Supporting Information

Lewis Acid-Catalyzed Friedel-Crafts Reactions toward Highly Versatile, α-Quaternary Oxime Ethers

Marcel Schlegel and Christoph Schneider*

Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany

*Email: schneider@chemie.uni-leipzig.de

Content

1	Ger	neral Methods	1
2	Sta	rting Materials	2
	2.1	Synthesis of Cyclic 2-Hydroxy Ketoxime Ethers	2
	2.2	Synthesis of 2-Hydroxy Aldehydes	4
	2.3	Synthesis of 2-Hydroxy Aldoxime Ethers	11
	2.4	¹ H-NMR and ¹³ C-NMR Spectra	19
3	The	FCR of Cyclic 2-Hydroxy Ketoxime Ethers	50
	3.1	Optimization Studies of Compound 4a	50
	3.2	Substrate Scope	51
	3.3	¹ H-NMR and ¹³ C-NMR Spectra	61
4	The	FCR of 2-Hydroxy Aldoxime Ethers	79
	4.1	Substrate Scope	79
	4.2	¹ H-NMR and ¹³ C-NMR Spectra	93
5	Der	ivatization of the FCR-Products	120
	5.1	Procedures	120
	5.2	¹ H-NMR and ¹³ C-NMR Spectra	125
6	Ref	erence	131

1 General Methods

Unless otherwise noted, all reactions were carried out in oven dried glassware and in dry solvents. ¹H-, ¹³C- and ¹⁹F-NMR spectra were recorded in CDCl₃ or DMSO-d6 at 26°C using a Mercury plus 300 MHz and a Bruker Avance DRX 400 MHz spectrometer. The spectra were referenced to residual CHCl₃ (7.26 ppm, ¹H; 77.16 ppm, ¹³C) or DMSO (2.50 ppm, ¹H; 39.52 ppm, ¹³C), respectively. Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), bs (broad singlet), d (doublet), t (triplet), g (quartet), p (pentet), m (multiplet), and related permutations. Coupling constants, J, are reported in Hertz and not further specified in geminal, vicinal or long-range couplings. All high-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics Apex II FT-ICR. IR spectra were obtained using a Jasco 4100 FTIR spectrometer. Melting points were determined uncorrected on a Boetius measurement device. The used solvents dichloromethane, tetrahydrofuran and toluene were dried using a MBraun Solvent Purification System (SPS) 800. Dry chloroform and methanol were purchased from Acros Organics and stored over molecular sieve. Solvents for column chromatography were of technical grade and distilled from the indicated drying reagents: dichloromethane (CaH₂), methyl-tert-butyl ether (KOH), ethyl acetate (CaCl₂) and hexane (KOH). Flash column chromatography was performed by using silica gel (Fluka, 60 Å, 230 – 400 mesh size). Analytical thin-layer chromatography (TLC) was performed on Macherey-Nagel pre-coated TLC-sheets AlugramXtra SIL G/UV₂₅₄. Visualization of the spots was achieved by UV-light and treatment with a vanillin staining solution.

2 Starting Materials

2.1 Synthesis of Cyclic 2-Hydroxy Ketoxime Ethers

Oxime **S1** as well as the 2-hydroxy ketoxime ethers **1a-h**, **2** and **3** were synthesized according to literature procedures.^[1]

2-Hydroxy ketoxime ether 1i

4-Bromo-1-butene (558 μ L, 5.50 mmol, 1.10 equiv) was added dropwise to a suspension of oxime **S1** (806 mg, 5.00 mmol, 1.00 equiv) and K₂CO₃ (1.38 g, 10.0 mmol, 2.00 equiv) in 5.0 mL abs. DMF at room temperature. The reaction mixture was stirred for 21 hours and treated with EtOAc. It was extracted with water and sat. NaCl-solution. The organic phase was dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (10% \rightarrow 20% MTBE/hexane). Compound **S2** was obtained as a colorless solid (399 mg, 37%).

R_f: 0.44 (20% MTBE/hexane); **mp.:** 69-70 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.88 (d, J = 7.5 Hz, 1H), 7.64 (m, 1H), 7.49 (m, 1H), 7.42 (m, 1H), 5.83 (m, 1H), 5.12 (dt, J = 17.0, 1.5 Hz, 1H), 5.07 (dt, J = 10.5, 1.5 Hz, 1H), 4.42 (td, J = 6.5, 1.5 Hz, 2H), 3.78 (s, 2H), 2.53 (m, 2H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 189.4 (C=O), 154.1

(C=N), 146.9 (C_q), 137.9 (C_q), 136.0 (CH), 134.2 (CH), 128.1 (CH), 126.8 (CH), 127.7 (CH), 117.2 (CH₂), 75.3 (CH₂), 33.8 (CH₂), 29.0 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3410, 3073, 2979, 2942, 1709, 1622, 1610, 1578, 1467, 1389, 1327, 1301, 1273, 1196, 1061, 1061, 1042, 1025, 1014, 973, 922, 889, 745; **HR-MS** (ESI): calcd. for C₁₃H₁₃NO₂Na ([M+Na]⁺): 238.0839, found: 238.0831; **M(C₁₃H₁₃NO₂):** 215.25.

A solution of phenylmagnesiumchloride (2.0 M in THF, 1.50 mL, 3.00 mmol, 2.00 equiv) was added dropwise at 0 °C to oxime ether **S2** (323 mg, 1.50 mmol, 1.00 equiv), dissolved in 3.0 mL abs. THF. The reaction mixture was stirred at 0 °C for 30 min and quenched with sat. NH_4Cl -solution. The aqueous phase was separated and extracted twice with EtOAc. The combined organic phases were dried over Na_2SO_4 , filtered and the solvent was removed

under reduced pressure. The crude product was purified by flash column chromatography $(10\% \rightarrow 20\% \text{ MTBE/hexane})$ to obtain compound 1i as a colorless solid (415 mg, 94%).

R_f: 0.35 (20% MTBE/hexane); **mp.**: 76-78 °C; ¹**H-NMR** (400 MHz, CDCl₃):
$$\delta$$
 (ppm) = 7.39-7.23 (m, 9H), 5.81 (ddt, J = 17.0, 10.5, 7.0 Hz, 1H), 5.10-5.03 (m, 2H), 4.16 (t, J = 6.5 Hz, 2H), 4.04 (d, J = 22.0 Hz, 1H), 3.77 (d, J = 22.0 Hz, 1H), 3.18 (bs, 1H), 2.41 (q, J = 6.5 Hz, 2H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 166.2 (C=N), 145.9 (C_q), 144.8

 (C_q) , 137.4 (C_q) , 134.9 (CH), 129.3 (CH), 128.3 (2x CH), 128.1 (CH), 127.4 (CH), 125.7 (2x CH), 125.2 (CH), 124.9 (CH), 116.8 (CH₂), 82.9 (C_q), 73.6 (CH₂), 33.9 (CH₂), 32.7 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3445, 3064, 2950, 2886, 1644, 1477, 1450, 1408, 1375, 1196, 1176, 1046, 1018, 1001, 934, 922, 914, 868, 772, 760, 739, 727, 707, 647; **HR-MS** (ESI): calcd. for $C_{19}H_{19}NO_2Na$ ([M+Na]⁺): 316.1308, found: 316.1306; **M(C₁₉H₁₉NO₂):** 293.37.

2-Hydroxy ketoxime silyl ether 1j

TBSCI (2.26 g, 15.0 mmol, 1.50 equiv) and imidazole (2.27 mL, 30.0 mmol, 3.00 equiv) were added to a solution of oxime **S1** (1.61 g, 10.0 mmol, 1.00 equiv) in 25 mL abs. DMF. The reaction mixture was stirred at 95 °C for 16 hours. After cooling to room temperature, the solvent was removed under reduced pressure. Water was added and it was extracted twice with EtOAc. The combined organic phases were dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (5% \rightarrow 7% MTBE/hexane). Compound **S3** was obtained as a colorless solid (1.90 g, 69%).

TBSO R_f: 0.50 (10% MTBE/hexane); **mp.**: 59-60 °C; ¹**H-NMR** (400 MHz, CDCl₃):
$$\delta$$
 (ppm) = 7.89 (d, J = 7.0 Hz, 1H), 7.64 (td, J = 7.5, 1.0 Hz, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 3.84 (s, 2H), 0.98 (s, 9H), 0.29 (s, 6H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 189.5 (C=O), 159.4 (C=N), 146.9 (CH), 138.4 (C_q), 136.0 (CH), 128.1 (CH), 126.9 (CH), 124.8 (CH), 29.2 (CH₂), 26.0 (3x CH₃), 18.2 (C_q), -5.0 (2x CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3423, 2928, 2856, 1719, 1617, 1581, 1471, 1322, 1300, 1246, 1000, 899, 866, 832, 733; **HR-MS** (ESI): calcd. for ([M+H]⁺): 276.1414, found: 276.1420; **M(C**₁₅**H**₂₁**NO**₂**Si)**: 275.42.

A solution of phenylmagnesiumchloride (2.0 M in THF, 3.75 mL, 7.50 mmol, 1.50 equiv) was added dropwise at 0 °C to oxime silyl ether **S3** (1.38 g, 5.00 mmol, 1.00 equiv), dissolved in 5.0 mL abs. THF. The reaction mixture was stirred at 0 °C for 30 min and quenched with sat. NH₄Cl-solution. The aqueous phase was separated and extracted twice with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (10% \rightarrow 20% MTBE/hexane) to obtain compound **1j** as a yellowish solid (1.65 g, 94%).

TBSO R_f: 0.37 (30% MTBE/hexane); **mp.**: 68-69 °C; ¹**H-NMR**: (300 MHz, CDCl₃): δ (ppm) = 7.40-7.21 (m, 9H), 4.11 (d, J = 22.0 Hz, 2H), 3.77 (d, J = 22.0 Hz, 2H), 3.07 (bs, 1H), 0.91 (s, 9H), 0.18 (s, 3H), 0.15 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 170.8 (C=N), 145.7 (C_q), 144.7 (C_q), 137.7 (C_q), 129.3 (CH), 128.2 (2x CH), 128.0 (CH), 127.4 (CH), 125.8 (2x CH), 125.2 (CH), 125.1 (CH), 82.8 (C_q), 32.5 (CH₂), 26.2 (3x CH₃), 18.2 (C_q), -5.1 (2x CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3390, 2958, 2857, 1606, 1448, 1407, 1362, 1249, 1178, 1049, 969, 881, 847, 758, 700; **HR-MS** (ESI): calcd. for ([M+Na]⁺): 376.1703, found: 376.1700; **M(C₂₁H₂₇NO₂Si)**: 376.52.

