson@manchester.ac.uk School of Chemistry, University of Manchester, M139PL, U.K. * dstephan@chem.utoronto.ca Department of Chemistry, University of Toronto, M5S3H6, Canada

Table of Contents

1. General Remarks	S2
2. Catalyst synthesis	S2
2.1 Synthesis of [6][OTf] ₃ and [7][OTf] ₃	S2
2.2 Synthesis of [Ph ₂ PMe(CH ₂) ₃ MePPh ₂][OTf] ₂	S6
3. Stability in the presence of water/aniline	S8
4. Catalyst applications in reductive aminations	S10
4.1 Catalyst screening	S10
4.2 Aldehyde scope	S15
4.3 Aniline scope	S19
4.4 Recycling experiment	S23
4.5 Attempted reductive amination of benzaldehyde/t-butylamine	S24
4.6 N-benzylidene-aniline hydrosilylation experiment	S25
4.7 Reductive amination in the presence of PMes ₃	S26
5. Gutmann-Beckett tests	S27
6. Computational data	S29
7. Crystallographic details of [6][OTf] ₃ and [7][OTf] ₃	S34
8. References	S36

1. General Remarks

Unless otherwise indicated all manipulations were conducted under inert nitrogen atmosphere. TRIPHOS 1 and 2 (Bis(diphenylphosphinoethyl)phenylphosphine and 1,1,1-Tris(diphenylphosphinomethyl)ethane), methyl triflate, methyl iodide and all the reagents for the catalysis screening were purchased from commercial sources and used as received unless otherwise stated. NMR spectra were recorded with a Bruker AV-400 spectrometer (400 MHz ¹H; 100 MHz ¹³C; 128 MHz ¹¹B; 376 MHz ¹⁹F; 79 MHz ²⁹Si, 162 MHz ³¹P). ¹H NMR chemical shifts are reported in ppm relative to *proteo* impurities in the deuterated solvents and ¹³C NMR chemical shifts using the solvent resonances unless otherwise stated. ¹¹B NMR spectra were referenced to external BF₃:Et₂O, ¹⁹F to Cl₃CF, ²⁹Si to Si(CH₃)₄ and ³¹P to 85% H₃PO₄. Coupling constants *J* are given in Hertz (Hz), while the multiplicity of the signals are indicated as "s", "d", "t", "q", "pent", "sept" or "m" for singlet, doublet, triplet, quartet, pentet, septet or multiplet, respectively. Mass spectra were recorded on a Waters QTOF mass spectrometer. MeOTf is a strong methylated agent (handled in the fumehood or glovebox at all times) and was quenched with a NaOH solution.

2. Catalyst synthesis

2.1 Synthesis of [6][OTf]₃ and [7][OTf]₃

Methyl trifluoromethanesulfonate (0.4 mL, 3.66 mmol, 6.2 eq.) was added to a solution of Bis(diphenylphosphinoethyl)phenylphosphine (314.7 mg, 0.59 mmol, 1.0 eq.) in CH_2Cl_2 (3 mL). The reaction mixture was left to stir at ambient temperature for 20 h, after which time a white precipitate settled out of solution. 3 mL of *n*-pentane was added to the solution, and after stirring for 2 h the supernatant was decanted and the remaining solid was washed with *n*-pentane (3 x 3 mL). The solid was dried *in vacuo* to afford a white microcrystalline solid. Yield: 531 mg (88%). Diffraction-quality single crystals can be obtained by vapour diffusion of diethyl ether into saturated DMF solutions.

¹H NMR (CD₂Cl₂, 400 MHz, 298K): δ 7.76 (m, 15H; Ar-H), 7.65 (m, 8H; Ar-H), 7.55 (m, 2H; Ar-H), 3.42 (m, 2H; CH₂), 3.04 (m, 6H; CH₂), 2.63 (d, ${}^{2}J_{PH}$ = 14 Hz, 6H; Ph₂P-CH₃), 2.62 ppm (d, ${}^{2}J_{PH}$ = 14 Hz, 3H; PhP-CH₃). ¹⁹F{¹H} NMR (CD₂Cl₂, 377 MHz, 298K): δ -78.8 ppm (s, 9F; O₃SCF₃). ³¹P{¹H} NMR (CD₂Cl₂, 162 MHz, 298K): δ 33.4 (t, ${}^{3}J_{PP}$ = 58 Hz, 1P), 25.7 ppm (d, ${}^{3}J_{PP}$ = 58 Hz, 2P). ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz, 298K): δ 135.8 (m, 5C; *p*-Ph), 132.9 (dd, ${}^{2/3}J_{PC}$ = 15 Hz, ${}^{2/3}J_{PC}$ = 15 Hz, o/m-Ph), 132.6 (d, ${}^{2/3}J_{PC}$ = 10 Hz, o/m-Ph), 130.9 (dd, ${}^{2/3}J_{PC}$ = 13 Hz, ${}^{2/3}J_{PC}$ = 12 Hz, 10C; o/m-Ph), 118.3 (d, ${}^{1}J_{PC}$ = 87 Hz, 2C; *i*-Ph₂P), 117.1 (d, ${}^{1}J_{PC}$ = 86 Hz, 2C; *i*-Ph₂P), 115.9 (d, ${}^{1}J_{PC}$ = 84 Hz, 1C; *i*-PhP), 16.6 (m, 4C; CH₂), 6.5 (d, ${}^{1}J_{PC}$ = 55 Hz, 2C; Ph₂P-CH₃), 2.6 ppm (d, ${}^{1}J_{PC}$ = 52 Hz, 1C; PhP-CH₃).

