## Biomimetic synthesis of 2-substituted *N*-heterocycle alkaloids by one-pot hydrolysis, transamination and decarboxylative Mannich reaction

James L. Galman, Iustina Slabu, Fabio Parmeggiani, Nicholas J. Turner\*

School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, United Kingdom

# ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

#### Table of contents

#### Page

| Chemicals and enzymes                                                     | S2  |
|---------------------------------------------------------------------------|-----|
| Analytical methods                                                        | S3  |
| General procedure for the synthesis of alkaloids 7-8 on preparative scale | S4  |
| Characterisation of compounds 7a-c, 8a-c, 7j-m, 8k-m and 11               | S5  |
| Representative HPLC traces                                                | S10 |
| Copies of the NMR spectra                                                 | S13 |

#### **Chemicals and enzymes**

All commercially available reagents and solvents were used without further purification. Diamine dihydrochlorides and ketoesters were purchased from Sigma-Aldrich, Alfa Aesar or Fluorochem.

| Lipase | Source                  | Notes                                  | Supplier      |
|--------|-------------------------|----------------------------------------|---------------|
| PPL    | porcine pancreas        | Type II, 100-500 U/mg protein          | Sigma-Aldrich |
| PSL    | Burkholderia cepacia    | >30,000 U/g                            | Amano         |
| CALB   | Candida antarctica      | Novozym <sup>®</sup> 435, 10,000 PLU/g | Novozymes     |
|        |                         | (immobilised on acrylic resin)         |               |
| F-AP15 | Rhizopus oryzae         | ≥150,000 U/g                           | Sigma-Aldrich |
| TLL    | Thermomyces lanuginosus | ≥100,000 U/g                           | Sigma-Aldrich |

Lipases used in the screening (listed in the following table) were obtained commercially from Sigma-Aldrich, Amano or Novozymes, and used as supplied.

The diamine transaminase YgjG from *E. coli* K12 was produced in *E. coli* BL21(DE3) according to a previously published procedure (Slabu et al. *ChemCatChem* 2016, **8**, 1038-1042) as follows. A fresh colony of *E. coli* BL21(DE3) harbouring the plasmid pET28b-YgjG was used to inoculate LB medium (8 mL) containing kanamycin (50  $\mu$ g mL<sup>-1</sup>). This starter culture was grown overnight at 37°C and 220 rpm, and used to inoculate LB medium (800 mL) containing kanamycin (50  $\mu$ g mL<sup>-1</sup>). The culture was grown at 37°C and 220 rpm until OD600 reached 0.6-0.8, then the temperature was lowered to 18°C and expression was induced by addition of IPTG (0.2 mM final concentration). Expression was continued for 16 h at 18°C and 220 rpm. Cells were harvested by centrifugation (4°C, 3,250 g, 20 min) and stored at –20°C until needed. For the preparation of the crude lysate, cells were resuspended (1 g of wet cell paste in 10 mL) in lysis buffer (50 mM Tris-HCl, 1 mM PLP, pH 8.0) and lysed in an ice bath by ultrasonication in a Soniprep 150 (20 s on, 20 s off, 20 cycles). After centrifugation (4°C, 16,000 g, 20 min) the clarified lysate was used directly for the biotransformations.

#### Analytical methods

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker Advance 400 instrument (400 MHz for <sup>1</sup>H and 100 MHz for <sup>13</sup>C) in CDCl<sub>3</sub>, using residual protic solvent as internal standard. Chemical shifts ( $\delta$ ) are reported in parts per million (ppm) relative to the residual protic solvent signal (CHCl<sub>3</sub> in CDCl<sub>3</sub>, <sup>1</sup>H= 7.26; <sup>13</sup>C= 77.0).

