Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

The Strecker Reaction coupled to Viedma Ripening: A Simple Route to Highly Hindered Enantiomerically Pure Amino Acids

Iaroslav Baglai,^{*a*} Michel Leeman,^{*b*} Klaus Wurst,^{*c*} Bernard Kaptein,^{*d*} Richard M. Kellogg, ^{*b*} and Willem L. Noorduin^{*, *a*}

^a AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

^b Syncom BV,Kadijk 3, 9747 AT Groningen, The Netherlands

^c University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria

^d InnoSyn BV, PO Box 1090, 6160 BB Geleen, The Netherlands

Content

1. General remarks	S1
2. Obtaining of enantiomerically pure <i>tert</i> -Leucine 2	S1
3. Obtaining of enantiomerically pure 1-adamantylglycine 3	S5
4. Summary of the Second Garmonic Generation measurements	S7
5. X-Ray powder diffraction analyses	S9
6. Crystallographic data for 7a,b and 8a	S10
7. References	S13

1. General remarks

¹H and ¹³C NMR were recorded using Agilent VNMRS300 or Agilent MercuryPlus300 spectrometers (the NMR spectra were recorded in either CDCl₃, DMSO-d6 or CD₃OD solutions; NMR chemical shifts δ are given in parts per million (ppm); coupling constants *J* are in hertz (Hz)). Chiral HPLC analyses were performed using an Agilent Technologies Infinity 1260 HPLC system equipped with a Chiralpak IA (250 x 4.6 mm, 5 µm) column; eluent: *n*-heptane/isopropanol 95/5 (*v/v*); flow rate: 0.7 mL/min; UV-light detector: 220 nm). Melting points were recorded on a TA Instruments Q20. Optical rotation was measured using a Krüss P3001 polarimeter. Second Harmonic Generation (SHG) measurements were performed according to the previously described procedure.^[1] X-Ray powder diffraction patterns were measured using a Bruker D2 Phaser with a Cu X-ray source (Cu K- α , λ = 1.5418 Å). All crystallographic data sets were collected on a Bruker D8 Quest diffractometer equipped with an Incoatec Microfocus source generator (multi layered optics monochromatized Mo-K α radiation, λ = 71.073 pm); multi-scan absorption corrections were applied with the program SADABS-2014/5.

2. tert-Leucine

Scheme S1. Synthesis of imines 7.

(±)-2-amino-3,3-dimethylbutanenitrile (5).^[2] Caution! HCN is generated. The experiment should be performed in a well-ventilated fume hood. A solution of pivaldehyde (30.0 mL; 23.8 g; 0.276 mol; 1.0 eq.) in MeOH (60 mL) was added dropwise to a solution of NaCN (16.24 g; 0.33 mol; 1.2 eq.) and NH₄Cl (14.77 g; 0.276 mol; 1.5 eq.) in aqueous ammonia solution (280 mL; 25% solution) at 10 °C. The resulting reaction mixture was stirred at ambient temperature for 16 hours. Then, the reaction mixture was diluted with water (500 mL) and extracted with DCM (3 x 200 mL). The combined organic phase was dried over Na₂SO₄ and concentrated under reduced pressure to give a white sticky solid (27.6 g; 89%). ¹H NMR (300 MHz, CDCl₃) δ 3.39 (s, 1H), 1.61 (br s, 2H), 1.09 (s, 9H).

(±)-2-amino-3,3-dimethylbutanamide (*tert*-leucine amide).^[3] Concentrated sulfuric acid (12 mL) was added dropwise to a solution of the nitrile **5** (6.0 g; 54 mmol) in DCM (30 mL) at 0 °C. The resulting reaction mixture was stirred overnight at ambient temperature. The reaction mixture was poured into ice (300 g) and neutralized with an aqueous ammonia solution (25 %). The resulting mixture was extracted with CHCl₃/MeOH 3/1 (*v*/*v*, 3 x 100 mL). The combined organic phase was dried over Na₂SO₄ and concentrated under reduced pressure to give the desired amide as a while solid (3.8 g; 54%). ¹H NMR (300 MHz, CDCl₃) δ 3.14 (s, 1H), 1.52 (br s, 4H), 1.04 (s, 9H).