HRMS (DART-TOF+): Unable to observe [M]⁺ peak due to fragmentation.

Elemental analysis calcd. (%) for C₄₀H₄₂F₉O₉P₃S₃: C, 46.79; H, 4.12. (found: C, 45.99; H, 4.08).

Figure S3. ³¹P{¹H} NMR spectrum of compound [6][OTf]₃.

Figure S4. ¹³C{¹H} NMR spectrum of compound [6][OTf]₃.

1,1,1-Tris(diphenylphosphinomethyl)ethane (117.0 mg, 0.19 mmol, 1 eq.) was dissolved in 2 mL CH_2Cl_2 at room temperature. To this homogeneous solution was added excess MeOTf (~1.5 mL). This solution was stirred for 5 minutes, then 1 mL of pentane was added. A white solid precipitated from the reaction mixture, and the heterogeneous solution was stirred for 30 minutes. After this time, the solvent was removed *in vacuo*, and the white solid washed with CH_2Cl_2 (2 x 2 mL) and pentane (2 x 5 mL). The white solid was dried again, yielding analytically pure product. Yield: 197 mg (94%). Diffraction-quality single crystals can be obtained by vapour diffusion of diethyl ether into saturated DMF solutions. Trace DMF can be observed by ${}^{13}C{}^{1}H$ NMR spectroscopy.

¹H NMR (CD₃CN, 400 MHz, 298K): δ 7.74 (m, 6H, Ar), 7.58 (m, 24H, Ar), 2.81 (d, ²J_{PH} = 14 Hz, 6H, CH₂) 2.77 (d, ²J_{PH} = 14 Hz, 9H, CH₃), 1.87 ppm (s, 3H, CH₃). ¹⁹F{¹H} NMR (CD₃CN, 376 MHz, 298K): δ -79.2 ppm (s, CF₃). ³¹P{¹H} NMR (CD₃CN, 161 MHz, 298K): δ 18.6 ppm (s). ¹³C{¹H} NMR (CD₃CN, 126 MHz, 298K): δ 136.2 (d, ⁴J_{PC} = 3 Hz, Ar), 133.2 (d, ³J_{PC} =11 Hz, Ar), 131.2 (d, ²J_{PC} = 13 Hz, Ar), 42.4 (q, ²J_{PC} = 5 Hz, C), 39.2 (dt, ¹J_{PC} = 48 Hz, ³J_{PC} = 9 Hz, CH₂) 26.8 (s, CH₃), 7.5 ppm (d, ¹J_{PC} = 52 Hz, CH₃). HRMS (DART-TOF+): Unable to observe [M]⁺ peak due to fragmentation. Elemental analysis calcd. (%) for C₄₇H₄₈F₉O₉P₃S₃: C, 50.54; H, 4.33. (found: C, 50.22; H, 4.29).

Figure S8. ¹³C{¹H} NMR spectrum of compound [7][OTf]₃.

2.2 Synthesis of [Ph₂PMe(CH₂)₃MePPh₂][OTf]₂

Methyl Trifluoromethanesulfonate (0.08 mL, 0.73 mmol, 2 eq.) was added to a solution of diphenylphosphinopropane (dppp, 157 mg, 0.38 mmol, 1 eq.) in CH_2CI_2 (3 mL). The reaction mixture was left to stir at ambient temperature for 24 h. The volume was reduced in vacuo to 1 mL and 3 mL of *n*-pentane was added to induce precipitation. The supernatant was decanted and the solid was washed with *n*-pentane (3 x 5 mL). The solid was dried *in vacuo* to afford a white microcrystalline solid. (225 mg, 80% Yield).

¹**H NMR (CD₃CN, 400MHz, 298K):** δ 7.72 (m, 20H; Ar-H) 3.65 (m, 4H; -C*H*₂-), 2.43 (d, *J* = 14 Hz, 6H; P-C*H*₃), 1.70 ppm (m, 2H; -C*H*₂-).

¹⁹F{¹H} NMR (CD₃CN, 377 MHz, 298K): δ -79.2 ppm (s, 6F; O₃SCF₃).

³¹P{¹H} NMR (CD₃CN, 162 MHz, 298K): δ 22.3 ppm (s).