HRMS analyses were performed using an Agilent 1200 series LC system, coupled to an Agilent 6520 QTOF mass spectrometer, ESI positive mode. The sample (2  $\mu$ L) was flow-injected into 0.3 mL min<sup>-1</sup> MeCN/H<sub>2</sub>O 1:1 + formic acid 0.1% *v/v*. The data was analysed using Agilent MassHunter software.

Reverse-phase HPLC analyses were performed on an Agilent 1200 series LC system equipped with a non-chiral Zorbax Extend C18 column (50 mm  $\times$  4.6 mm  $\times$  3.5 µm, Agilent), according to the following method: flow rate 1.0 mL min<sup>-1</sup>; temperature: 40°C; detection wavelength 250 nm; mobile phase aq. NH<sub>4</sub>OH 0.1 M pH 10.0 / MeOH; gradient elution 90:10 (0-1 min), 90:10-10:90 (1-18 min), 10:90 (18-21 min), 10:90-90:10 (21-23 min), 90:10 (23-30 min). Retention times are listed in the following table.

|   |            | Retention times [min] |                     |      |                |                |  |  |
|---|------------|-----------------------|---------------------|------|----------------|----------------|--|--|
|   | R          | O O<br>R OEt<br>5a-i  | O O<br>R OH<br>6a-i | Ta-i | H<br>O<br>8a-i | O<br>R<br>9a-i |  |  |
| a |            | 12.4                  | 3.0                 | 11.4 | 13.2           | 9.8            |  |  |
| b | MeO        | 12.5                  | 4.6                 | 11.8 | 13.4           | 10.7           |  |  |
| c | MeO<br>MeO | 11.3                  | 4.7                 | 10.2 | 11.9           | 9.4            |  |  |
| d | Me         | 14.0                  | 5.7                 | 13.9 | 15.2           | 12.2           |  |  |
| e | CI Str.    | 15.1                  | 8.4                 | 14.9 | 16.1           | 12.8           |  |  |
| f | CI         | 15.1                  | 7.5                 | 14.9 | 16.0           | 12.9           |  |  |
| g | Br         | 15.6                  | 9.0                 | 15.4 | 16.5           | 13.4           |  |  |
| h | Br         | 15.5                  | 9.3                 | 15.4 | 16.5           | 13.5           |  |  |
| i | F          | 12.5                  | 4.4                 | 11.9 | 13.6           | 9.9            |  |  |

#### General procedure for the synthesis of alkaloids 7-8 on preparative scale



The diamine dihydrochloride salt (30 mM), sodium pyruvate (40 mM) and PLP (1 mM) were dissolved in 30 mL Tris-HCl buffer (50 mM, pH 9.0). The suitable ketoester (25 mM) was dissolved in 5 mL MeOH (10%  $\nu/\nu$ ) and added to the mixture and adjusted to pH 9.0. Lipase Novozyme 435 (5 mg/mL) and clarified cell lysate containing transaminase YgjG (15 mL, from 1.5 g of wet cell pellet) were added and the reaction was incubated at 37°C, 250 rpm for 18 h. The reaction mixture was filtered through Celite and the aminoketone products were isolated *via* acid-base work up. The solution was acidified to pH 2.0 with aqueous HCl (1 M), washed with Et<sub>2</sub>O (2 × 10 mL), then readjusted to pH 10.0 with aqueous NaOH (1 M) and the basified mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 20 mL). The combined CH<sub>2</sub>Cl<sub>2</sub> phase was dried on MgSO<sub>4</sub> and concentrated under reduced pressure to afford alkaloids as oils or solids.