(±)-N-(2,3-dimethoxybenzylidene)-2-amino-3,3-dimethylbutanamide (1). A mixture of *tert*-leucine amide (2.0 g; 15.4 mmol; 1.0 eq.), 2,3-dimethoxybenzaldehyde (2.68 g; 16.1 mmol; 1.05 eq.) and Na₂SO₄ (3.72 g; 26.2 mmol; 1.7 eq.) in DCM (20 mL) was stirred at ambient temperature for 16 hours. The suspension was heated up to 40 °C and filtered. The solid collected was washed with hot DCM (2 x 5 mL). The mother liquor was concentrated under reduced pressure. The residue was recrystallized from acetonitrile (20 mL) to give a white solid (3.9 g; 91%). ¹H NMR (300 MHz, CDCl₃) δ 8.53 (s, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.12 (t, *J* = 8.1 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 6.57 (br s, 1H), 5.79 (br s, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.55 (s, 1H), 1.06 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 174.33, 151.75, 152.98, 149.73, 129.31, 124.09, 118.78, 114.73, 83.96, 61.83, 55.91, 35.08, 27.17. MS(ES-API): *m/z* = 279.1 [M+H]⁺. HRMS (ES-ToF): *m/z* calculated for C₁₅H₂₃N₂O₃ [M+H]⁺: 279.1709; found: 279.1721.

Scheme S2. Synthesis of enantiomerically pure (R)-1.

(R)-N-(2,3-dimethoxybenzylidene)-2-amino-3,3-dimethylbutanamide ((R)-1.

Triethylamine (1.0 mL; 7.2 mmol; 1.2 eq.) was added dropwise to a solution of (2*R*)-2-amino-3,3-dimethylbutanamide hydrochloride^[4] (1.0 g; 6.0 mmol; 1.0 eq.) and 2,3dimethoxybenzaldehyde (1.1 g; 6.6 mmol; 1.1 eq.) in THF (15 mL) at 10 °C. The resulting reaction mixture was stirred overnight at ambient temperature. Then, the reaction mixture was poured into water (100 mL) and extracted with DCM (2 x 50 mL). The combined organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a yellowish residue. The residue was recrystallized from acetonitrile (20 mL) to provide a white solid (1.35 g; 81%; ee > 99%). ¹H NMR (300 MHz, CDCl₃) δ 8.51 (s, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.13 (t, *J* = 7.8 Hz, 1H), 7.00 (d, *J* = 8.1 Hz, 1H), 6.56 (br s, 1H), 5.41 (br s, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 3.53 (s, 1H), 1.04 (s, 9H).

Racemization of imine (R)-1:

All attempts to establish that reversible proton abstraction – a condition for racemization - occurs with a model enantiomerically pure (*R*)-1 in the presence of DBU or other bases, under various temperature and solvent conditions failed to reveal significant hydrogen exchange at the α -position. Application of forcing conditions^[5] leads to considerable decomposition.

DBU: DBU (13 μ L; 0.09 mmol; 0.5 eq.) was added to a solution of imine (*R*)-1 (50 mg; 0.18 mmol; *ee* > 99%) in acetonitrile (5 mL). The resulting reaction mixture was stirred for 16 hours at ambient temperature. Then, the reaction mixture was quenched with phosphate buffer (3 mL; pH = 7) and extracted with dichloromethane (5 mL). The organic layer was concentrated under reduced pressure. Chiral HPLC analysis showed that the obtained residue corresponds to (*R*)-1 in > 99% ee. Racemization does not occur.

tert-Butylimino-tri(pyrrolidino)phosphorene (BTPP): PTPP (28 μ L; 0.09 mmol; 0.5 eq.) was added to a solution of imine (*R*)-1 (50 mg; 0.18 mmol; *ee* > 99%) in acetonitrile (5 mL). The resulting reaction mixture was stirred for 24 hours at ambient temperature. Then, the reaction mixture was quenched with phosphate buffer (3 mL; pH = 7) and extracted with dichloromethane (5 mL). The organic layer was concentrated under reduced pressure. Chiral HPLC analysis showed that the obtained residue corresponds to (*R*)-1 in > 78% *ee*, indicating that only unpractically slow racemization occurs.

Potassium *tert*-butoxide (*t*-BuOK): Imine (*R*)-1 (50 mg; 0.18 mmol; *ee* > 99%) and *t*-BuOK (10 mg; 0.09 mmol; 0.5 eq.) were suspended in toluene (5 mL). The resulting reaction mixture was stirred at 100 °C while *ee* was monitored by chiral HPLC. Samples were taken and analyzed after 1 hour ($ee_R \approx 83\%$) and 4 hours ($ee_R \approx 67\%$) of stirring. The sample taken after 4 hours indicated that considerable decomposition of 1 occurs together with its slow racemization.