2.2 Synthesis of 2-Hydroxy Aldehydes

The aldehydes **S6a** and **S6d** were synthesized according to a procedure by Wulff *et al*. The spectroscopic data are in agreement with literature.^[2]

General procedure 1

Under an inert atmosphere, magnesium turnings (3.00 equiv) were suspended in abs. THF (0.67 M). Liquid arylbromides (3.00 equiv) were added dropwise at room temperature. Solid arylbromides (3.00 equiv) were first dissolved in minimal amounts of abs. THF before added

dropwise. The formation of the Grignard reagent started as soon as an exothermic reaction occurred and the colorless solution turned into grey/black. After complete addition, the reaction mixture was heated to reflux for 30 min and then cooled to 0 °C. The starting material **S4** or **S5**, respectively, was dissolved in abs. THF (1.0 M) and added dropwise to the Grignard reagent. The reaction mixture was stirred at room temperature for 0.5 to 1.0 hours and quenched with sat. NH₄Cl-solution at 0 °C. The aqueous phase was separated and extracted twice with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude products were treated with aqueous HCl-solution (5–10%) and sufficient amounts of acetone to obtain a homogeneous solution. It was heated to 70 °C for 1–6 hours and then diluted with CH₂Cl₂ and H₂O. The aqueous phase was extracted twice with CH₂Cl₂ and the combined organic phases were washed once with sat. NaCl-solution, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude aldehyde **S6** was purified by flash column chromatography (MTBE/hexane).

2-Hydroxy aldehyde S6b

According to the <u>general procedure 1</u>, the Grignard reagent was synthesized from magnesium turnings (729 mg, 30.0 mmol, 3.00 equiv) and 1-bromo-4-chlorobenzene (5.74 g, 30.0 mmol, 3.00 equiv) in 15 mL abs. THF, and then treated with 2,2-diethoxy-1-phenylethanone **S4** (2.00 mL, 10.0 mmol, 1.00 equiv) dissolved in 10 mL abs. THF. It was stirred at room temperature for 1 hour. The acetal was hydrolyzed with 8 mL of 10% HCl-solution in 30 mL acetone at 70 °C for 1.5 hours. After flash column chromatography (5% \rightarrow 10% MTBE/hexane) compound **S6b** was obtained as a yellowish oil (1.74 g, 71%).

R_f: 0.27 (10% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 9.95 (s, 1H), 7.42-7.31 (m, 9H), 4.38 (bs, 1H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 197.7 (HC=O), 139.2 (C_q), 137.9 (C_q), 134.8 (C_q), 129.2 (2x CH), 129.1 (2x CH), 129.0 (2x CH), 128.9 (CH), 127.5 (2x CH), 83.2 (C_q); **IR** (film): \tilde{V} (cm⁻¹) = 3431, 3061, 1723, 1660, 1597, 1586, 1489, 1448, 1402,

1285, 1275, 1175, 1093, 1013, 965, 938, 924, 824, 792, 756, 731, 698, 550, 523; **HR-MS** (ESI): calcd. for $C_{14}H_{10}^{35}CIO_2$ ([M-H] $^-$): 245.0375, found: 245.0364; **M(C_{14}H_{11}CIO_2):** 246.69.

2-Hydroxy aldehyde S6c

According to the <u>general procedure 1</u>, the Grignard reagent was synthesized from magnesium turnings (729 mg, 30.0 mmol, 3.00 equiv) and 1-bromo-4-fluorobenzene (3.04 mL, 30.0 mmol, 3.00 equiv) in 15 mL abs. THF, and then treated with 2,2-diethoxy-1-

phenylethanone **\$4** (2.00 mL, 10.0 mmol, 1.00 equiv) dissolved in 10 mL abs. THF. It was stirred at room temperature for 1.5 hour. The acetal was hydrolyzed with 8 mL of 10% HCl-solution in 25 mL acetone at 70 °C for 2 hours. After flash column chromatography (3% → 8% MTBE/hexane) compound **\$6c** was obtained as a yellowish oil (1.92 g, 83%).

R_f: 0.24 (10% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 9.95 (s, 1H), 7.42-7.33 (m, 7H), 7.09 (tʻ, J = 8.5 Hz, 2H), 4.38 (bs, 1H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 197.8 (HC=O), 162.8 (d, J = 248.5 Hz, C_q), 139.3 (C_q), 135.3 (d, J = 3.0 Hz, C_q), 129.5 (d, J = 8.5 Hz, CH), 129.1 (2x CH), 128.8 (CH), 127.5 (2x CH), 116.0 (d, J = 21.7 Hz, 2x CH), 83.2 (C_q);

¹⁹**F-NMR** (282 MHz, CDCl₃): δ (ppm) = -113.2; **IR** (film): \tilde{v} (cm⁻¹) = 3469, 3063, 1724, 1660, 1599, 1506, 1448, 1279, 1229, 1159, 837, 739, 701, 601, 574; **HR-MS** (ESI): calcd. for C₁₄H₁₁FO₂Na ([M+Na]⁺): 253.0635, found: 253.0634; **M(C₁₄H₁₁FO₂)**: 230.24.

2-Hydroxy aldehyde S6e

According to the general procedure 1, the Grignard reagent was synthesized from magnesium turnings (2.19 g, 90.0 mmol, 3.00 equiv) and bromobenzene (9.42 mL, 90.0 mmol, 3.00 equiv) in 45 mL abs. THF, and then treated with 1,1-dimethoxypropan-2-one **S5** (3.63 mL, 30.0 mmol, 1.00 equiv) dissolved in 30 mL abs. THF. It was stirred at room temperature for 1 hour. The acetal was hydrolyzed with 30 mL of 7% HCl-solution in 60 mL acetone at 70 °C for 1 hour. After flash column chromatography (10% \rightarrow 25% MTBE/hexane) compound **S6e** was obtained as a yellowish oil (2.36 g, 52%).

R_f: 0.50 (30% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 9.57 (s, 1H), 7.48-7.46 (m, 2H), 7.41 (t', J = 7.5 Hz, 2H), 7.35-7.32 (m, 1H), 3.81 (bs, 1H), 1.71 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 199.9 (HC=O), 139.3 (C_q), 129.0 (2x CH), 128.3 (CH), 125.9 (2x CH), 79.2 (C_q), 23.7 (CH₃);

IR (film): \tilde{v} (cm⁻¹) = 3420, 3061, 2983, 1732, 1495, 1447, 1070, 760, 700; **HR-MS** (ESI): calcd. for $C_9H_9O_2$ ([M-H]⁻): 149.0608, found: 149.0603; **M(C_9H_{10}O_2)**: 150.18.

2-Hydroxy aldehyde S6f

According to the <u>general procedure 1</u>, the Grignard reagent was synthesized from magnesium turnings (729 mg, 30.0 mmol, 3.00 equiv) and 2-bromotoluene (3.61 mL, 30.0 mmol, 3.00 equiv) in 15 mL abs. THF, and then treated with 1,1-dimethoxypropan-2-one **S5** (1.21 mL, 10.0 mmol, 1.00 equiv) dissolved in 10 mL abs. THF. It was stirred at room temperature for 1 hour. The acetal was hydrolyzed with 10 mL of 5% HCl-solution in 20 mL

acetone at 70 °C for 2 hours. After flash column chromatography (5% \rightarrow 15% MTBE/hexane) compound **S6f** was obtained as a colorless oil (1.15 g, 70%).

R_f: 0.43 (20% MTBE/hexane); ¹H-NMR (400 MHz, CDCl₃):
$$\delta$$
 (ppm) = 9.55 (s, 1H), 7.50-7.48 (m, 1H), 7.32-7.26 (m, 2H), 7.22-7.20 (m, 1H), 3.79 (bs, 1H), 2.32 (s, 3H), 1.71 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ (ppm) = 200.6 (HC=O), 137.6 (C_q), 136.3 (C_q), 132.3 (CH), 128.8 (CH), 126.9 (CH), 126.2 (CH), 79.8 (C_q), 23.1 (CH₃), 21.0 (CH₃); IR (film): \tilde{v} (cm⁻¹) = 3445, 2981, 1731, 1458, 759; HR-MS (ESI): calcd. for C₁₀H₁₂O₂Na ([M+Na]⁺): 187.0730, found: 187.0722; M(C₁₀H₁₂O₂): 164.20.

2-Hydroxy aldehyde S6g

According to the <u>general procedure 1</u>, the Grignard reagent was synthesized from magnesium turnings (729 mg, 30.0 mmol, 3.00 equiv) and 3-bromotoluene (3.64 mL, 30.0 mmol, 3.00 equiv) in 15 mL abs. THF, and then treated with 1,1-dimethoxypropan-2-one **S5** (1.21 mL, 10.0 mmol, 1.00 equiv) dissolved in 10 mL abs. THF. It was stirred at room temperature for 30 min. The acetal was hydrolyzed with 7 mL of 5% HCl-solution in 20 mL acetone at 70 °C for 3 hours. After flash column chromatography (5% \rightarrow 15% MTBE/hexane) compound **S6g** was obtained as a colorless oil (958 mg, 58%).

R_f: 0.40 (20% MTBE/hexane); ¹H-NMR (400 MHz, CDCl₃):
$$\delta$$
 (ppm) = 9.57 (s, 1H), 7.35-7.28 (m, 3H), 7.18 (d', J = 7.0 Hz, 1H), 3.96 (bs, 1H), 2.41 (s, 3H), 1.73 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ (ppm) = 200.0 (HC=O), 139.2 (C_q), 138.7 (C_q), 129.0 (CH), 128.8 (CH), 126.5 (CH), 122.9 (CH), 79.2 (C_q), 23.6 (CH₃), 21.6 (CH₃); **IR** (film): \tilde{V} (cm⁻¹) = 3445, 2981, 2924, 1732, 1488, 1455, 1375, 1095, 1078, 831, 787, 703; **HR-MS** (ESI): calcd. for: C₁₀H₁₂O₂Na ([M+Na]⁺):

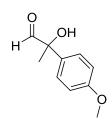
1455, 1375, 1095, 1078, 831, 787, 703; **HR-MS** (ESI): calcd. for: $C_{10}H_{12}O_2Na$ ([M+Na]⁺) 187.0730, found: 187.0725; **M(C_{10}H_{12}O_2)**: 164.20.

2-Hydroxy aldehyde S6h

According to the <u>general procedure 1</u>, the Grignard reagent was synthesized from magnesium turnings (729 mg, 30.0 mmol, 3.00 equiv) and 1-bromo-4-(*tert*-butyl)benzene (5.20 mL, 30.0 mmol, 3.00 equiv) in 15 mL abs. THF, and then treated with 1,1-dimethoxypropan-2-one **S5** (1.21 mL, 10.0 mmol, 1.00 equiv) dissolved in 10 mL abs. THF. It was stirred at room temperature for 1 hour. The acetal was hydrolyzed with 7 mL of 5% HCl-solution in 20 mL acetone at 70 °C for 2 hours. After flash column chromatography (5% \rightarrow 15% MTBE/hexane) compound **S6g** was obtained as a colorless oil (1.28 g, 62%).