#### Characterisation of compounds 7a-c, 8a-c, 7j-m, 8k-m and 11

1-phenyl-2-(pyrrolidin-2-yl)ethan-1-one (7a)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **7a** was obtained as a yellow oil, 149 mg, 64% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 – 7.85 (m, 2H), 7.50 – 7.45 (m, 1H), 7.37 (dd, J = 8.2, 6.9 Hz, 2H), 3.59 – 3.47 (m, 1H), 3.20 – 3.06 (m, 2H), 3.01 – 2.93 (m, 1H), 2.92 – 2.81 (m, 1H), 2.05 – 1.85 (m, 1H), 1.84 – 1.62 (m, 2H), 1.45 – 1.28 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  199.6, 136.1, 133.1, 128.6, 128.1, 54.5, 46.2, 45.2, 31.3, 24.7. HRMS calcd. for C<sub>12</sub>H<sub>16</sub>NO<sup>+</sup> 190.1232 [M+H]<sup>+</sup>, found 190.1213.

#### 1-(4-methoxyphenyl)-2-(pyrrolidin-2-yl)ethan-1-one (7b)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **7b** was obtained as a yellow solid, 220 mg, 81% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 – 7.90 (m, 2H), 7.00 – 6.88 (m, 2H), 3.88 (s, 3H), 3.63 – 3.50 (m, 1H), 3.18 – 3.08 (m, 2H), 3.09 – 3.01 (m, 1H), 2.93 (ddd, *J* = 10.0, 8.2, 6.8 Hz, 1H), 2.05 – 1.95 (m, 1H), 1.90 – 1.71 (m, 2H), 1.48 – 1.37 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  198.2, 163.5, 130.4, 130.2, 113.7, 55.5, 54.7, 46.2, 44.7, 31.3, 24.6. HRMS calcd. for C<sub>13</sub>H<sub>18</sub>NO<sub>2</sub><sup>+</sup> 220.1338 [M+H]<sup>+</sup>, found 220.1323.

#### 1-(3,4-dimethoxyphenyl)-2-(pyrrolidin-2-yl)ethan-1-one (7c, ruspolinone)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **7c** was obtained as a yellow solid, 221 mg, 71% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (dd, J = 8.4, 2.0 Hz, 1H), 7.55 (d, J = 2.0 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 3.97 (s, 3H), 3.96 (s, 3H), 3.65 – 3.55 (m, 1H), 3.16 (dd, J = 7.1, 4.0 Hz, 2H), 3.12 – 3.03 (m, 1H), 3.10 – 2.91 (m, 1H), 2.09 – 1.98 (m, 1H), 1.91 – 1.78 (m, 2H), 1.51 – 1.40 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.8, 153.6, 149.0, 129.2, 123.2, 110.0, 110.0, 56.1, 56.0, 55.9, 44.9, 40.6, 30.7, 23.7. HRMS calcd. for C<sub>14</sub>H<sub>20</sub>NO<sub>3</sub><sup>+</sup> 250.1443 [M+H]<sup>+</sup>, found 250.1429.

#### 1-phenyl-2-(piperidin-2-yl)ethan-1-one (8a, norsedaminone)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **16** was obtained as a yellow solid, 154 mg, 60% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 – 7.93 (m, 2H), 7.62 – 7.54 (m, 1H), 7.53 – 7.44 (m, 2H), 3.21 – 3.10 (m, 1H), 3.10 – 3.03 (m, 3H), 2.74 (td, *J* = 11.7, 2.8 Hz, 1H), 1.92 – 1.77 (m, 1H), 1.74 – 1.57 (m, 2H), 1.55 – 1.25 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  200.0, 137.5, 133.6, 129.1, 128.5, 53.3, 47.4, 46.1, 33.2, 26.5, 25.2. HRMS calcd. for C<sub>13</sub>H<sub>18</sub>NO<sup>+</sup> 204.1388 [M+H]<sup>+</sup>, found 204.1385

#### 1-(4-methoxyphenyl)-2-(piperidin-2-yl)ethan-1-one (8b)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **8b** was obtained as a yellow solid, 213 mg, 73% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 – 7.86 (m, 2H), 7.02 – 6.87 (m, 2H), 3.88 (s, 3H), 3.17 – 3.02 (m, 1H), 3.02 – 2.96 (m, 3H), 2.78 – 2.68 (m, 1H), 1.87 – 1.78 (m, 1H), 1.69 – 1.57 (m, 2H), 1.53 – 1.26 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  198.1, 163.5, 130.3, 130.2, 113.7, 55.5, 53.4, 46.9, 45.3, 32.8, 26.0, 24.8. HRMS calcd. for C<sub>14</sub>H<sub>20</sub>NO<sub>2</sub><sup>+</sup> 234.3190 [M+H]<sup>+</sup>, found 234.1505.