(±)-3,3-dimethyl-2-((naphthalen-2-yl)methylidene)aminobutanenitrile (7a). The following procedure is representative for all imines 7. A mixture of α -aminonitrile 5 (10.8 g; 96.2 mmol; 1.0 eq.), 2-naphthaldehyde (15.03 g; 96.2 mmol; 1.0 eq.) and Na₂SO₄ (24.14 g; 0.17 mol; 1.7 eq.) in DCM (120 mL) was stirred at room temperature for 16 hours. The suspension was heated up to 40 °C and filtered. The solid collected was washed with hot DCM (2 x 30 mL). The mother liquor was concentrated under reduced pressure. The residue was recrystallized from MeOH (250 mL) to afford a white solid (23.1 g; 96%). M.p. = 106 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.63 (s, 1H), 8.13 (s, 1H), 8.04 (d, J = 8.1 Hz, 1H), 7.94-7.86 (m, 3H), 7.57-7.53 (m, 2H), 4.37 (s, 1H), 1.17 (s, 9H). ¹H NMR (300 MHz, DMSO-d6) δ 8.62 (s, 1H), 8.28 (s, 1H), 8.03-7.93 (m, 4H), 7.58-7.56 (m, 2H), 4.59 (s, 1H), 1.05 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 162.93, 135.10, 132.98, 132.83, 131.38, 128.80, 128.66, 127.91, 127.69, 123.64, 117.22, 69.11, 36.01, 26.43. ¹³C NMR (75 MHz, DMSO-d6) δ 164.67, 135.02, 133.06, 131.74, 129.23, 129.04, 128.27, 127.30, 123.61, 118.55, 68.53, 35.74, 26.31. MS (ES-API): m/z = 251.1 [M+H]⁺. HRMS (FTMS + pESI): m/z calculated for C₁₉H₂₂FN₂ [M+H]⁺: 251.1548; found: 251.1546.

(±)-3,3-dimethyl-2-((6-methoxynaphthalen-2-yl)methylidene)aminobutanenitrile (7b). A mixture of α-aminonitrile 5 (3.0 g; 26.7 mmol; 1.0 eq.), 6-methoxy-2-naphthaldehyde (5.0 g; 26.7 mmol; 1.0 eq.) and Na₂SO₄ (6.45 g; 45.4 mmol; 1.7 eq.) in DCM (60 mL) was stirred under reflux for 16 hours. The suspension was filtered. The solid collected was washed with hot DCM (2 x 10mL). The mother liquor was concentrated under reduced pressure. The residue was recrystallized from heptane (30 mL) to give a white solid (5.1 g; 68%). M.p. = 99 °C. ¹H NMR (300 MHz, DMSO-d6) δ 8.56 (s, 1H), 8.21 (s, 1H), 7.95-7.85 (m, 3H), 7.38 (s, 1H), 7.21 (d, *J* = 9 Hz, 1H), 4.57 (s, 1H), 3.88 (s, 3H), 1.05 (s, 9H). ¹³C NMR (75 MHz, DMSO-d6) δ 164.72, 159.21, 136.73, 131.47, 130.90, 128.36, 127.91, 124.28, 119.75, 118.70, 106.78, 68.53, 55.80, 35.72, 26.32. MS (ES-API): $m/z = 281.2 \text{ [M+H]}^+$. HRMS (FTMS + pESI): m/z calculated for C₁₉H₂₂FN₂ [M+H]⁺: 281.1654; found: 281.1651.

Racemization of (R)-7a:

(*R*)-**7a** (14 mg) was dissolved in 20 mL of solvent (MeCN, MeOH, MTBE, PhMe, n-Heptane). The stock solution (1.5 mL) was placed into a 2 mL HPLC vial followed by DBU (5.0 μ L) addition. The vial was shaken for 30 seconds and placed into HPLC tray. Enantiomeric excess in the solution was monitored using chiral HPLC (by injecting 4 μ L of the obtained reaction solution per analysis). Data collected are represented in Figure S1.

Figure S1. Racemization of **7a** (0.7 mg/mL) in the presence of DBU (3.3 μ L/mL) in different solvents excluding (*left*) and including (*right*) n-Heptane.