 R_f : 0.34 (20% MTBE/hexane); ¹H-NMR (400 MHz, CDCl₃): δ (ppm) = 9.54 (s, 1H), 7.45 (d', J = 8.5 Hz, 2H), 7.41 (d', J = 8.5 Hz, 2H), 4.01 (bs, 1H), 1.70 (s, 3H), 1.35 (s, 9H); 13 **C-NMR** (100 MHz, CDCl₃): δ (ppm) = 200.0 (HC=O), 151.2 (C_a), 136.2 (C_a), 125.8 (2x CH), 125.6 (2x CH), 79.0 (C_a), 34.6 (C_a), 31.3 (3x CH₃), 23.5 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3444,

2965, 2904, 2868, 2360, 1732, 1509, 1460, 1111, 1095, 865, 835, 590, 575; HR-MS (ESI): calcd. for $C_{13}H_{18}O_2Na$ ([M+Na]⁺): 229.1199, found: 229.1188; **M(C₁₃H₁₈O₂):** 206.29.


2-Hydroxy aldehyde S6i

According to the <u>general procedure 1</u>, the Grignard reagent was synthesized from magnesium turnings (729 mg, 30.0 mmol, 3.00 equiv) and 1-bromo-4-phenylbenzene (6.99 g, 30.0 mmol, 3.00 equiv) in 15 mL abs. THF, and then treated with 1,1dimethoxypropan-2-one \$5 (1.21 mL, 10.0 mmol, 1.00 equiv) dissolved in 10 mL abs. THF. It was stirred at room temperature for 1 hour. The acetal was hydrolyzed with 10 mL of 5% HCl-solution in 20 mL acetone at 70 °C for 4.5 hours. After flash column chromatography $(10\% \rightarrow 20\% \text{ MTBE/hexane})$ compound **S6i** was obtained as a colorless solid (1.40 g, 62%).

R_f: 0.21 (20% MTBE/hexane); **mp.:** 79-81 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 9.60 (s, 1H), 7.65-7.53 (m, 6H), 7.47-7.43 (m, 2H), 7.39-7.34 (m, 1H), 3.86 (bs, 1H), 1.75 (s, 3H); 13 **C-NMR** (75 MHz, CDCl₃): δ (ppm) = 199.8 (HC=O), 141.3 (C_q), 140.5 (C_q), 138.3 (C_q), 129.0 (2x CH), 127.74 (2x CH), 127.71 (CH), 127.3 (2x CH), 126.4 (2x CH), 79.2 (C_0), 23.8 (CH₃); **IR** (film): \tilde{V} $(cm^{-1}) = 3464, 2993, 2822, 1723, 1486, 1314, 1094, 1076, 865, 767, 735, 694;$ **HR-MS**(ESI):calcd. for $C_{15}H_{14}O_2Na$ ([M+Na]⁺): 249.0886, found: 249.0884; **M(C**₁₅**H**₁₄**O**₂): 226.28.

2-Hydroxy aldehyde S6j

According to the general procedure 1, the Grignard reagent was synthesized from magnesium turnings (729 mg, 30.0 mmol, 3.00 equiv) and 4-bromoanisole (3.77 mL, 30.0 mmol, 3.00 equiv) in 15 mL abs. THF, and then treated with 1,1-dimethoxypropan-2-one \$5 (1.21 mL, 10.0 mmol, 1.00 equiv) dissolved in 10 mL abs. THF. It was stirred at room temperature for 30 min. The acetal was hydrolyzed with 10 mL of 5% HCl-solution in 20 mL acetone at 70 °C for 2 hours. After flash column chromatography (10% \rightarrow 20% MTBE/hexane) compound **S6j** was obtained as a colorless solid (982 mg, 55%).

R_f: 0.32 (40% MTBE/hexane); **mp**.: 45-46 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 9.49 (s, 1H), 7.37 (d', J = 9.0 Hz, 2H), 6.93 (d', J = 9.0 Hz, 2H), 3.81 (s, 4H), 1.68 (s, 3H); 13 **C-NMR** (100 MHz, CDCl₃): δ (ppm) = 199.8 (HC=O), 159.7 (C_q), 131.1 (C_q), 127.3 (2x CH), 114.4 (2x CH), 78.8 (C_q), 55.6 (CH₃), 23.4 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3470, 3006, 2992, 2960, 2865, 2838, 1716, 1609, 1510, 1320, 1304, 1256, 1218, 1181, 1091, 1075, 1033, 861, 822, 808, 763, 546; **HR-MS** (ESI): calcd. for C₁₀H₁₂O₃Na ([M+Na]⁺): 203.0679, found: 203.0681; **M(C₁₀H₁₂O₃):** 180.20.

2-Hydroxy aldehyde S6k

According to the <u>general procedure 1</u>, the Grignard reagent was synthesized from magnesium turnings (729 mg, 30.0 mmol, 3.00 equiv) and 2-bromonaphthalene (6.21 g, 30.0 mmol, 3.00 equiv) in 15 mL abs. THF, and then treated with 1,1-dimethoxypropan-2-one **S5** (1.21 mL, 10.0 mmol, 1.00 equiv) dissolved in 10 mL abs. THF. It was stirred at room temperature for 1 hour. The acetal was hydrolyzed with 10 mL of 5% HCl-solution in 20 mL acetone at 70 °C for 1.5 hours. After flash column chromatography (10% \rightarrow 20% MTBE/hexane) compound **S6k** was obtained as a yellowish oil (1.23 g, 62%).

R_f: 0.27 (20% MTBE/hexane); ¹H-NMR (300 MHz, CDCl₃):
$$\delta$$
 (ppm) = 9.64 (s, 1H), 7.97 (d, J = 1.5 Hz, 1H), 7.89-7.84 (m, 3H), 7.57-7.50 (m, 3H), 4.09 (bs, 1H), 1.81 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ (ppm) = 199.9 (HC=O), 136.6 (C_q), 133.3 (C_q), 133.0 (C_q), 128.8 (CH), 128.3 (CH), 127.7 (CH), 126.6 (CH), 126.6 (CH), 125.2 (CH), 123.4 (CH), 79.4 (C_q), 23.7 (CH₃); IR (film): \tilde{v} (cm⁻¹) = 3444, 3057, 2981, 2934, 1730, 1598, 1506, 1376, 1272, 1192, 1128, 1098, 1069, 951, 900, 858, 821, 751, 478; HR-MS (ESI): calcd. for C₁₃H₁₂O₂Na ([M+Na]⁺): 223.0730, found: 223.0727; **M(C₁₃H₁₂O₂):** 200.24.

2-Hydroxy aldehyde S6I

According to the <u>general procedure 1</u>, the Grignard reagent was synthesized from magnesium turnings (729 mg, 30.0 mmol, 3.00 equiv) and 2-bromothiophene (2.88 mL, 30.0 mmol, 3.00 equiv) in 15 mL abs. THF, and then treated with 1,1-dimethoxypropan-2-one **S5** (1.21 mL, 10.0 mmol, 1.00 equiv) dissolved in 10 mL abs. THF. It was stirred at room temperature for 1 hour. The acetal was hydrolyzed with 10 mL of 5% HCl-solution in 20 mL acetone at 70 °C for 3 hours. After flash column chromatography (5% \rightarrow 15% MTBE/hexane) compound **S6I** was obtained as a yellow oil (506 mg, 32%).

R_f: 0.24 (20% MTBE/hexane); ¹H-NMR (400 MHz, CDCl₃):
$$\delta$$
 (ppm) = 9.48 (s, 1H), 7.33 (m, 1H), 7.05 (m, 1H), 7.02 (m, 1H), 4.05 (bs, 1H), 1.75 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ (ppm) = 197.5 (HC=O), 143.9 (C_q), 127.9 (CH), 126.6 (CH), 124.9 (CH), 78.1 (C_q), 24.2 (CH₃); IR (film): \tilde{v} (cm⁻¹) = 3445, 3104,

2984, 2935, 1731, 1450, 1434, 1239, 1121, 1099, 987, 850, 839, 702; **HR-MS** (ESI): calcd. for $C_7H_8O_2SNa$ ([M+Na]⁺): 179.0137, found: 179.0132; **M(C_7H_8O_2S)**: 156.20.

2-Hydroxy aldehyde S6m

According to a modification of the general procedure 1, 2,2-diethoxy-1-phenylethanone **S4** (2.00 mL, 10.0 mmol, 1.00 equiv) was dissolved in 15 mL abs. THF and cooled to -78 °C. A solution of *n*-Butyllithium (2.5 M in hexane, 8.00 mL, 20.0 mmol, 2.00 equiv) was added dropwise and the reaction mixture was stirred at 0 °C for 2 hour. The acetal was hydrolyzed with 8 mL of 10% HCl-solution in 25 mL acetone at 70 °C for 1 hour. After flash column chromatography (5% \rightarrow 10% MTBE/hexane) compound **S6m** was obtained as a yellowish oil (1.07 g, 56%).

R_f: 0.35 (10% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃):
$$\delta$$
 (ppm) = 9.59 (s, 1H), 7.50 (d', J = 7.5 Hz, 2H), 7.41 (t', J = 7.5 Hz, 2H), 7.32 (t', J = 7.0 Hz, 1H), 3.81 (bs, 1H), 2.12-1.96 (m, 2H), 1.35-1.23 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 200.5 (HC=O), 138.7 (C_q), 129.0 (2x CH), 128.0 (CH), 125.9 (2x CH), 82.0 (C_q), 36.7 (CH₂), 25.0 (CH₂), 23.0 (CH₂), 14.0 (CH₃); **IR** (film): \tilde{V} (cm⁻¹) = 3489, 3061, 2957, 2933, 2872, 1725, 1684, 1448, 756, 700; **HR-MS** (ESI): calcd. for C₁₂H₁₆O₂Na ([M+Na]⁺): 215.1043, found: 215.1043; **M(C₁₂H₁₆O₂):** 192.26.

2-Hydroxy aldehyde S6n

According to a modification of the general procedure 1, 2,2-diethoxy-1-phenylethanone **S4** (2.00 mL, 10.0 mmol, 1.00 equiv) was dissolved in 15 mL abs. THF and cooled to 0 °C. A solution of allylmagnesiumchloride (1.7 M in THF, 11.8 mL, 20.0 mmol, 2.00 equiv) was added dropwise and the reaction mixture was stirred at room temperature for 1 hour. The acetal was hydrolyzed with 8 mL of 10% HCl-solution in 25 mL acetone at 70 °C for 2 hours. After flash column chromatography (5% MTBE/hexane) compound **S6n** was obtained as a yellowish oil (1.50 g, 85%).