#### 1-(3,4-dimethoxyphenyl)-2-(piperidin-2-yl)ethan-1-one (8c)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **8c** was obtained as a yellow solid, 226 mg, 69% yield. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 (dd, J = 8.4, 2.1 Hz, 1H), 7.44 (d, J = 2.0 Hz, 1H), 6.80 (d, J = 8.4 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.12 – 2.85 (m, 4H), 2.64 (td, J = 11.7, 2.8 Hz, 1H), 1.79 – 1.66 (m, 1H), 1.64 – 1.50 (m, 2H), 1.47 – 1.11 (m, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  198.1, 153.4, 149.0, 130.3, 123.3, 122.9, 109.9, 56.1, 56.0, 46.9, 45.1, 32.7, 26.2, 26.0, 24.7. **HRMS** calcd. for C<sub>15</sub>H<sub>22</sub>NO<sub>3</sub><sup>+</sup> 264.1600 [M+H]<sup>+</sup>, found 264.1611.

#### 1-(pyrrolidin-2-yl)propan-2-one (7j, norhygrine)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **7j** was obtained as a yellow oil, 65 mg, 50% yield. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.46 – 3.35 (m, 1H), 2.99 (dd, J = 7.7, 5.3 Hz, 1H), 2.91 (dd, J = 8.2, 6.9 Hz, 1H), 2.69 – 2.56 (m, 2H), 2.18 (s, 3H), 1.96 – 1.86 (m, 1H), 1.88 – 1.67 (m, 2H), 1.39 – 1.21 (m, 1H). <sup>13</sup>**C NMR** (100 MHz, chloroform-*d*)  $\delta$  208.5, 54.1, 50.0, 46.2, 31.1, 30.5, 24.6. **HRMS** calcd. for C<sub>7</sub>H<sub>14</sub>NO<sup>+</sup> 128.1075 [M+H]<sup>+</sup>, found 128.1079.

#### 1-(pyrrolidin-2-yl)butan-2-one (7k)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **7k** was obtained as pale a yellow oil, 89 mg, 50% yield.<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.36 (dq, J = 8.5, 6.7 Hz, 1H), 2.94 (ddd, J = 10.2, 7.7, 5.4 Hz, 1H), 2.83 (ddd, J = 10.3, 8.2, 6.8 Hz, 1H), 2.59 – 2.52 (m, 2H), 2.38 (q, J = 7.3 Hz, 2H), 1.92 – 1.81 (m, 1H), 1.80 – 1.57 (m, 2H), 1.32 – 1.14 (m, 1H), 0.98 (t, J = 7.3 Hz, 3H).<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  210.8, 54.3, 48.2, 46.0, 36.4, 31.1, 24.6, 7.7. **HRMS** calcd. for C<sub>8</sub>H<sub>16</sub>NO<sup>+</sup> 142.1232 [M+H]<sup>+</sup>, found 142.1223.

#### 1-(pyrrolidin-2-yl)pentan-2-one (7l)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **71** was obtained as a yellow oil, 153 mg, 78% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.37 – 3.27 (m, 1H), 2.96 – 2.87 (m, 1H), 2.86 – 2.75 (m, 1H), 2.54 (dd, *J* = 6.5, 1.7 Hz, 2H), 2.33 (t, *J* = 7.4 Hz, 2H), 1.91 – 1.78 (m, 1H), 1.78 – 1.59 (m, 2H), 1.53 (q, *J* = 7.4 Hz, 2H), 1.26 – 1.17 (m, 1H), 0.84 (t, *J* = 7.4 Hz, 3H).<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  210.6, 54.2, 48.9, 46.1, 45.2, 31.1, 24.6, 17.1, 13.7. HRMS calcd. for C<sub>9</sub>H<sub>18</sub>NO<sup>+</sup> 156.1388 [M+H]<sup>+</sup>, found 156.1380.