Deracemization experiments:

Deracemization of (*RS*)-7a to (*R*)-3,3-dimethyl-2-((naphthalen-2-yl)methylidene)aminobutanenitrile ((*R*)-7a). The following procedure is representative for deracemization to either enantiomer of imines 7a,b. A screw cap vial (20 mL) was charged with 2 mm glass beads (10 g), imine (*RS*)-7a (1.2 g, 4.05 mmol), *R*-(or S)-7a (0.1 g, 0.34 mmol) and MeOH (10 mL). The vial was placed in an ultrasonic bath, equipped with a thermostat (maintaining the temperature at 20 °C), and sonicated for 30 min. Then, DBU (0.2 eq., 120 μ L, 0.81 mmol) was added, and the mixture was sonicated at 20 °C overnight. Chiral HPLC analysis of the isolated solid sample indicated complete deracemization overnight. The suspension was replaced into a P4 filter, using a Pasteur's pipet to separate the suspension and glass beads, and filtered. The isolated solid was rinsed with MeCN (2 x 3.0 mL) and dried to afford the desired (*S*)-7a as a white solid (1.02 g; 78%, ee > 99%).

Figure S2. Chiral HPLC of (R)-7a (right) and (S)-7a (right).

Deracemization rate determination:

A 20 mL screw septum vial was charged with 2 mm glass beads (10 g), (*RS*)-**7a** (0.9 g), (*R*)-(or *S*-)-**7a** (0.25 g) and MeOH (10 mL). The vial was sonicated at 20°C for 30 minutes and DBU (0.4 mL) was added. The resulting mixture was sonicated at 20°C while the solid phase *ee* was monitored by chiral HPLC of samples prepared by isolating small amounts of the solid by filtration. The data collected are represented in Figure 1.

(*R*)-2-amino-3,3-dimethylbutanenitrile hydrochloride ((*R*)-5·HCl).^[6] The following procedure is representative for hydrolysis of either enantiomer of imines **7a**,**b**. HCl (37% ww, 50 µL) was added to a solution of (*R*)-**7a** (100 mg; 0.4 mmol; $ee \approx 97.6\%$) in acetone (5 mL) and the resulting reaction mixture was stirred at room temperature for 1 hour. The solid formed was collected by filtration and washed with acetone (2 x 1 mL) to afford a white solid (45 mg; 76%). ¹H NMR (300 MHz, CD₃OD) δ 4.40 (s, 1H), 1.18 (s, 9H). MS (ES-API): m/z = 113.0 [M+H]⁺.

(*R*)-tert-Leucine hydrochloride ((*R*)-2·HCl).^[6] The following procedure is representative for hydrolysis of either enantiomer of **5**. (*R*)-**5**·HCl (30 mg; 0.2 mmol) was dissolved in HCl (37% ww, 1.0 mL) and stirred for 40 h at 100°C in a closed vial. The reaction mixture was concentrated under reduced pressure to afford the title compound as a white solid (30 mg; $ee \approx 97.6$) in 90% yield. ¹H NMR (300 MHz, CD₃OD) δ 3.71 (s, 1H), 1.13 (s, 9H). ¹³C NMR (75 MHz, CD₃OD) δ 169.53, 61.51, 32.46, 25.48. MS (ES-API): m/z 210.1 [M+H]⁺.

Figure S3. Chiral HPLC of (R)-7a (left) and tert-leucine 2: (R)-2 (middle) and (S)-2 (right).

3. 1-Adamantylglycine

Scheme S3. Synthesis of imines 8.

1-Adamantanealdehyde.^[7] A solution of **1-adamantanemethanol** (20.0 g; 0.12 mol; 1.0 eq) in DCM (150 mL) was added dropwise to a suspension of pyridinium chlorochromate (PCC) (33.7 g; 0.156 mol; 1.3 eq.) in DCM (150 mL), maintaining the temperature of the reaction mixture (RM) at 10 °C. The resulting reaction mixture was allowed to warm up to ambient temperature and stirred for 3 hours. Then, the reaction mixture was diluted with TBME (500 mL) and filtered through silica plug. The mother liquor was washed with 1M aqueous sodium hydroxide solution (200 mL), dried over Na₂SO₄ and concentrated under reduced pressure to

give the title compound as a white solid (18.0 g; 91%). ¹H NMR (300 MHz, CDCl₃) δ 9.34 (s, 1H), 2.09 (br s, 3H), 1.83-1.69 (m, 12H).