¹³C{¹H} NMR (CD₃CN, 101 MHz, 298K): δ 136.0 (t, J = 2 Hz, 4C; p-Ph), 133.3 (pent., J = 4 Hz, 8C; o-Ph), 131.1 (m, 8C; m-Ph), 119.8 (d, J = 87 Hz, 4C; i-Ph), 23.8 (dd, J = 72 Hz, J = 37 Hz, 2C; $-CH_2$ -), 16.4 (s, 1C; $-CH_2$ -), 6.8 ppm (d, J = 56 Hz, 2C; P-CH₃).

HRMS (ESI-QTOF+): Unable to observe $[M]^+$ peak due to fragmentation. **Elemental analysis** calcd. (%) for $C_{31}H_{32}F_6O_6P_2S_2$: C, 50.27; H, 4.36. (found: C, 49.72; H, 4.32).

3. Stability in the presence of water/aniline

General procedure: In a J. Young NMR tube, the catalyst was dissolved in MeCN (0.05 mL), followed by the addition of H₂O (5 μ L, 10 eq.) and aniline (23 μ L, 10 eq.). The NMR tube was sealed and heated in an oil bath at 60 °C for 18 h. Multinuclear NMR analysis post heating revealed no decomposition in each case.

Figure S13. ¹H, ³¹P{¹H} and ¹⁹F-NMR spectra of **[6][OTf]**₃ with H₂O/PhNH₂ in MeCN. Blue (after 5 min at RT), red (after 18 h at 60 °C).

[7][OTf]₃ (28 mg, 1 eq.)

Figure S14. ¹H, ³¹P{¹H} and ¹⁹F-NMR spectra of **[7][OTf]**₃ with H₂O/PhNH₂ in MeCN. Blue (after 5 min at RT), red (after 18 h at 60 °C)

4. Catalyst applications in reductive aminations

4.1 Catalyst screening

General procedure: A J. Young NMR tube was loaded with a solution of the catalyst in MeCN (0.5 mL), followed by the addition of benzaldehyde (25 µL, 0.241 mmol, 1.00 eq.), aniline (26 µL, 0.289 mmol, 1.20 eq.), dimethylphenylsilane (45 µL, 0.289 mmol, 1.20 eq.) and mesitylene as internal standard (25 µL, 0.179 mmol, 0.74 eq.). The J. Young NMR tube was then sealed, and the initial reaction mixture was monitored by multinuclear NMR spectroscopy. Thus, the J. Young NMR tube was heated up at 100°C for 18 h in an oil bath and then the reaction mixture was monitored again by multinuclear NMR spectroscopy. The determination of the ¹H NMR yields was based on the relative integral of the benzylic protons of BnNHPh ($\overline{0}$ = 4.32 ppm) and the methyl signal of mesitylene ($\overline{0}$ = 2.26 ppm). The product distribution was then confirmed by GC-MS analysis (PhC(H)=NPh (R_t = 14.46 min): m/z 181.1 [M]⁺, 77.0 [Ph]⁺; BnNHPh (R_t = 14.99 min): m/z 183.1 [M]⁺, 91.0 [Bn]⁺; (PhMe₂Si)₂O (R_t = 14.62 min): m/z 286.1 [M]⁺, 271.1 [M-CH₃]⁺). The data were in agreement with those reported in the literature.³

Entry	Catalyst	Time (h)	Yield (%) ^b
1	None	18	0
2	5 mol% [6][OTf] ₃	5	82
3	5 mol% [7][OTf] ₃	5	93
4	15 mol% [Ph ₃ PMe][OTf]	5	58
5	7.5 mol% [Ph2PMe(CH2)3MePPh2][OTf]2	5	20

Reductive amination in absence of the catalyst

Upon heating the reaction mixture at 100 °C for 18 h, no reaction was observed.

Figure S15. *In situ* ¹H spectra of the standard reductive amination without catalyst. Blue (after 5 min), red (after 18h at 100 °C).

Reductive amination with [6][OTf]₃ (12.4 mg, 0.012 mmol, 0.05 eq.)

Upon heating the reaction mixture at 100 °C for 5 h, minimal degradation of the catalyst was observed and significant BnNHPh formation was detected (82%).

Figure S16. *In situ* ¹H, ³¹P and ¹⁹F NMR spectra of the standard reductive amination with **[6][OTf]**₃ (5 mol%). Blue (after 5 min), red (after 5 h at 100 °C).

Reductive amination with [7][OTf]₃ (13.4 mg, 0.012 mmol, 0.05 eq.)

Upon heating the reaction mixture at 100 °C for 5 h, no degradation of the catalyst was observed and significant BnNHPh formation was detected (93%).

Figure S17. *In situ* ¹H, ³¹P and ¹⁹F NMR spectra of the standard reductive amination with **[7][OTf]**₃ (5 mol%). Blue (after 5 min), red (after 5 h at 100 °C).

Reductive amination with [Ph₃PMe][OTf] (15.3 mg, 0.036 mmol, 0.15 eq.)