R_f: 0.46 (20% MTBE/hexane); ¹H-NMR (400 MHz, CDCl₃): δ (ppm) = 9.61 (s, 1H), 7.50 (d',
$$J$$
 = 7.5 Hz, 2H), 7.42 (t', J = 7.5 Hz, 2H), 7.33 (t', J = 7.5 Hz, 1H), 5.71 (ddt, J = 17.5, 10.0, 7.0 Hz, 1H), 5.23-5.16 (m, 2H), 3.70 (bs, 1H), 2.87-2.84 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ (ppm) = 200.0 (HC=O), 138.2 (C_q), 131.3 (CH), 129.0 (2x CH), 128.3 (CH), 125.9 (2x CH), 120.4 (C_q), 81.2 (C_q), 41.7 (CH₂); IR (film): \tilde{v} (cm⁻¹) = 3483, 3077, 1726, 1448, 996, 923, 759, 700; HR-MS (ESI): calcd. for C₁₁H₁₂O₂Na ([M+Na]⁺): 199.0730, found: 199.0729; M(C₁₁H₁₂O₂): 176.22.

2.3 Synthesis of 2-Hydroxy Aldoxime Ethers

2-Hydroxy aldoxime ether **7a** was synthesized according to a literature procedure. The spectroscopic data are in agreement.^[1]

General procedure 2

O MeONH₂•HCI (1.50 equiv) N NAOAc (1.50 equiv) H
$$\rightarrow$$
 OH R¹ R² R² rt, 1 h 7a-o

Methoxyamine hydrochloride (1.50 equiv) and sodium acetate (1.50 equiv) were added portionwise to a solution of aldehyde **S6** (1.00 equiv) in a 2:1-mixture (0.17 M) of THF and H₂O at room temperature. The reaction mixture was stirred at room temperature for 1 hour. The aqueous phase was separated and extracted twice with EtOAc. The combined organic phases were washed once with sat. NaHCO₃-solution, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. Compounds **7** were purified by flash column chromatography (MTBE/hexane).

2-Hydroxy aldoxime ether 7b

According to the general procedure 2, the aldehyde **S6b** (493 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H_2O were used. After flash column chromatography (3% \rightarrow 8% MTBE/hexane) compound **7b** was obtained as a colorless oil (463 mg, 84%, E/Z > 95:5).

R_f: 0.18 (5% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.96 (s, 1H), 7.36-7.31 (m, 9H), 4.11 (bs, 1H), 3.92 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 152.0 (HC=N), 143.6 (C_q), 142.6 (C_q), 133.9 (C_q), 128.7 (4x CH), 128.5 (2x CH), 128.1 (CH), 126.9 (2x CH), 77.1 (C_q), 62.5 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3484, 3061, 2938, 1491, 1448,

1401, 1169, 1093, 1049, 1014, 915, 830, 755, 700, 648; **HR-MS** (ESI): calcd. for $C_{15}H_{14}^{35}CINO_2Na$ ([M+Na]⁺): 298.0605, found: 298.0612; **M(C**₁₅H₁₄CINO₂): 275.73.

2-Hydroxy aldoxime ether 7c

According to the general procedure 2, the aldehyde **S6c** (461 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H_2O were used. After flash column chromatography (3% \rightarrow 10% MTBE/hexane) compound **7c** was obtained as a colorless oil (451 mg, 87%, E/Z > 95:5).

R_f: 0.13 (5% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.96 (s, 1H), 7.36-7.30 (m, 7H), 7.03 (t', J = 8.5 Hz, 2H), 4.11 (bs, 1H), 3.92 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 162.4 (d, J = 247.0 Hz, C_q), 152.2 (HC=N), 143.8 (C_q), 139.9 (C_q), 128.9 (d, J = 8.0 Hz, 2x CH), 128.6 (2x CH), 128.1 (CH), 126.9 (2x CH), 115.4 (d, J = 21.5 Hz, 2x CH), 62.5

(CH₃); ¹⁹**F-NMR** (282 MHz, CDCl₃): δ (ppm) = -114.6; **IR** (film): \tilde{v} (cm⁻¹) = 3482, 3062, 2940, 1603, 1448, 1227, 1161, 1049, 986, 838, 741, 700, 581; **HR-MS** (ESI): calcd. for C₁₅H₁₄FNO₂Na ([M+Na]⁺): 282.0901, found: 282.0900; **M(C₁₅H₁₄FNO₂):** 259.28.

2-Hydroxy aldoxime ether 7d

According to the general procedure 2, the aldehyde **S6d** (481 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H_2O were used. After flash column chromatography (5% \rightarrow 10% MTBE/hexane) compound **7d** was obtained as a colorless oil (144 mg, 27%, E/Z > 95:5).

R_f: 0.34 (10% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.96 (s, 1H), 7.25 (d', J = 8.0 Hz, 4H), 7.15 (d', J = 8.0 Hz, 4H), 3.98 (bs, 1H), 3.91 (s, 3H), 2.35 (s, 6H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 152.8 (HC=N), 141.2 (2x C_q), 137.6 (2x C_q), 129.2 (4x CH), 126.9 (4x CH), 77.3 (C_q), 62.3 (CH₃), 21.2 (2x CH₃); **IR** (film): \tilde{V} (cm⁻¹) = 3502, 3025, 2938,

2921, 1611, 1509, 1184, 1165, 1049, 817, 754; **HR-MS** (ESI): calcd. for $C_{17}H_{19}NO_2Na$ ([M+Na]⁺): 292.1308, found: 292.1304; **M(C**₁₇H₁₉NO₂): 269.34.

2-Hydroxy aldoxime ether 7e

According to the general procedure 2, the aldehyde **S6e** (1.50 g, 10.0 mmol, 1.00 equiv), methoxyamine hydrochloride (1.25 g, 15.0 mmol, 1.50 equiv) and sodium acetate (1.23 g, 15.0 mmol, 1.50 equiv) in 20 mL THF and 10 mL H_2O were used. After flash column chromatography (5% \rightarrow 15% MTBE/hexane) compound **7d** was obtained as a colorless oil (1.34 g, 75%, E/Z = 94:6).

R_f: 0.55 (30% MTBE/hexane); ¹H-NMR (400 MHz, CDCl₃):
$$\delta$$
 (ppm) = 7.59 (s, 1H), 7.48-7.45 (m, 2H), 7.37 (t', J = 7.5 Hz, 2H), 7.29 (m, 1H), 3.88 (s, 3H), 3.19 (bs, 1H), 1.71 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ (ppm) = 153.5 (HC=N), 144.3 (C_q), 128.7 (2x CH), 127.6 (CH), 125.2 (2x CH), 73.4 (C_q), 62.1 (CH₃), 28.4 (CH₃); IR (film): \tilde{v} (cm⁻¹) = 3444, 2937, 23259, 1492, 1447, 1372, 1218, 1052, 956, 885, 700, 595, 450; HR-MS (ESI): calcd. for ([M+Na]⁺): 202.0839, found: 202.0833; M(C₁₀H₁₃NO₂): 179.22.

2-Hydroxy aldoxime ether 7f

According to the general procedure 2, the aldehyde **S6f** (328 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H_2O were used. After flash column chromatography (10% \rightarrow 15% MTBE/hexane) compound **7f** was obtained as a colorless oil (316 mg, 82%, E/Z = 91:9).

R_f: 0.46 (20% MTBE/hexane); ¹H-NMR (400 MHz, CDCl₃):
$$\delta$$
 (ppm) = 7.59 (s, 1H), 7.50-7.47 (m, 1H), 7.21-7.15 (m, 3H), 3.88 (s, 3H), 2.98 (bs, 1H), 2.46 (s, 3H), 1.77 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm) = 153.6 (HC=N), 141.2 (C_q), 136.5 (C_q), 132.6 (CH), 128.1 (CH), 126.0 (CH), 125.9 (CH), 74.2 (C_q), 62.1 (CH₃), 27.8 (CH₃), 21.7 (CH₃); IR (film): \tilde{v} (cm⁻¹) = 3445, 2938, 1732, 1458, 1372, 1052, 885, 764, 728; HR-MS (ESI): calcd. for C₁₁H₁₅NO₂Na ([M+Na]⁺): 216.0995, found: 216.0986; M(C₁₁H₁₅NO₂): 193.25.

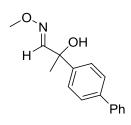
2-Hydroxy aldoxime ether 7g

According to the general procedure 2, the aldehyde **S6g** (328 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H_2O were used. After flash column chromatography (10% \rightarrow 15% MTBE/hexane) compound **7g** was obtained as a colorless oil (337 mg, 87%, E/Z = 95:5).

R_f: 0.39 (20% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.61 (s, 1H), 7.31-7.27 (m, 3H), 7.14-7.12 (m, 1H), 3.91 (s, 3H), 3.23 (bs, 1H), 2.40 (s, 3H), 1.73 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 153.6 (HC=N), 144.3 (C_q), 138.3 (C_q), 128.5 (CH), 128.48 (CH), 125.8 (CH), 122.2 (CH), 73.4 (C_q), 62.1 (CH₃), 28.4 (CH₃), 21.7 (CH₃); **IR** (film): \tilde{V} 2981, 2938, 1607, 1457, 1053, 887, 788, 705; **HR-MS** (ESI): calcd. for

 $(cm^{-1}) = 3445$, 2981, 2938, 1607, 1457, 1053, 887, 788, 705; **HR-MS** (ESI): calcd. for $C_{11}H_{15}NO_2Na$ ([M+Na]⁺): 216.0995, found: 216.0985; **M(C**₁₁H₁₅NO₂): 193.25.

2-Hydroxy aldoxime ether 7h


According to the general procedure 2, the aldehyde **S6h** (413 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H₂O were used. After flash column chromatography (10% \rightarrow 15% MTBE/hexane) compound **7h** was obtained as a colorless oil (390 mg, 83%, E/Z = 95:5).

R_f: 0.41 (20% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.58 (s, 1H), 7.39 (s, 4H), 3.87 (s, 3H), 3.18 (bs, 1H), 1.71 (s, 3H), 1.32 (s, 9H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 153.7 (HC=N), 150.6 (C_q), 141.3 (C_q), 125.6 (2x CH), 124.9 (2x CH), 73.2 (C_q), 62.1 (CH₃), 34.6 (C_q), 31.5 (3x CH₃), 28.2 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3445, 2965,

2901, 2867, 2360, 1734, 1510, 1461, 1363, 1110, 1053, 886, 835, 595; **HR-MS** (ESI): calcd. for $C_{14}H_{21}NO_2Na$ ([M+Na]⁺): 258.1465, found: 258.1461; **M(C_{14}H_{21}NO_2)**: 235.33.

2-Hydroxy aldoxime ether 7i

According to the general procedure 2, the aldehyde **S6i** (453 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H₂O were used. After flash column chromatography (10% \rightarrow 20% MTBE/hexane) compound **7i** was obtained as a colorless oil (440 mg, 86%, E/Z = 95:5).