(±)-2-(adamantan-1-yl)-2-aminoacetonitrile (6).^[8] Caution! HCN is generated. The experiment should be performed in a well-ventilated fume hood. A suspension of the crude aldehyde 1-adandanealdehyde (18.0 g; 0.11 mol; 1.0 eq) in MeOH (180 mL) was slowly added to a solution of NaCN (6.44 g; 0.132 mol; 1.2 eq) and ammonium chloride (8.83 g; 0.165 mol; 1.5 eq) in aqueous ammonia (180 mL; 25% solution), maintaining the temperature of the reaction mixture at 10 °C. The resulting reaction mixture was stirred for 60 hours at ambient temperature. Then, the reaction mixture was diluted with water (500 mL) and extracted with DCM (3*100 mL). The combined organic phase was dried over Na₂SO₄ and concentrated under reduced pressure to give aminonitrile **6** as a white solid (17.0 g; 82%). ¹H NMR (300 MHz, CDCl₃) δ 3.26 (s, 1H), 2.09 (br s, 3H), 1.79-1.61 (m, 12H).

(±)-2-(Adamantan-1-yl)-2-((4-fluorophenyl)methylidene)aminoacetonitrile (8a). The following procedure is representative for all imines 8. A mixture of α-aminonitrile 6 (400 mg; 2.1 mmol; 1.0 eq), 4-fluorobenzaldehyde (287 mg; 2.3 mmol; 1.1 eq) and Na₂SO₄ (596 mg; 4.2 mmol; 2.0 eq) in DCM (4.0 mL) was stirred at room temperature for 16 hours. The suspension was heated up to 40 °C and filtered. The solid collected was washed with hot DCM (2 x 2mL). The mother liquor was concentrated under reduced pressure. The residue was recrystallized from MeOH (5 mL) to afford a white solid (510 mg; 82%). M.p. = 149-151 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.42 (s, 1H), 7.83 (dd, *J* = 14.4, 8.7 Hz, 2H), 7.15 (t, *J* = 8.7 Hz, 2H), 4.22 (s, 1H), 2.08 (br s, 3H), 1.81-1.72 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 163.13, 161.42, 130.77, 130.65, 116.56, 116.04, 115.75, 69.56, 39.03, 37.73, 36.64, 28.27. MS (ES-API): *m/z* = 297.2 [M+H]⁺. HRMS (FTMS + pESI): *m/z* calculated for C₁₉H₂₂FN₂ [M+H]⁺: 297.1767; found: 297.1763.

(±)-2-(Adamantan-1-yl)-2-((2,6-dichlorophenyl)methylidene)aminoacetonitrile (8b). A mixture of α-aminonitrile 6 (500 mg; 2.63 mmol; 1.0 eq), 2,6-dichlorobenzaldehyde (505 mg; 2.89 mmol; 1.1 eq) and Na₂SO₄ (634 mg; 4.47 mmol; 1.7 eq) in DCM (5.0 mL) was stirred at room temperature for 16 hours. The suspension was heated up to 40 °C and filtered. The solid collected was washed with hot DCM (2 x 2mL). The mother liquor was concentrated under reduced pressure. The residue was recrystallized from MeOH (5 mL) to afford a white solid (780 mg; 85%). ¹H NMR (300 MHz, CDCl₃) δ 8.71 (s, 1H), 7.37 (d, *J* = 8.7 Hz, 2H), 7.15 (t, *J* = 8.7 Hz, 1H), 4.33 (s, 1H), 2.08 (br s, 3H), 1.86-1.66 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 159.55, 134.93, 131.84, 130.95, 128.91, 116.03, 70.81, 38.89, 37.50, 36.60, 28.28. MS (ES-API): *m/z* = 347.0 [M+H]⁺. HRMS (ES-ToF): *m/z* calculated for C₁₉H₂₁Cl₂N₂ [M+H]⁺: 347.1082; found: 347.1082.