Upon heating the reaction mixture at 100 °C for 18 h, no degradation of the catalyst was observed and significant BnNHPh formation was detected (93%).

Figure S18. In situ ¹H NMR spectra of the standard reductive amination with [Ph₃PMe][OTf] (15 mol%). Blue (after 5 min), red (after 18h at 100 °C).

The disparity among the catalysts was further confirmed by repeating the standard reductive amination (general procedure) with **[6][OTf]**₃ (5 mol%), **[7][OTf]**₃ (5 mol%) or [Ph₃PMe][OTf] (15 mol%) and monitoring BnN(H)Ph formation upon heating at 100 °C.

Graph S1. *In situ* monitoring of the standard reductive amination with **[6][OTf]**₃ (red), **[7][OTf]**₃ (blue) or [Ph₃PMe][OTf] (green) after heating at 100 °C each hour.

Reductive amination with [Ph₂PMe(CH₂)₃MePPh₂][OTf]₂ (13.4 mg, 0.018 mmol, 0.075 eq.)

Upon heating the reaction mixture at 100 °C for 24 h, no degradation of the catalyst was observed and BnNHPh formation was detected (41%).

Figure S19. In situ ¹H NMR spectra of the standard reductive amination with $[Ph_2PMe(CH_2)_3MePPh_2][OTf]_2$ (7.5 mol%). Blue (after 5 min), red (after 24 h at 100 °C).

4.2 Aldehyde scope

General procedure: A NMR tube was loaded with a solution of the catalyst in MeCN (0.5 mL), followed by the addition of aldehyde (0.241 mmol, 1.00 eq.), aniline (26 μ L, 0.289 mmol, 1.20 eq.), dimethylphenylsilane (45 μ L, 0.289 mmol, 1.20 eq.) and mesitylene as internal standard (25 μ L, 0.179 mmol, 0.74 eq.). The reaction mixture was heated to 100 °C and monitored by multinuclear NMR spectroscopy. The determination of the ¹H NMR yields was based on the relative integral of the benzylic protons of ArCH₂NHPh and the methyl signal of mesitylene (δ = 2.26 ppm).

Figure S20. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of N-(2,4,6-trimethylbenzyl)aniline. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.⁴

Figure S21. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of *N*-(4-bromobenzyl)aniline. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.⁵

Figure S22. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of 4- ((phenylamino)methyl)benzonitrile. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.⁶

 $\dot{0.5}$ $\dot{10.0}$ $\dot{9.5}$ $\dot{9.0}$ $\dot{8.5}$ $\dot{8.0}$ $\dot{7.5}$ $\dot{7.0}$ $\dot{6.5}$ $\dot{6.0}$ $\dot{5.5}$ $\dot{5.0}$ $\dot{4.5}$ $\dot{4.0}$ $\dot{3.5}$ $\dot{3.0}$ $\dot{2.5}$ $\dot{2.0}$ $\dot{1.5}$ $\dot{1.0}$ $\dot{0.5}$ $\dot{0.0}$ **Figure S23.** ¹H NMR (CD₃CN) spectrum of crude reaction mixture of *N*-(2chlorobenzyl)aniline. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.³

Figure S24. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of *N*-(4-methoxybenzyl)aniline. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.³

Figure S25. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of methyl 4-((phenylamino)methyl)benzoate. Bottom (after 5 min), middle (after 5 h at 100 °C), top (after 24h at 100 °C). Note: imine precipitated at room temperature after 5 min. Data in agreement with those reported in the literature.⁷

4.3 Aniline scope

General procedure: A NMR tube was loaded with a solution of the catalyst in MeCN (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), aniline (0.289 mmol, 1.20 eq.), dimethylphenylsilane (45 μ L, 0.289 mmol, 1.20 eq.) and mesitylene as internal standard (25 μ L, 0.179 mmol, 0.74 eq.). The reaction mixture was heated to 100 °C for 5 h. The determination of the ¹H NMR yields was based on the relative integral of the benzylic protons of BnNHR' and the methyl signal of mesitylene (δ = 2.26 ppm).

Figure S26. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of *N*-benzyl-(2-bromophenyl)amine. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.³

Figure S27. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of *N*-benzyl-(2-fluorophenyl)amine. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.⁸

Figure S28. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of *N*-benzyl-(2,6-diisopropylphenyl)amine. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.⁹

Figure S29. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of *N*-benzyl-(3-trifluoromethylphenyl)amine. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.¹⁰

Figure S30. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of *N*-benzyl-(4-chlorophenyl)amine. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.¹¹

Figure S31. ¹H NMR (CD₃CN) spectrum of crude reaction mixture of *N*-benzyl-(4-hexylphenyl)amine, t = 24 h. Bottom (after 5 min), top (after 5 h at 100 °C). Data in agreement with those reported in the literature.¹²

