Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Alkynyl-Protected Au₄₀ Nanocluster featuring a PhC≡C–Au–P staple

Ting wang¹, Wen-Han Zhang¹, Shang-Fu Yuan¹, Zong-Jie Guan¹, and Quan-Ming Wang^{1,2,*}

¹Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

²Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

Contents

I. Physical measurements

II. Experimental Details

III. Characterization

Figure S1. TGA of cluster 1.

Figure S2. ESI-TOF-MS spectrum of cluster 1.

Figure S3. Time-dependent UV-Vis spectra of 1 for monitoring stability.

Table S1. Crystal data and structure refinement for cluster 1.

I. Physical measurements

UV-vis-NIR absorption spectra were recorded on Cary 5000. Mass spectra were recorded on Agilent Technologies ESI-TOF-MS. NMR data were recorded on a Bruker Avance II spectrometer (500MHz). ³¹P chemical shifts were referenced to external 85% H₃PO₄. Thermogravimetric analysis (TGA) was performed on TG_209F1.

X-ray Crystallography. Intensity data of compound **1** were collected on an Agilent SuperNova Dual system (Cu K α). Absorption corrections were applied by using the program CrysAlis (multiscan). The structure was solved by direct methods, and non-hydrogen atoms were refined anisotropically by least-squares on F^2 using the SHELXTL program. All the phenyl groups were refined using a rigid model (AFIX 66). SQUEEZE tool of PLATON was applied in the structure of **1**, due to large solvent voids.

II. Experimental Details

Materials and reagents. Ethynylbenzene (PhC=CH, 98%), Sodium hexafluoroantimonate (NaSbF₆, 99%), Bis(diphenylphosphino)methane (dppm, 98%) were purchased from J&K; Silver trifluoroacetate (AgOOCCF₃, 98.0 %) were purchased from Strem Chemicals Inc.; Sodium borohydride (NaBH₄, 98%) and other reagents employed were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All reagents were used as received without further purification.

dppm(AuOOCCF₃)₂

The synthesis of dppm(AuOOCCF₃)₂ is entirely different from PPh₃AuX (X = SbF₆ and CF₃SO₃)¹⁻³. To obtain the solution of dppm(AuOOCCF₃)₂, a solution of CF₃COOAg (8.8 mg, 0.04 mmol) in 0.1 mL CH₃OH was added dropwise to the solution of Me₂SAuCl (11.8 mg, 0.04 mmol) in 3 mL CH₂Cl₂ with vigorous stirring, and the solution turned into a suspension immediately. The reaction continued for 15 min at room temperature in the dark obtaining the AgCl precipitate and a solution of Me₂SAuOOCCF₃ which could be stable in solution owing to the coordination ability of the CF₃COO⁻. While the anions possessing weaker coordination ability of the other silver salts (eg. AgSbF₆, AgNO₃ and AgOTf) are not able to stabilize the Me₂SAu⁺ solution. Then, the resulting solution was centrifuged for 3 min at 9000 r/min, and the AgCl precipitate was filtered off. The dppm (5.7 mg, 0.02 mmol) was add to the solution of Me₂SAuOOCCF₃ obtaining the solution of dppm(AuOOCCF₃)₂. This method to synthesize the solution LAuOOCCF₃ is effective for phosphine ligands, especially for those phosphine ligands whose R₃PAuCl compounds are not soluble.

[Au₄₀(PhC≡C)₂₀(dppm)₄](SbF₆)₄

To 4 mL CH₂Cl₂ solution of dppm(AuOOCCF₃)₂ (0.04 mmol), PhC=CAu (47.7 mg, 0.16 mmol) was added. And a freshly prepared solution of NaBH₄ (0.76 mg in 1 mL of ethanol) was added dropwise under vigorous stirring. The solution color changed from orange to pale brown and finally to dark brown. 30 min later, NaSbF₆ (52 mg, 0.2 mmol) was added and the reaction continued for 24 h at room temperature in air in the dark. The mixture was evaporated to dryness to give a dark solid, which was dissolved in 1 mL CH₂Cl₂ and 1 mL CH₂Cl-CH₂Cl centrifuged for 3 min at 9000 r/min. The supernatant solution was subject to the diffusion of n-hexane to afford 3.3 mg brown-red crystals after two weeks (5.3 % yield based on Au).

Reference

(1) Wan, X.-K.; Yuan, S.-F.; Tang, Q.; Jiang, D.-e.; Wang, Q.-M., Angew. Chem. Int. Ed. 2015, 54, 5977.

(2) Wan, X.-K.; Wang, J.-Q.; Nan, Z.-A.; Wang, Q.-M., Science Advances 2017, 3.

(3) Wan, X.-K.; Xu, W. W.; Yuan, S.-F.; Gao, Y.; Zeng, X.-C.; Wang, Q.-M., *Angew. Chem. Int. Ed.* **2015**, *54*, 9683.

III. Characterization

Figure S1. TGA of cluster 1.

Figure S2. ESI-TOF-MS spectrum of cluster **1**. Inset: the measured (black trace) and simulated (red trace) isotopic patterns. (A) $[Au_{40}(PhC\equiv C)_{20}(dppm)_4SbF_6]^{3+}$; (B) $[Au_{40}(PhC\equiv C)_{20}(dppm)_4]^{4+}$ (C) $[Au_{37}(PhC\equiv C)_{18}(dppm)_3]^{3+}$.

Figure S3. Time-dependent UV-Vis spectra of 1 for monitoring stability. (A) under ambient conditions in CH_2Cl_2 ; (B) under ambient conditions in CH_2Cl_2 in dark.

Empirical formula	$C_{263}H_{194}Au_{40}Cl_4F_{24}P_8Sb_4$
Formula weight	12565.39
Temperature	173.00(10) K
Wavelength	1.54184 Å
Crystal system, space group	monoclinic, C2/c
Unit cell dimensions	$a = 41.9547(10) \text{ Å} \alpha = 90^{\circ}$ $b = 18.5701(3) \text{ Å} \beta = 117.333(3)^{\circ}$ $c = 44.4220(11) \text{ Å} \gamma = 90^{\circ}$
Volume	30745.3(14) Å ³
Z, Calculated density	4, 2.715 g/cm ³
Absorption coefficient	38.741 mm ⁻¹
F(000)	22160.0
Crystal size	$0.08 \times 0.03 \times 0.02 \text{ mm}$
Theta range for data collection	7.624 to 122.338
Limiting indices	$-47 \le h \le 47, -16 \le k \le 21, -45 \le l \le 50$
Reflections collected	74308
Independent reflections	23118 [$R_{int} = 0.0969$, $R_{sigma} = 0.0779$]
Data/restraints/parameters	23118/890/1410
Goodness-of-fit on F ²	1.057
Final R indices [I>2sigma(I)]	$R_1 = 0.0927, wR_2 = 0.2476$
R indices (all data)	$R_1 = 0.1062, wR_2 = 0.2615$
Largest diff. peak and hole	4.36/-5.56 e.A ⁻³

 $\textbf{Table S1. } Crystal \ data \ and \ structure \ refinement \ for \ [Au_{40}(PhC \equiv C)_{20}(dppm)_4](SbF_6)_4.$