Deracemization experiments:

Deracemization of (*RS*)-8a to (*R*)-2-(Adamantan-1-yl)-2-((4-fluorophenyl)methylidene) aminoacetonitrile ((*R*)-8a). A screw cap vial (20 mL) was charged with 2 mm glass beads (10 g), imine (*RS*)-8a (1.2 g, 4.05 mmol), (*R*-(or *S*)-8a (0.1 g, 0.34 mmol) and MeCN (10 mL). The vial was placed in an ultrasonic bath, equipped with a thermostat (maintaining the temperature at 20 °C), and sonicated for 30 min. Then, DBU (0.2 eq, 120 μ L, 0.81 mmol) was added, and the mixture was sonicated at 20 °C overnight. Chiral HPLC analysis of the isolated solid sample indicated complete deracemization overnight. The suspension was replaced into a P4 filter, using a Pasteur's pipet to separate the suspension and glass beads, and filtered. The isolated solid was rinsed with MeCN (2 x 3.0 mL) and dried to afford the desired (*R*)-8a as a white solid (1.07 g; 82%, ee > 99%).

Figure S4. Chiral HPLC of (S)-8a (*left*) and (R)-8a (*right*).

Deracemization rate determination:

A 20 mL screw septum vial was charged with 2 mm glass beads (10 g), (*RS*)-**8a** (1.05 g), (*R*)-(or *S*-)-**8a** (0.1 g) and MeCN (10 mL). The vial was sonicated at 20°C for 30 minutes and DBU (0.2 mL) was added. The resulting mixture was sonicated at 20°C while the solid phase *ee* was monitored by chiral HPLC of samples prepared by isolating small amounts of the solid by filtration. The data collected are represented in Figure 2.

(*S*)-2-(adamantan-1-yl)-2-aminoacetonitrile hydrochloride ((*S*)-6·HCl).^[8] HCl (37% ww; 80 μ L) was added to a solution of (*S*)-8a (200 mg; 0.68 mmol) in acetone (10 mL) and the resulting reaction mixture was stirred at room temperature for 1 hour. The solid formed was collected by filtration and washed with acetone (2 x 3 mL) to afford a white solid (130 mg; 90%). ¹H NMR (400 MHz, DMSO-d6) δ 9.14 (br s, 3H), 4.36 (s, 1H), 2.03 (s, 3H), 1.64-1.56 (m, 12H). ¹H NMR (300 MHz, CD₃OD) δ 4.36 (s, 1H), 2.12 (s, 3H), 1.85-1.72 (m, 12H).

(*S*)-2-(adamantan-1-yl)glycine ((*S*)-3·HCl).^[9] (*S*)-6·HCl (115 mg; 0.54 mmol) was dissolved in HCl (37% ww, 5 mL) and stirred for 60 h at 100°C in a closed vial. The reaction mixture was concentrated under reduced pressure to afford the title compound as a white solid (125 mg; ee > 99%) in 94% yield. [α]²⁵ 26.5 (*c* 0.25, CH₃OH). ¹H NMR (400 MHz, DMSO) δ 8.17 (br s, 2H), 7.22 (t, *J* = 50.8 Hz, 3H), 1.99 (s, 3H), 1.68-1.53 (m, 12H). ¹H NMR (300 MHz, CD₃OD) δ 3.51 (s, 1H), 2.06 (s, 3H), 1.83-1.62 (m, 12H). MS (ES-API): *m/z* 210.1 [M+H]⁺.

Figure S5. Chiral HPLC of (RS)-3 (left) and (S)-3·HCl (right).

4. Second Harmonic Generation (SHG) measurements

 Table S1. SHG responses for imines 7.

Entry	R-	SHG response
1	2-naphthyl-	large SHG effect
2	3-methoxy-1-naphthyl-	no SHG effect
3	6-methoxy-2-naphthyl-	large SHG effect
4	3-methoxy-2-nitrophenyl-	no SHG effect
5	2-methoxy-4-nitrophenyl-	no SHG effect
6	2-methoxy-5-nitrophenyl-	no SHG effect
7	4-fluoro-3-nitrophenyl-	no SHG effect
8	4-bromophenyl-	large SHG effect

//^N

Table S2. SHG responses for imines 8.