4.4 Recycling experiment

A NMR tube was loaded with a solution of the catalyst in MeCN (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), aniline (26 μ L, 0.289 mmol, 1.20 eq.) dimethylphenylsilane (45 μ L, 0.289 mmol, 1.20 eq.) and mesitylene as internal standard (25 μ L, 0.179 mmol, 0.74 eq.). The reaction mixture was heated to 100 °C for 24 h and monitored by multinuclear NMR spectroscopy. Then, a mixture of benzaldehyde, aniline, dimethylphenylsilane, and mesitylene, containing the same amounts as in initial loading, was added to the NMR tube and the mixture was heated to 100 °C for 24 h. This procedure was repeated 4 times. The determination of the ¹H NMR yields was based on the relative integral of the benzylic protons of BnNHR and the methyl signal of mesitylene (δ = 2.26 ppm).

7.5 10.0 9.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 **Figure S32.** ¹H NMR (CD₃CN) spectra of crude reaction mixture of recycling experiment: t = 24 h. a) first addition, b) 24 h at 100 °C, c) after second addition, d) additional 24 h at 100 °C, e) after third addition, f) additional 24 h at 100 °C, q) after fourth addition, h) additional 24 h at 100 °C, i) additional 72 h at 100 °C

4.5 Attempted reductive amination benzaldehyde / t-butylamine

A J. Young NMR tube was loaded with a solution of the **[7][OTf]**₃ (14mg, 0.012 mmol, 0.05 eq.) in MeCN (0.5 mL), followed by the addition of benzaldehyde (25 μ L, 0.241 mmol, 1.00 eq.), *t*-butylamine (31 μ L, 0.289 mmol, 1.20 eq.), and dimethylphenylsilane (45 μ L, 0.289 mmol, 1.20 eq.). The J. Young NMR tube was then sealed and the initial reaction mixture was monitored by multinuclear NMR spectroscopy, revealing no catalyst decomposition. Thus, the J. Young NMR tube was heated up at 100 °C for 18 h and then the reaction mixture was monitored again by multinuclear NMR spectroscopy. Upon heating, minimal imine reduction and catalyst decomposition were observed, with the corresponding triphosphine trioxide present among other unidentified products.¹³

Figure S33. In situ ${}^{1}H/{}^{3}P{}^{1}H{}/{}^{19}F$ NMR spectra of the attempted reductive amination of PhCHO with *t*BuNH₂ using **[7][OTf]**₃ (15 mol%). Blue (after 5 min), red (after 18 h at 100 °C).

4.6 N-benzylidene-aniline hydrosilylation experiment

In a glovebox under nitrogen atmosphere, a J. Young NMR tube was loaded with [7][OTf]₃ (5.5 mg, 0.005 mmol, 0.05 eq.) and *N*-benzylidene aniline (18.0 mg, 0.098 mmol, 1.00 eq.) in anhydrous MeCN (0.5 mL), followed by the addition of dimethylphenylsilane (19 μ L, 0.118 mmol, 1.20 eq.) and mesitylene as internal standard (10 μ L, 0.072 mmol, 0.73 eq.). The J. Young NMR tube was then sealed and the initial reaction mixture was monitored by multinuclear NMR spectroscopy. Thus, the J. Young NMR tube was heated up at 100 °C for 5 h and then the reaction mixture was monitored again by multinuclear NMR spectroscopy. Upon heating, no catalyst decomposition was observed and some imine (~20%) had reacted, with BnN(Ph)SiMe₂Ph identified in the reaction mixture (δ^{1} H = 4.64 ppm, δ^{29} Si = -1.04 ppm). GC-MS analysis of a small aliquot confirmed the formation of BnN(Ph)SiMe₂Ph (R_t = 20.24 min: m/z 317.1 [M]⁺, 91.0 [Bn]⁺), along with some Bn₂NPh (R_t = 20.75 min: m/z 273.1 [M]⁺, 91.0 [Bn]⁺) and BnNHPh (from hydrolysis during the GC-Ms analysis). The data were in agreement with those reported in the literature.³

Figure S34. In situ 1 H/ 29 Si NMR spectra of the hydrosilylation of N-benzylideneaniline with Me₂PhSiH using **[7][OTf]**₃ (15 mol%). Blue (after 5 min), red (after 5 h at 100 °C).

4.7 Reductive amination in the presence of PMes₃

A NMR tube was loaded with a solution of the catalyst in MeCN (0.5 mL), followed by the addition of aldehyde (25 μ L, 0.241 mmol, 1.00 eq), aniline (26 μ L, 0.289 mmol, 1.20 eq), dimethylphenylsilane (45 μ L, 0.289 mmol, 1.20 eq.), mesitylene as internal standard (25 μ L, 0.179 mmol, 0.74 eq.) and tris(2,4,6-trimethylphenyl)phosphine (PMes₃, 5 mol%). The reaction mixture was heated to 100 °C and monitored by multinuclear NMR spectroscopy. The determination of the ¹H NMR yields was based on the relative integral of the benzylic protons of BnNHR and the methyl signal of mesitylene (δ = 2.26 ppm).