R_f: 0.31 (20% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.64 (s, 1H), 7.62-7.58 (m, 4H), 7.55 (dʻ, J = 8.5 Hz, 2H), 7.45 (tʻ, J = 7.5 Hz, 2H), 7.38-7.35 (m, 1H), 3.90 (s, 3H), 3.32 (bs, 1H), 1.76 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 153.4 (HC=N), 143.3 (C_q), 140.8 (C_q), 140.6 (C_q), 128.9 (2x CH), 127.5 (CH), 127.4 (2x CH), 127.2

(2x CH), 125.7 (2x CH), 73.3 (C_q), 62.1 (CH₃), 28.4 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3444, 2982, 2936, 1713, 1486, 1051, 766, 698; **HR-MS** (ESI): calcd. for $C_{16}H_{17}NO_2Na$ ([M+Na]⁺): 278.1152, found: 278.1142; **M(C₁₆H₁₇NO₂):** 255.32.

2-Hydroxy aldoxime ether 7j

According to the general procedure 2, the aldehyde S6j (360 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H₂O were used. After flash column chromatography (10% → 20% MTBE/hexane) compound 7j was obtained as a colorless oil (383 mg, 92%, *E/Z*>95:5).

 R_f : 0.24 (20% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.55 (s, 1H), 7.37 (d', J = 9.0 Hz, 2H), 6.89 (d', J = 9.0 Hz, 2H), 3.87 (s, 3H), 3.80 (s, 3H), 3.18 (bs, 1H), 1.69 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ (ppm) = 159.1 (C_q), 153.7 (HC=N), 136.4 (C_q), 126.5 (2x CH), 114.0 (2x CH), 73.1 (C_{α}), 62.1 (CH₃), 55.4 (CH₃), 28.3 (CH₃); **IR** (film): \tilde{V} $(cm^{-1}) = 3445, 2956, 2936, 2836, 1733, 1717, 1610, 1509, 1463, 1300, 1250, 1179, 1051,$ 1033, 885, 834; **HR-MS** (ESI): calcd. for $C_{11}H_{15}NO_3Na$ ([M+Na]⁺): 232.0944, found: 232.0944; **M(C₁₁H₁₅NO₃):** 209.25.

2-Hydroxy aldoxime ether 7k

According to the general procedure 2, the aldehyde **S6k** (400 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H₂O were used. After flash column chromatography (10% → 20% MTBE/hexane) compound 7k was obtained as a colorless oil (355 mg, 78%, E/Z = 94:6).

R_f: 0.29 (20% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.95 (s, 1H), 7.86-7.82 (m, 3H), 7.68 (s, 1H), 7.56 (dd, J = 8.5, 2.0 Hz, 1H), 7.50-7.47 (m, 2H), 3.91 (s, 3H), 3.35 (bs, 1H), 1.81 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 153.4 (HC=N), 141.7 (C₀), 133.3 (C₀), 132.8 (C_a), 128.44 (CH), 128.35 (CH), 127.7 (CH), 126.4 (CH), 126.3 (CH), 123.8 (CH), 123.6 (CH), 73.6 (C_a), 62.2 (CH₃), 28.4 (CH₃); **IR** (film): \tilde{V}

 $(cm^{-1}) = 3444, 3057, 2982, 2937, 2898, 2817, 1599, 1507, 1463, 1373, 1189, 1127, 1051,$ 951, 889, 859, 819, 749, 477; **HR-MS** (ESI): calcd. for $C_{14}H_{15}NO_2Na$ ([M+Na]⁺): 252.0995, found: 252.0986; **M(C₁₄H₁₅NO₂):** 229.28.

2-Hydroxy aldoxime ether 7I

According to the general procedure 2, the aldehyde **S6I** (312 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H_2O were used. After flash column chromatography (10% \rightarrow 15% MTBE/hexane) compound **7k** was obtained as a yellowish oil (226 mg, 61%, E/Z > 95:5).

R_f: 0.39 (20% MTBE/hexane); ¹H-NMR (400 MHz, CDCl₃):
$$\delta$$
 (ppm) = 7.61 (s, 1H), 7.29-7.27 (m, 1H), 7.01-6.98 (m, 2H), 3.91 (s, 3H), 3.57 (bs, 1H), 1.81 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ (ppm) = 152.4 (HC=N), 149.4 (C_q), 127.2 (CH), 125.2 (CH), 123.5 (CH), 72.1 (C_q), 62.2 (CH₃), 28.9 (CH₃); IR (film): \tilde{V} (cm⁻¹) = 3445, 2983, 2938, 1732, 1707, 1682, 1456, 1238, 1051, 703; HR-MS (ESI): calcd. for C₈H₁₁NO₂SNa ([M+Na]⁺): 208.0403, found: 208.0403; **M(C₈H₁₁NO₂S)**: 185.24.

2-Hydroxy aldoxime ether 7m

According to the general procedure 2, the aldehyde **S6m** (385 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H_2O were used. After flash column chromatography (5% MTBE/hexane) compound **7m** was obtained as a colorless oil (406 mg, 92%, E/Z > 95:5).

R_f: 0.59 (20% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.62 (s, 1H), 7.45 (d',
$$J$$
 = 7.5 Hz, 2H), 7.36 (t', J = 7.5 Hz, 2H), 7.28-7.25 (m, 1H), 3.86 (s, 3H), 3.36 (bs, 1H), 2.02-1.87 (m, 2H), 1.35-1.24 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 153.3 (HC=N), 143.8 (C_q), 128.6 (2x CH), 127.4 (CH), 125.3 (2x CH),

75.6 (C_q), 62.2 (CH₃), 41.0 (CH₂), 25.5 (CH₂), 23.0 (CH₂), 14.1 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3482, 3061, 2957, 2872, 1448, 1062, 1034, 702; **HR-MS** (ESI): calcd. for C₁₃H₁₉NO₂Na ([M+Na]⁺): 244.1308, found: 244.1299; **M(C₁₃H₁₉NO₂):** 221.30.

2-Hydroxy aldoxime ether 7n

According to the general procedure 2, the aldehyde **S6n** (350 mg, 2.00 mmol, 1.00 equiv), methoxyamine hydrochloride (250 mg, 3.00 mmol, 1.50 equiv) and sodium acetate (246 mg, 3.00 mmol, 1.50 equiv) in 4.0 mL THF and 2.0 mL H_2O were used. After flash column

chromatography (3% \rightarrow 5% MTBE/hexane) compound **7n** was obtained as a colorless oil (337 mg, 82%, E/Z > 95:5).

R_f: 0.50 (20% MTBE/hexane); ¹H-NMR (300 MHz, CDCl₃):
$$\delta$$
 (ppm) = 7.58 (s, 1H), 7.48-7.44 (m, 2H), 7.40-7.34 (m, 2H), 7.30-7.27 (m, 1H), 5.75 (ddt, J = 17.5, 10.0, 7.0 Hz, 1H), 5.19-5.12 (m, 2H), 3.88 (s, 3H), 3.25 (bs, 1H), 2.84-2.69 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ (ppm) = 152.7 (HC=N), 143.1 (C_q), 132.7 (CH), 128.6 (2x CH), 127.6 (CH), 125.4 (2x CH), 120.0 (CH₂), 74.8 (C_q), 62.2 (CH₃), 45.6 (CH₂); IR (film): \tilde{v} (cm⁻¹) = 3482, 3076, 2939, 1639, 1494, 1448, 1037, 1001, 917, 889, 763, 702; HR-MS (ESI): calcd. for C₁₂H₁₅NO₂Na ([M+Na]⁺):

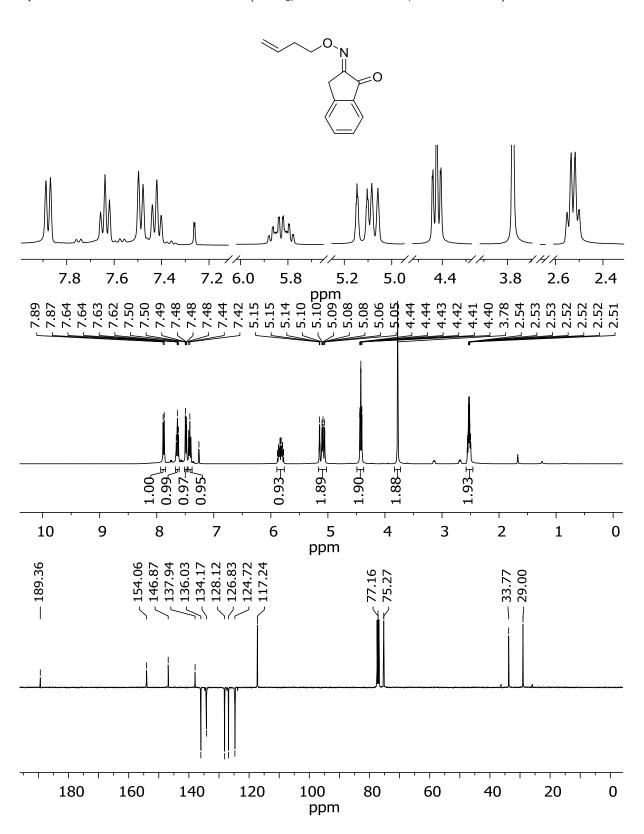
2-Hydroxy aldoxime ether 7o

228.0995, found: 228.0994; **M(C₁₂H₁₅NO₂):** 205.26.

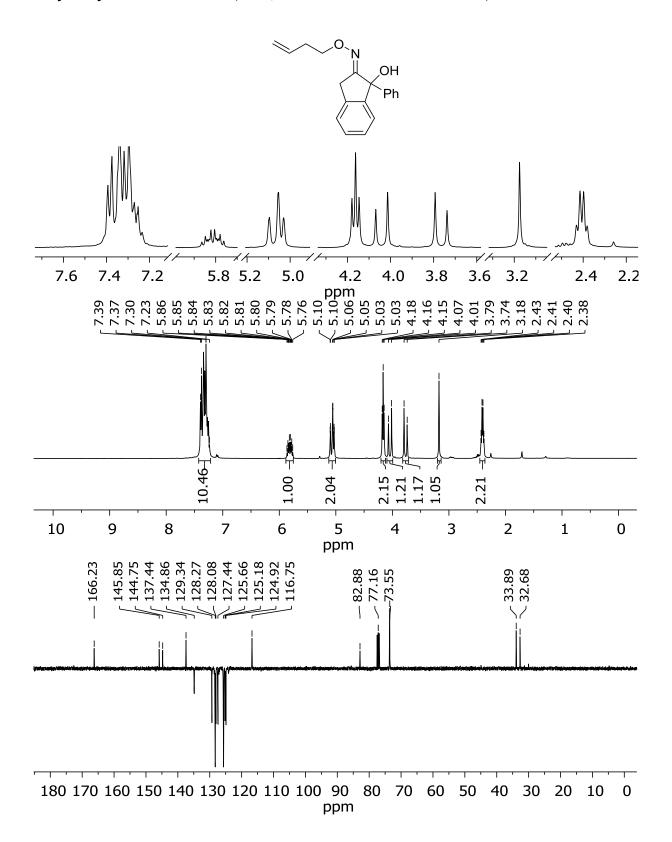
BnONH₂ (305 μ L, 2.64 mmol, 1.10 equiv) and sodiumsulfate (1.70 g, 12.0 mmol, 5.00 equiv) were added portionwise to a solution of aldehyde **S6e** (360 mg, 2.40 mmol, 1.00 equiv) in 5.0 mL abs. CH₂Cl₂. The reaction mixture was stirred at room temperature for 1 hour and then filtered. The solvent was removed under reduced pressure. After flash column chromatography (3% \rightarrow 7% EtOAc/hexane) compound **7o** was obtained as a colorless oil (480 mg, 78%, E/Z > 95:5).