Entry	R-	SHG response	
1	phenyl-	no SHG effect	
2	2-methylphenyl-	no SHG effect	
3	3-methylphenyl-	no SHG effect	
4	4-methylphenyl-	no SHG effect	
5	2-nitrophenyl-	no SHG effect	
6	3-nitrophenyl-	no SHG effect	
7	4-nitrophenyl-	no SHG effect	
8	3-chlorophenyl-	no SHG effect	
9	4-chlorophenyl-	small SHG effect	
10	2-bromophenyl-	no SHG effect	
11	3-bromophenyl-	no SHG effect	
12	4-bromophenyl-	no SHG effect	
13	2,3-dichlorophenyl-	no SHG effect	
14	2,6-dichlorophenyl-	large SHG effect	
15	2-fluorophenyl-	no SHG effect	
16	4-fluorophenyl-	large SHG effect	
17	2-bromo-4-fluorophenyl-	no SHG effect	
18	4-bromo-2-fluorophenyl-	no SHG effect	
19	3-bromo-4-fluorophenyl-	no SHG effect	
20	2,5-difluorophenyl-	no SHG effect	
21	2,4-dichlorophenyl-	no SHG effect	
22	2,5-dichlorophenyl-	no SHG effect	
23	2-bromo-4-chlorophenyl-	no SHG effect	
24	4-bromo-2-chlorophenyl-	no SHG effect	

5. X-Ray powder diffraction analyses

Figure S6. XRPD patterns of the identified conglomerates: 7a (RS vs R; left) and 7b (RS vs S; right).

Figure S7. XRPD patterns of the identified conglomerates: **8a** (*RS* vs *S*; *left*) and **8b** (*RS* vs R*(absolute configuration was not confirmed) vs deracemization attempt; *right*).

[As may be seen from Figure S7 (*right*): the XRPD pattern of the solid isolated after attrition of (*RS*)-**8b** in the presence of DBU is different compared to that of racemate **8b** and enantiomerically pure **8b**. This indicates that **8b** crystallizes as an unstable polymorph under deracemization conditions]

6. Crystallographic data for 7a,b and 8a

Racemates of compounds **7a** (CCDC-1845204), **7b** (CCDC-1845205) and **8a** (CCDC-1845206) crystalize in the chiral orthorhombic space group $P2_12_12_1$. This means that both enantiomers have the same space group, but each individual crystal consists of only one (*R* or *S*) enantiomer.

Figure S8. ORTEP view of the unit cell of 7a along the a axis. Deposited from MeOH.

Empirical formula	C17 H18 N2	
Formula weight	250.33	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P212121 (no. 19)	
Unit cell dimensions	a = 5.9134(5) Å	α = 90°.
	b = 7.7193(7) Å	β = 90°.
	c = 31.935(2) Å	γ = 90°.
Volume	1457.8(2) Å ³	•
Z	4	
Density (calculated)	1.141 Mg/m ³	
Absorption coefficient	0.067 mm ⁻¹	
F(000)	536	
Crystal size	0.220 x 0.220 x 0.200 mm ³	
Theta range for data collection	2.551 to 25.000°.	
Index ranges	-7<=h<=7, -7<=k<=9, -30<=l<=3	37
Reflections collected	9798	
Independent reflections	2553 [R(int) = 0.0258]	
Completeness to theta = 25.000°	100.0 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.988 and 0.948	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2553 / 0 / 173	
Goodness-of-fit on F ²	1.066	
Final R indices [I>2sigma(I)]	R1 = 0.0308, wR2 = 0.0714	
R indices (all data)	R1 = 0.0370, wR2 = 0.0738	
Absolute structure parameter	-0.2(10)	
Extinction coefficient	0.032(3)	
Largest diff. peak and hole	0.140 and -0.106 e.Å ⁻³	

Figure S9. ORTEP view of the unit cell of **7b** along the a axis. Deposited from MeOH.

Table S4. Crystal data and structure refinement for 7b.

C18 H20 N2 O	
280.36	
173(2) K	
0.71073 Å	
Orthorhombic	
P212121 (no. 19)	
a = 5.9479(5) Å	α = 90°.
b = 12.3654(11) Å	β = 90° .
c = 21.1408(18) Å	γ = 90°.
1554.9(2) Å ³	
4	
1.198 Mg/m ³	
0.075 mm ⁻¹	
600	
0.180 x 0.130 x 0.110 mm ³	
2.535 to 24.999°.	
-7<=h<=7, -14<=k<=14, -25<=l<	=25
25831	
2729 [R(int) = 0.0381]	
99.9 %	
Semi-empirical from equivalent	ts
0.990 and 0.975	
Full-matrix least-squares on F ²	
2729 / 0 / 192	
1.069	
R1 = 0.0299, wR2 = 0.0708	
R1 = 0.0352, wR2 = 0.0730	
-0.4(5)	
0.032(3)	
0.160 and -0.133 e.Å ⁻³	
	C18 H20 N2 O 280.36 173(2) K 0.71073 Å Orthorhombic P2 ₁ 2 ₁ 2 ₁ (no. 19) a = 5.9479(5) Å b = 12.3654(11) Å c = 21.1408(18) Å 1554.9(2) Å ³ 4 1.198 Mg/m ³ 0.075 mm ⁻¹ 600 0.180 x 0.130 x 0.110 mm ³ 2.535 to 24.999°. -7<=h<=7, -14<=k<=14, -25<=l<25831 2729 [R(int) = 0.0381] 99.9 % Semi-empirical from equivalent 0.990 and 0.975 Full-matrix least-squares on F ² 2729 / 0 / 192 1.069 R1 = 0.0299, wR2 = 0.0708 R1 = 0.0352, wR2 = 0.0708 R1 = 0.0352, wR2 = 0.0730 -0.4(5) 0.032(3) 0.160 and -0.133 e.Å ⁻³