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 **Figure S35.** ¹H NMR (CD₃CN) spectra of crude reaction mixture. Bottom (after 5 min), middle (after 5 h at 100 °C), top (after 24 h at 100 °C)

⁷⁰ 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -5**Figure S36.** ³¹P{¹H} NMR (CD₃CN) spectra of crude reaction mixture. Bottom (after 5 min), middle (after 5 h at 100 °C), top (after 24 h at 100 °C)

5. Gutmann-Beckett tests

[Ph₃PMe][OTf] (13 mg, 0.03 mmol) was dissolved in CD₃CN and then added to a separate vial containing Et₃PO (4 mg, 0.03 mmol). The solution was then transferred to a NMR tube and monitored by ${}^{31}P{}^{1}H$ NMR spectroscopy (free Et₃PO in CD₃CN = 51.05 ppm).

Figure S37. ³¹P{¹H} NMR spectrum after 1 h at ambient temperature.

[Ph₃Me][OTf] (95 mg, 0.22 mmol) was dissolved in CD₃CN and then added to a separate vial containing Et₃PO (10 mg, 0.07 mmol). The solution was then transferred to a NMR tube and monitored by ${}^{31}P{}^{1}H{}$ NMR spectroscopy.

Figure S38. ³¹P{¹H} NMR spectrum after 1 h at ambient temperature.

Compound **[7][OTf]**₃ (44 mg, 0.04 mmol) was dissolved in CD₃CN and then added to a separate vial containing Et₃PO (6 mg, 0.04 mmol). The solution was then transferred to a NMR tube and monitored by ${}^{31}P{}^{1}H$ NMR spectroscopy.

Figure S39. ³¹P{¹H} NMR spectrum after 1 h at ambient temperature.

6. Computational data

Calculations were performed using the Gaussian09¹⁴ suite of programmes. Structures were optimised at the M06-2X/6-311G(d,p) level with PCM(Dichloromethane) solvation.¹⁵ In all cases, structures were confirmed as minima by frequency analysis and by the absence of imaginary frequencies. Full Cartesian coordinates for the optimised geometries are provided below.

DFT calculations, performed at the M06-2X/6-311G(d,p) level of theory with CH_2Cl_2 solvation (polarizable continuum model) revealed a lower energy LUMO for **[7]**³⁺ relative to that of $[Ph_3PMe]^+$ (-1.986 eV and -1.116 eV, respectively). While the LUMOs are delocalized, there is a prominent contribution from the phosphorus atom (Figure S40).

Figure S40. LUMOs of [7]³⁺ (a) and $[Ph_3PMe]^+$ (b) (Isovalue = 0.04). Hydrogen atoms have been omitted for clarity.

Compound [7]³⁺

С	0.903100	2.106500	0.496700
Н	0.385700	2.322600	1.437700
Н	1.358400	1.122500	0.631900
С	-0.096700	2.056100	-0.688400
С	0.550500	1.400600	-1.916000
Н	-0.204500	1.030300	-2.612200
Н	1.188300	2.099300	-2.460500
Н	1.173500	0.552800	-1.624300
С	-1.358700	1.269300	-0.241200
Н	-1.899000	1.829200	0.530800
Н	-2.035800	1.184800	-1.096400
С	-0.529700	3.513300	-0.983000
Н	0.354700	4.086400	-1.276500
Н	-0.915400	3.984000	-0.072400
Ρ	-1.274900	-0.445600	0.417800
Ρ	-1.750700	3.960200	-2.272900
Ρ	2.363600	3.210100	0.535900
С	-0.855300	-1.628900	-0.875000
Н	-1.622100	-1.561400	-1.647900
Н	0.123400	-1.432200	-1.309000
Н	-0.877400	-2.628600	-0.438100
С	3.371600	3.056300	-0.954200
Н	3.518100	2.001700	-1.188500
Н	2.891900	3.549800	-1.799500
Н	4.344000	3.513900	-0.767400
С	-0.114600	-0.551400	1.785100
С	-0.383000	0.201900	2.932700
С	1.084400	-1.256300	1.659200
С	0.571700	0.282300	3.936400
Н	-1.328100	0.723600	3.043200
С	2.031100	-1.172500	2.674800
Н	1.289600	-1.859500	0.782600
С	1.782100	-0.393500	3.800200
Н	0.370400	0.867500	4.824800
Н	2.964200	-1.714300	2.584300