2-Hydroxy aldoxime silyl ether 7p

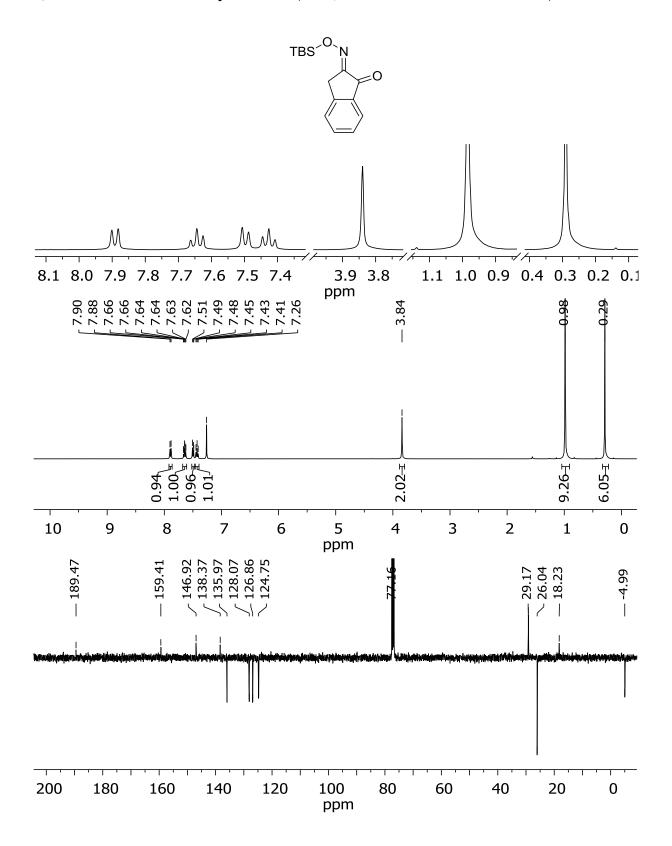
TBSONH₂ was synthesized according to a literature procedure.^[3]

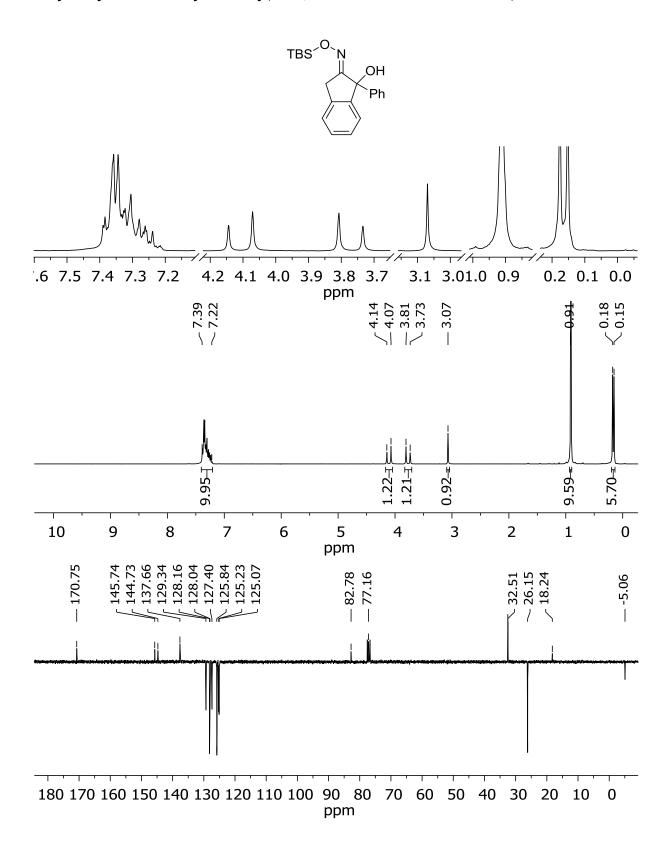

TBSONH₂ (221 mg, 1.50 mmol, 1.50 equiv) and sodiumsulfate (710 g, 5.00 mmol, 5.00 equiv) were added portionwise to a solution of aldehyde **S6d** (240 mg, 1.00 mmol, 1.00 equiv) in 3.0 mL abs. CH_2CI_2 . The reaction mixture was stirred at room temperature for 52 hours and then filtered. The solvent was removed under reduced pressure. After flash column chromatography (2% \rightarrow 3% MTBE/hexane) compound **7p** was obtained as a colorless oil (247 mg, 67%, E/Z > 95:5).

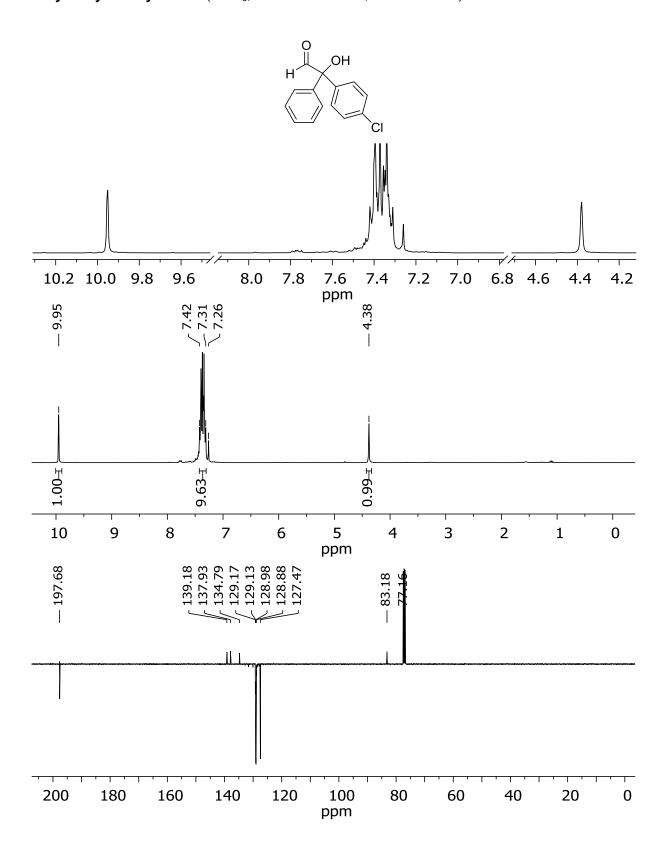
R_f: 0.31 (5% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.09 (bs, 1H), 7.24 (dʻ, J = 8.0 Hz, 4H), 7.15 (dʻ, J = 8.0 Hz, 4H), 4.22 (bs, 1H), 2.34 (s, 6H), 0.94 (s, 9H), -0.19 (s, 6H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 157.5 (HC=N), 141.3 (2x C_q), 137.5 (2x C_q), 129.1 (4x CH), 127.0 (4x CH), 26.2 (3x CH₃), 21.2 (2x CH₃), 18.4

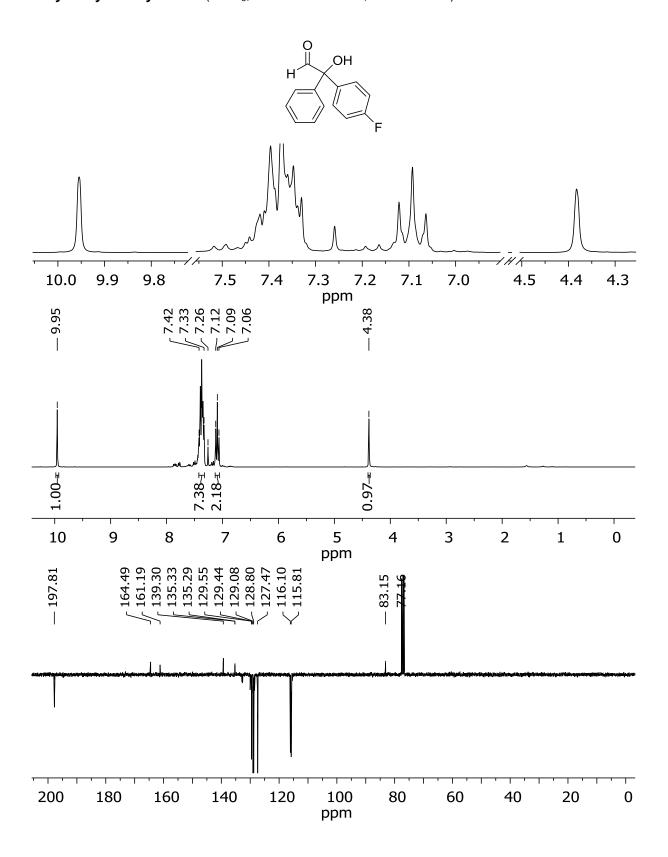

 (C_q) , -5.1 (2x CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3511, 3025, 2956, 2929, 2857, 1615, 1509, 1471, 1461, 1362, 1252, 1165, 1022, 1002, 958, 947, 932, 877, 838, 824, 816, 783; **HR-MS** (ESI): calcd. for $C_{22}H_{21}NO_2SiNa$ ([M+Na]⁺): 392.2016, found: 392.2017; **M(C₂₂H₂₁NO₂Si)**: 369.58.