#### 3-methyl-1-(pyrrolidin-2-yl)butan-2-one (7m)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **7m** was obtained as a yellow oil, 89 mg, 54% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.37 – 3.25 (m, 1H), 2.98 – 2.88 (m, 1H), 2.85 – 2.77 (m, 1H), 2.65 – 2.54 (m, 2H), 2.52 (sept., *J* = 6.9 Hz, 1H), 1.90 – 1.81 (m, 1H), 1.78 – 1.59 (m, 2H), 1.29 – 1.16 (m, 1H), 1.03 (dd, *J* = 6.9, 1.1 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  213.0, 54.7, 45.2, 44.2, 40.9, 30.8, 24.1, 18.2, 18.0. HRMS calcd. for C<sub>9</sub>H<sub>18</sub>NO<sup>+</sup> 156.1388 [M+H]<sup>+</sup>, found 156.1376.

#### 1-(piperidin-2-yl)propan-2-one (8j, pelletierine)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, the formation of compound **8j** was confirmed by HPLC and HRMS, but it has not been possible to isolate it in sufficient purity for characterisation. **HRMS** calcd. for C<sub>8</sub>H<sub>16</sub>NO<sup>+</sup> 142.1232 [M+H]<sup>+</sup>, found 142.1223.

#### 1-(piperidin-2-yl)butan-2-one (8k)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **8k** was obtained as a pale yellow oil, 107 mg, 55% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.08 – 2.90 (m, 2H), 2.72 – 2.61 (m, 1H), 2.51 – 2.45 (m, 2H), 2.42 (t, *J* = 7.3 Hz, 2H), 1.85 – 1.69 (m, 1H), 1.64 – 1.51 (m, 2H), 1.44 – 1.31 (m, 2H), 1.23 – 1.09 (m, 1H), 1.06 (t, *J* = 7.3 Hz, 3H).<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  210.4, 51.9, 48.3, 46.0, 36.1, 31.6, 25.1, 23.9, 7.1. HRMS calcd. for C<sub>9</sub>H<sub>18</sub>NO<sup>+</sup> 156.1388 [M+H]<sup>+</sup>, found 156.1380.

1-(piperidin-2-yl)pentan-2-one (8l)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **8** was obtained as a yellow oil, 124 mg, 59% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.99 – 2.83 (m, 2H), 2.64 – 2.53 (m, 1H), 2.44 – 2.38 (m, 2H), 2.30 (t, *J* = 7.4 Hz, 2H), 1.74 – 1.66 (m, 1H), 1.57 – 1.43 (m, 2H), 1.52 (q, *J* = 7.4 Hz, 2H) 1.40 – 1.23 (m, 2H), 1.15 – 1.05 (m, 1H), 0.84 (t, *J* = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  210.6, 52.4, 49.3, 46.6, 45.4, 32.1, 25.6, 24.5, 17.2, 13.7. HRMS calcd. for C<sub>10</sub>H<sub>20</sub>NO<sup>+</sup> 170.1545 [M+H]<sup>+</sup>, found 170.1543.