Н	2.530000	-0.319700	4.580300
С	-2.930400	-0.801000	1.033600
С	-3.072700	-1.731400	2.066900
С	-4.053500	-0.205200	0.453500
С	-4.344200	-2.058000	2.520400
Н	-2.202200	-2.192600	2.519900
С	-5.318900	-0.536000	0.919700
Н	-3.962000	0.510800	-0.355200
С	-5.463600	-1.459700	1.950400
Н	-4.458700	-2.777700	3.320800
Н	-6.191200	-0.071900	0.476300
Н	-6.452700	-1.714100	2.310500
С	3.316100	2.609800	1.946200
С	3.188300	3.217500	3.196700
С	4.152000	1.501200	1.776600
С	3.900100	2.711200	4.277600
Н	2.560200	4.090200	3.330500
С	4.868100	1.013200	2.861200
Н	4.257600	1.017800	0.812000
С	4.741600	1.616800	4.109000
Н	3.806800	3.183900	5.247100
Н	5.526800	0.163900	2.729500
Н	5.304400	1.234700	4.952000
С	1.879900	4.930000	0.776200
С	0.832000	5.251000	1.648900
С	2.576000	5.943300	0.110300
С	0.483500	6.580000	1.845500
Н	0.287200	4.479600	2.182400
С	2.216700	7.271800	0.314100
Н	3.390300	5.713100	-0.565500
С	1.175700	7.588800	1.179400
Н	-0.326100	6.827400	2.519900
н	2.755600	8.055700	-0.202700
H	0.902100	8.624700	1.338500
C	-1.948400	5.750000	-2.126300
C	-3.143900	6.315900	-2.581400
	-0.922600	6.563800	-1.634900
	-3.307000	7.694200	-2.546000
П	-3.946700	5.688900	-2.953100
	-1.100000	7.941400	-1.603200
	0.012200	0.152600	-1.209000
	-2.207000	0.000200	-2.000900
	-4.232700	8,572200	-2.097500
	-0.300200	0.572200	2 021000
\hat{c}	-2.410900	3 200000	-2.031900
c	-2.001200	3 552300	-0 858000
Ċ.	-3 880000	2 303700	-2 933800
č	-5 347000	3 004400	-0 654400
Ĥ	-3.690700	4.269000	-0.147800
-			

С	-5.153500	1.761200	-2.718100
Н	-3.341600	2.035800	-3.828900
С	-5.880500	2.115400	-1.586900
Н	-5.917000	3.279800	0.223900
Н	-5.570900	1.073500	-3.442400
Н	-6.870400	1.702500	-1.433600
С	-1.150100	3.568000	-3.928200
Н	-0.177100	4.042300	-4.061200
Н	-1.058300	2.495100	-4.086300
Н	-1.853700	3.987500	-4.650200

Total Energy: -2728.81079116 Hartrees

Compound [Ph3PMe]+

Ρ	0.447900	0.720900	-0.153900
С	0.990000	-0.996500	-0.135400
С	0.070700	-2.025800	0.068500
С	2.350700	-1.277100	-0.302400
С	0.517000	-3.342800	0.098700
Н	-0.982000	-1.806800	0.202900
С	2.783700	-2.594800	-0.270100
Н	3.070800	-0.478800	-0.446200
С	1.867200	-3.625400	-0.071300
Н	-0.193200	-4.144700	0.255000
Н	3.835300	-2.817000	-0.399600
Н	2.210600	-4.652400	-0.047800
С	-1.350800	0.788100	-0.137200
С	-2.026200	1.112400	1.040700
С	-2.058900	0.466700	-1.300200
С	-3.416600	1.114700	1.051200
С	-3.446500	0.472800	-1.277200
С	-4.122800	0.795800	-0.103200
С	1.092600	1.563300	1.299900
С	1.536800	0.825400	2.398500
С	1.094500	2.961300	1.331900
С	1.987700	1.493500	3.531400
Н	1.533800	-0.258100	2.372400
С	1.548300	3.617000	2.467800
С	1.993900	2.883500	3.564600
Н	2.333900	0.925700	4.385700
Н	1.554500	4.699100	2.496300
Н	2.347600	3.399800	4.448700
С	1.070700	1.527000	-1.645000
Н	0.744800	3.538900	0.483600
Н	-1.539500	0.207700	-2.216000
Н	-3.999300	0.226000	-2.174700
Н	-5.205700	0.799400	-0.090500
Н	-3.945300	1.367200	1.961500
Н	-1.476100	1.364700	1.940000
Н	0.671700	2.539400	-1.706100
Н	2.159700	1.561500	-1.607200
Н	0.756600	0.957500	-2.519800