2.4 ¹H-NMR and ¹³C-NMR Spectra

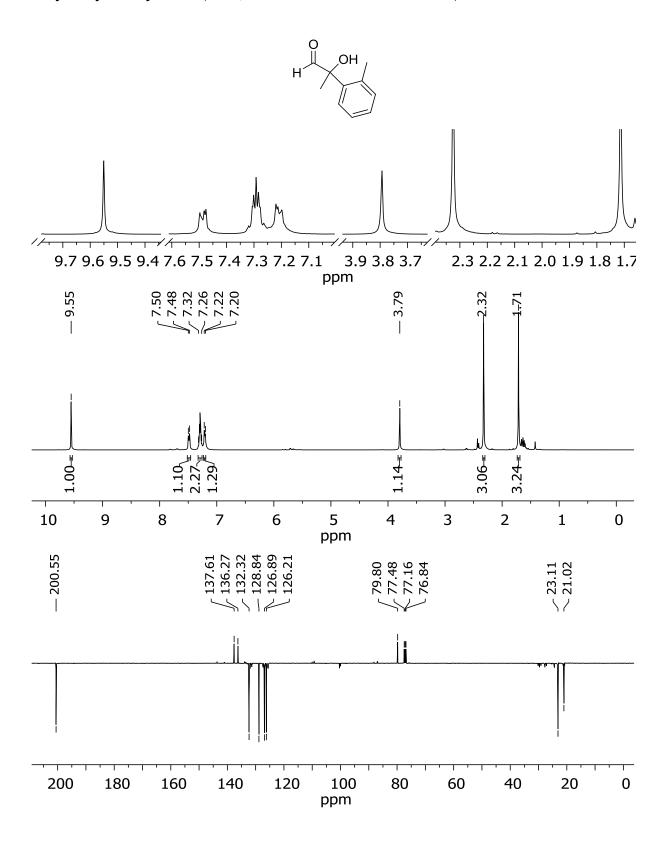

1,2-Indandione-2-oxime ether S2 (CDCI $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)

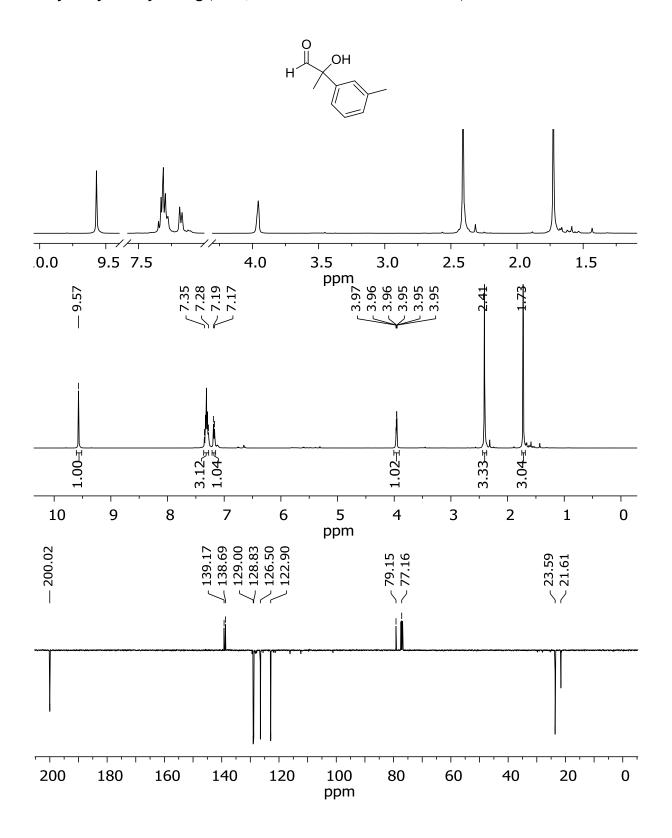

2-Hydroxy ketoxime ether 1i (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

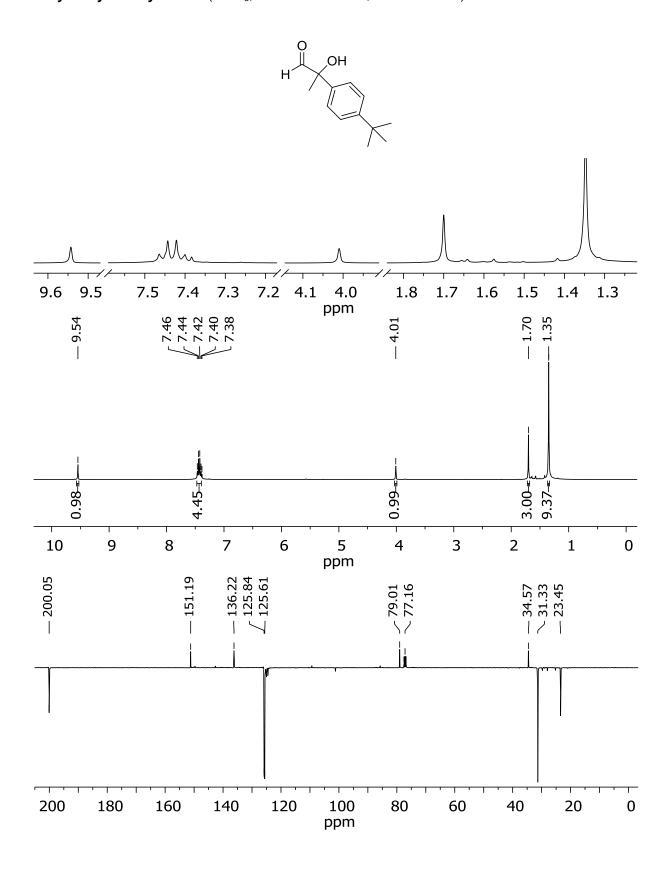

1,2-Indandione-2-oxime silyl ether S3 (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

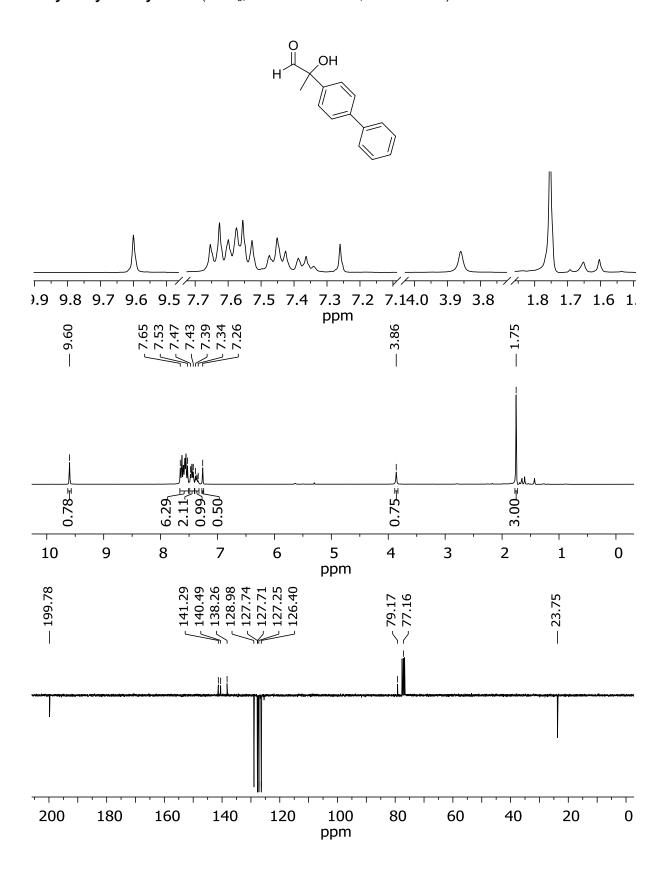

2-Hydroxy ketoxime silyl ether 1j (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)

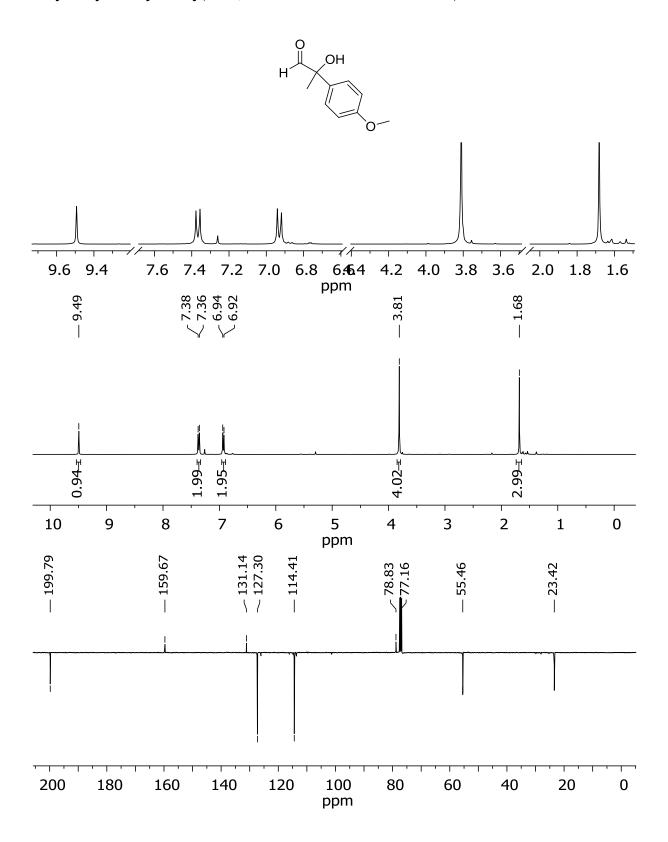
2-Hydroxy aldehyde S6b (CDCl₃; ¹H-NMR: 300 MHz, APT: 100 MHz)

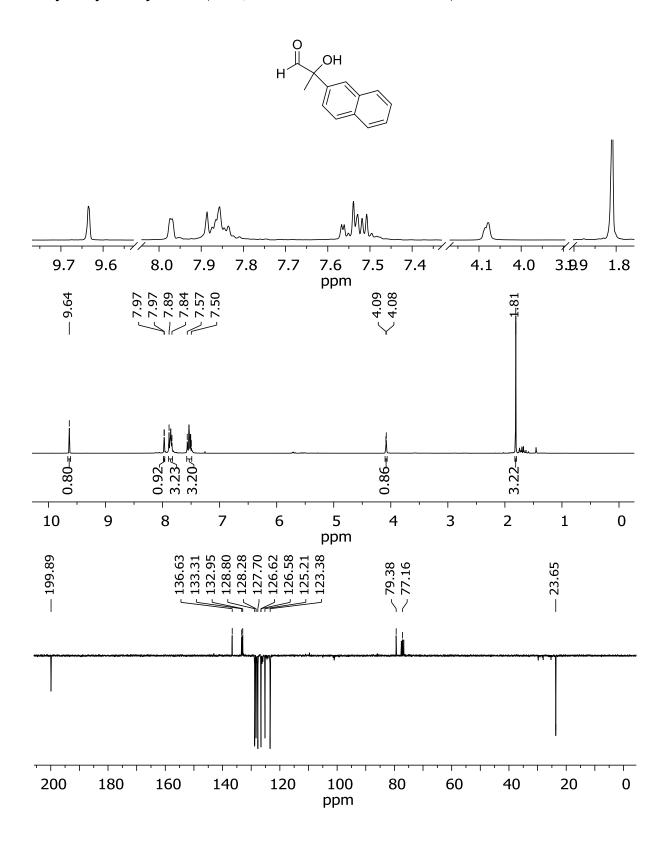

2-Hydroxy aldehyde S6c (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)