Figure S10. ORTEP view of the unit cell of 8a along the a axis. Deposited from MeCN.

Table S5. Crystal data and structure refinement for 8a.

Empirical formula	C19 H21 F N2	
Formula weight	296.38	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2 ₁ 2 ₁ 2 ₁ (no. 19)	
Unit cell dimensions	a = 6.4325(3) Å	α = 90°.
	b = 15.1525(7) Å	β = 90°.
	c = 15.7404(7) Å	γ = 90°.
Volume	1534.19(12) Å ³	
Z	4	
Density (calculated)	1.283 Mg/m ³	
Absorption coefficient	0.084 mm ⁻¹	
F(000)	632	
Crystal size	0.180 x 0.100 x 0.100 mm ³	
Theta range for data collection	2.588 to 24.997°.	
Index ranges	-7<=h<=7, -18<=k<=18, -18<=l<	=18
Reflections collected	20442	
Independent reflections	2711 [R(int) = 0.0312]	
Completeness to theta = 24.997°	99.9 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.977 and 0.967	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2711 / 0 / 200	
Goodness-of-fit on F ²	1.110	
Final R indices [I>2sigma(I)]	R1 = 0.0293, wR2 = 0.0683	
R indices (all data)	R1 = 0.0327, wR2 = 0.0699	
Absolute structure parameter	0.3(3)	
Extinction coefficient	0.025(2)	
Largest diff. peak and hole	0.179 and -0.153 e.Å ⁻³	

7. References

- [1] F. Simon, S. Clevers, V. Dupray, G. Coquerel, *Chem. Eng. Technol.* **2015**, *38*, 971–983.
- [2] S. Vukelić, B. Koksch, P. H. Seeberger, K. Gilmore, *Chem. Eur. J.* **2016**, *22*, 13451–13454.
- [3] W. H. J. Boesten, J.-P. G. Seerden, B. De Lange, H. J. A. Dielemans, H. L. M. Elsenberg, B. Kaptein, H. M. Moody, R. M. Kellogg, Q. B. Broxterman, *Org. Lett.* **2001**, *3*, 1121–1124.
- [4] (2*R*)-2-amino-3,3-dimethylbutanamide hydrochloride was prepared by InnoSyn BV according to the described enzymatic resolution procedure: T. Sonke, S. Ernste, R. F. Tandler, B. Kaptein, W. P. H. Peeters, F. B. J. Van Assema, M. G. Wubbolts, H. E. Schoemaker, *Appl. Environ. Microbiol.* 2005, *71*, 7961–7973.
- [5] R. P. Hof, P. J. Hermsen, R. De Bode, Kate H. Murashige, US 2001/0222585 A1, 2001, US 2001/0222585 A1.
- [6] D. B. Ushakov, K. Gilmore, D. Kopetzki, D. T. McQuade, P. H. Seeberger, *Angew. Chem. Int. Ed.* **2014**, *53*, 557–561.
- [7] J. A. Wright, M. J. Gaunt, J. B. Spencer, *Chem. Eur. J.* **2006**, *12*, 949 955.
- [8] D. Tataridis, G. Fytas, A. Kolocouris, C. Fytas, N. Kolocouris, G. B. Foscolos, E. Padalko, J. Neyts, E. De Clercq, *Bioorg. Med. Chem. Lett.* **2007**, *17*, 692–696.
- [9] J. Dong, Y. Gong, J. Liu, X. Chen, X. Wen, H. Sun, Bioorg. Med. Chem. 2014, 22, 1383– 1393.