Total Energy: -1075.91087413 Hartrees

7. Crystallographic analysis of $[6][OTf]_3$ and $[7][OTf]_3$

Identification code	[6][OTf] ₃		
Empirical formula	$C_{40} H_{43} F_9 O_{10} P_3 S_3$	$C_{40} H_{43} F_9 O_{10} P_3 S_3$	
Formula weight	1043.83	1043.83	
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 13.7550(19) Å	$\alpha = 87.306(6)^{\circ}.$	
	b = 13.9164(17) Å	$\beta = 60.676(6)^{\circ}.$	
	c = 13.9779(19) Å	γ = 88.417(6)°.	
Volume	2330.2(5) Å ³		
Z	2		
Density (calculated)	1.488 Mg/m ³	1.488 Mg/m ³	
Absorption coefficient	0.352 mm ⁻¹	0.352 mm ⁻¹	
F(000)	1074	1074	
Crystal size	0.140 x 0.070 x 0.070 i	0.140 x 0.070 x 0.070 mm ³	
Theta range for data collection	2.181 to 26.372°.	2.181 to 26.372°.	
Index ranges	-17<=h<=17, -17<=k<=	-17<=h<=17, -17<=k<=17, -17<=l<=17	
Reflections collected	37786	37786	
Independent reflections	9496 [R(int) = 0.0499]	9496 [R(int) = 0.0499]	
Completeness to theta = 25.242°	99.6 %	99.6 %	
Absorption correction	None	None	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	9496 / 5 / 595	9496 / 5 / 595	
Goodness-of-fit on F ²	1.040	1.040	
Final R indices [I>2sigma(I)]	R ₁ = 0.0543, wR ₂ = 0.1	R ₁ = 0.0543, wR ₂ = 0.1368	
R indices (all data)	R ₁ = 0.0889, wR ₂ = 0.1	R ₁ = 0.0889, wR ₂ = 0.1534	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	0.624 and -0.796 e.Å ⁻³	0.624 and -0.796 e.Å ⁻³	

Table S1. Crystal data and structure refinement for [6][OTf]₃.

Identification code	[7][OTf] ₃		
Empirical formula	$C_{50} \ H_{55} \ F_9 \ N \ O_{10} \ P_3 \ S_3$		
Formula weight	1190.04		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 12.7151(9) Å	$\alpha = 77.042(2)^{\circ}.$	
	b = 14.6939(11) Å	β = 81.897(2)°.	
	c = 15.3772(12) Å	γ = 72.530(3)°.	
Volume	2662.3(3) Å ³		
Z	2		
Density (calculated)	1.485 Mg/m ³		
Absorption coefficient	0.319 mm ⁻¹		
F(000)	1232		
Crystal size	0.160 x 0.100 x 0.060 mm ³		
Theta range for data collection	1.684 to 27.568°.		
Index ranges	-16<=h<=16, -19<=k<=19, -19<=l<=19		
Reflections collected	44853		
Independent reflections	12195 [R(int) = 0.0335]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	12195 / 0 / 688		
Goodness-of-fit on F ²	1.035		
Final R indices [I>2sigma(I)]	R ₁ = 0.0485, wR ₂ = 0.1235		
R indices (all data)	R ₁ = 0.0692, wR ₂ = 0.1353		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.447 and -0.852 e.Å ⁻³		

Table S2. Crystal data and structure refinement for [7][OTf]₃,

8. References

1 C. B. Caputo, L. J. Hounjet, R. Dobrovetsky and D. W. Stephan, Science, 2013, 341, 1374

2 J. H. W. LaFortune, T. C. Johnstone, M. Pérez, D. Winkelhaus, V. Podgorny and D. W. Stephan, *Dalt. Trans.*, 2016, **45**, 18156

3 V. Fasano, J. E. Radcliffe and M. J. Ingleson, ACS Catal., 2016, 6, 1793

4 J. K. Laha, K. S. S. Tummalapalli, K P. Jethava, Org. Biomol. Chem., 2016, 14, 2473

5 M. Zhang, H. Yang, Y. Zhang, C. Zhu, W. Li, Y. Cheng, H. Hu, Chem. Commun. 2011, 47, 6605

6 A. Heydari, S. Khaksar, M. Esfandyari, M. Tajbakhsj, Tetrahedron, 2007, 63, 3363

7 J. Zheng, T. Roisnel, C. Darcel, J. B. Sortais, ChemCatChem, 2013, 5, 2861

8 Q. A. Lo, D. Sale, D. C. Braddock, R. P. Davies, ACS Catal. 2018, 8, 101

9 C. A. Wilhelmsen, A. D. C. Dixon, J. D. Chisholm, D. A. Clark, J. Org. Chem. 2018, 83, 1634

10 S. Elangovan, J. Neumann, J.-B. Sortais, K. Junge, C. Darcel, M. Beller, *Nature Comm.* 2016, **7**, 12641

11 G. Zhang, Z. Yin, S. Zheng, *Org. Lett.* 2016, 18, 300

12 X. Dai, X. Cui, Y. Deng, F. Shi, *RSC Adv.* 2015, **5**, 43589

13 D. K. Dutta, J. D. Woollins, A. M. Z. Slawin, A. L. Fuller, B. Deb, P. Pollov Sarmah, M. Gopal Pathak, D. Konwar, *Journal of Molecular Catalysis A: Chemical* 2009, **313**, 100

14 Gaussian 09, Revision C1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.;

Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada,

M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;

Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;

Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell,

A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;

Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;

Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J.

B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

15 http://comp.chem.umn.edu/info/DFT.htm