#### 3-methyl-1-(piperidin-2-yl)butan-2-one (8m)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **8m** was obtained as a yellow oil, 142 mg, 67% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.01 – 2.87 (m, 2H), 2.69 – 2.58 (m, 1H), 2.53 (sept., J = 7.0 Hz, 1H), 2.52 – 2.45 (m, 2H), 1.77 – 1.69 (m, 1H), 1.59 – 1.47 (m, 2H), 1.44 – 1.26 (m, 3H), 1.05 (d, J = 7.0 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  214.3, 52.4, 47.0, 46.6, 41.2, 32.2, 25.7, 24.5, 18.1, 18.1. HRMS calcd. for C<sub>10</sub>H<sub>20</sub>NO<sup>+</sup> 170.1545 [M+H]<sup>+</sup>, found 170.1539.

#### 1-(1-methylpyrrolidin-2-yl)propan-2-one (11, hygrine)



Following the general procedure for the  $\alpha,\omega$ -DTA/lipase cascade, compound **11** was obtained as a pale yellow oil, 102 mg, 75% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.98 (ddd, J = 9.7, 7.5, 2.6 Hz, 1H), 2.74 (dd, J = 16.1, 3.8 Hz, 1H), 2.47 (ddd, J = 8.3, 7.8, 3.9 Hz, 1H), 2.36 (dd, J = 16.1, 8.9, 1H), 2.24 (s, 3H), 2.11 (s, 3H), 2.07 – 1.97 (m, 1H), 1.77 – 1.57 (m, 2H), 1.41 – 1.28 (m, 1H). <sup>13</sup>C NMR (100 MHz, chloroform-*d*)  $\delta$  206.6, 62.8, 56.2, 46.1, 40.2, 30.9, 30.4, 21.8. HRMS calcd. for C<sub>8</sub>H<sub>15</sub>NO <sup>+</sup> 142.1232 [M+H]<sup>+</sup>, found 142.1227.

### **<u>Representative HPLC traces</u>**



Representative traces for the one-pot  $\alpha,\omega$ -DTA/lipase cascade synthesis of **7a-c** from **1** and **5a-c**. Blue trace: reference ketone **9a-c**.

Red trace: reference ketoester **5a-c**.

Green trace: representative biotransformation mixtures containing **7a-c**.

Pink trace: negative control without transaminase (showing hydrolysis and decarboxylation only).



Representative traces for the one-pot lipase/ $\alpha$ , $\omega$ -DTA cascade synthesis of **8a-c** from **2** and **5a-c**. Blue trace: reference ketone **9a-c**.

Red trace: reference ketoester **5a-c**.

Green trace: representative biotransformation mixtures containing **8a-c**.

Pink trace: negative control without transaminase (showing hydrolysis and decarboxylation only).



Screening of different lipases for the one-pot synthesis of 8a from 2+5a



Representative trace showing the conversion of ketoacid 6a to ketone 9a upon heating, without appreciable decomposition of alkaloid 8a.

Red trace: biotransformation mixture (from 2+5a).

Blue trace: same mixture after heating for 1 h at 80°C, showing complete decarboxylation of **6a**.

## Copies of the NMR and HRMS spectra





1-(4-methoxyphenyl)-2-(pyrrolidin-2-yl)ethan-1-one (7b)



## 1-(3,4-dimethoxyphenyl)-2-(pyrrolidin-2-yl)ethan-1-one (7c, ruspolinone)



1-phenyl-2-(piperidin-2-yl)ethan-1-one (8a, norsedaminone)



1-(4-methoxyphenyl)-2-(piperidin-2-yl)ethan-1-one (8b)



1-(3,4-dimethoxyphenyl)-2-(piperidin-2-yl)ethan-1-one (8c)







## 1-(pyrrolidin-2-yl)butan-2-one (7k)



1-(pyrrolidin-2-yl)pentan-2-one (7l)



## 3-methyl-1-(pyrrolidin-2-yl)butan-2-one (7m)



## 1-(piperidin-2-yl)butan-2-one (8k)



## 1-(piperidin-2-yl)pentan-2-one (8l)



3-methyl-1-(piperidin-2-yl)butan-2-one (8m)



1-(1-methylpyrrolidin-2-yl)propan-2-one (11, hygrine)