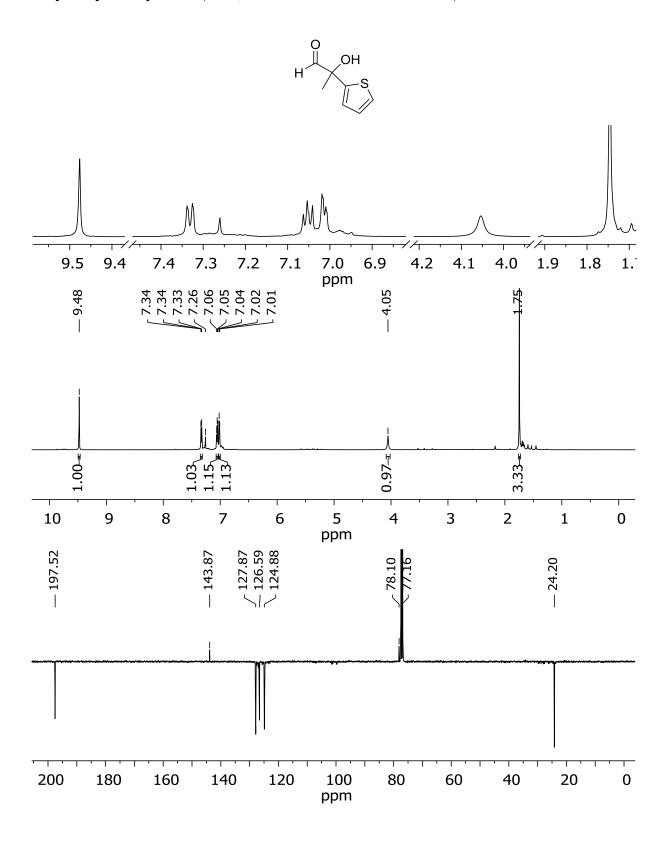

2-Hydroxy aldehyde S6e (CDCI₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

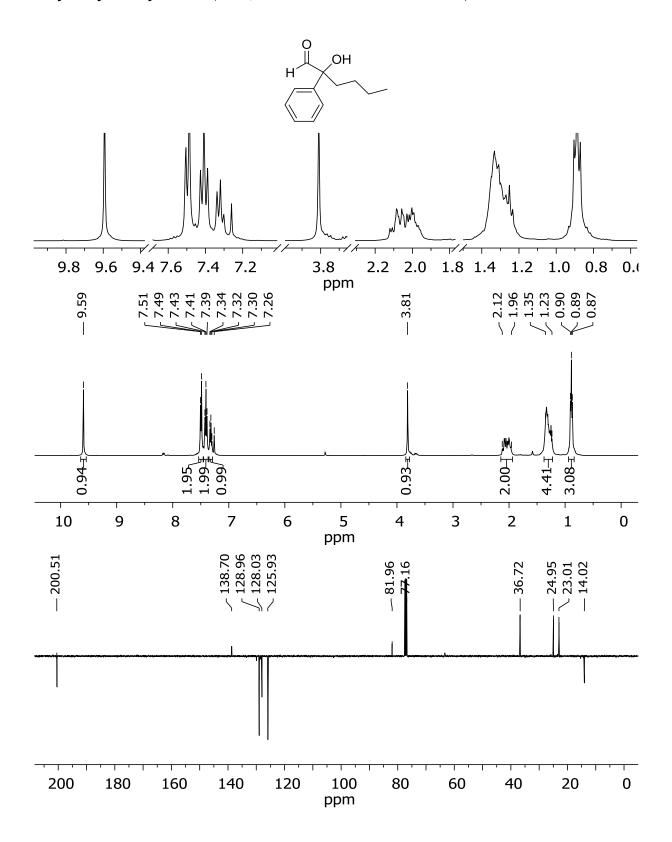

2-Hydroxy aldehyde S6f (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

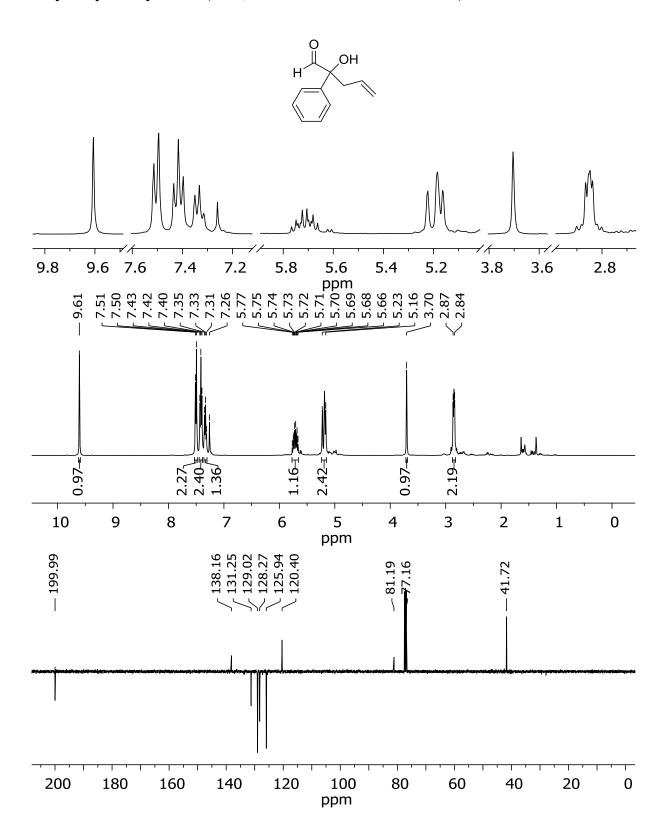

2-Hydroxy aldehyde S6g (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

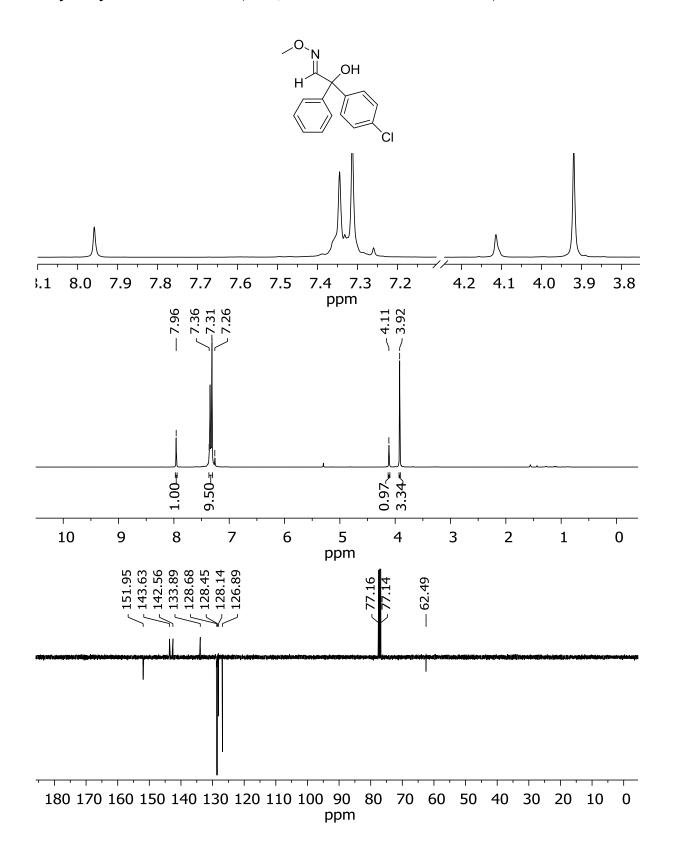

2-Hydroxy aldehyde S6h (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

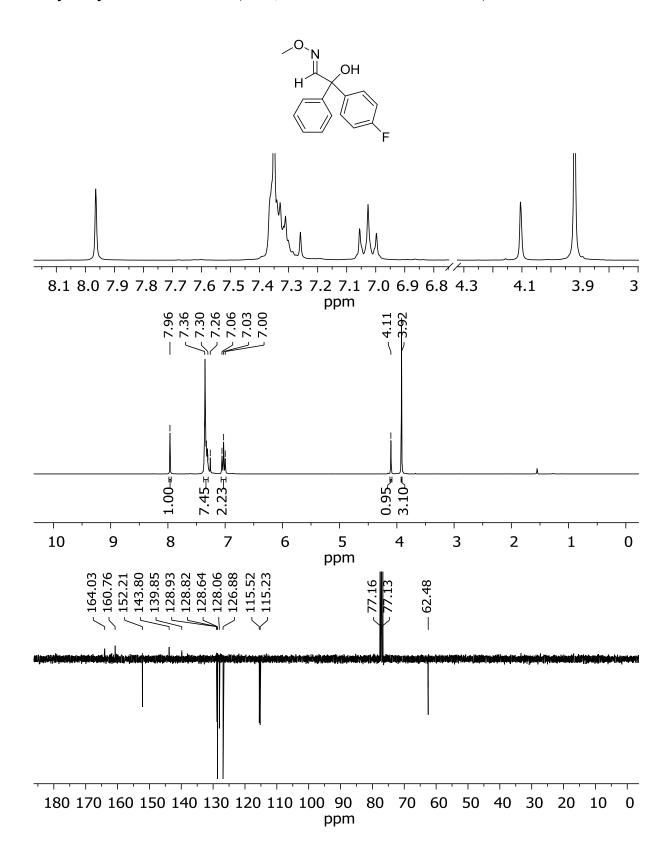

2-Hydroxy aldehyde S6i (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)

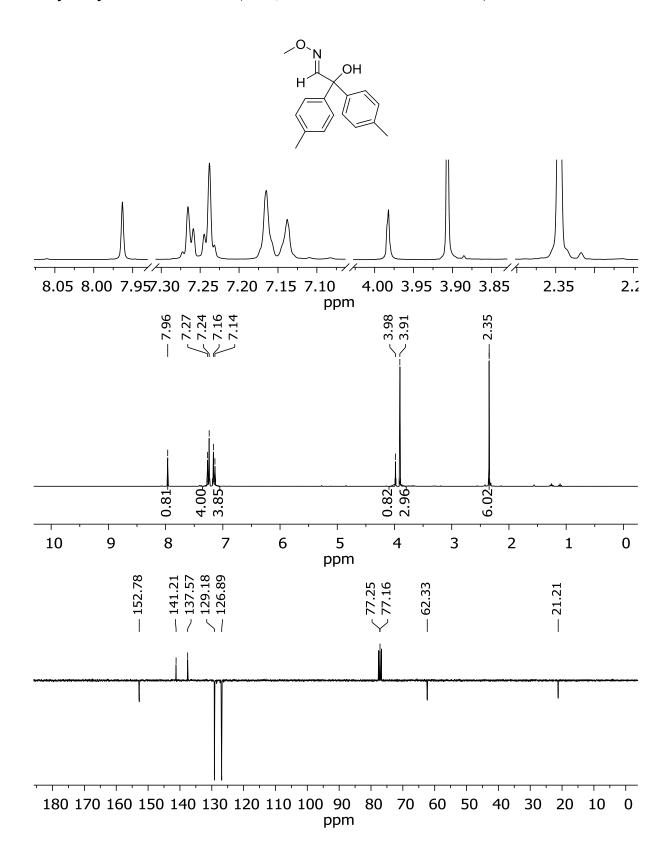

2-Hydroxy aldehyde S6j (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

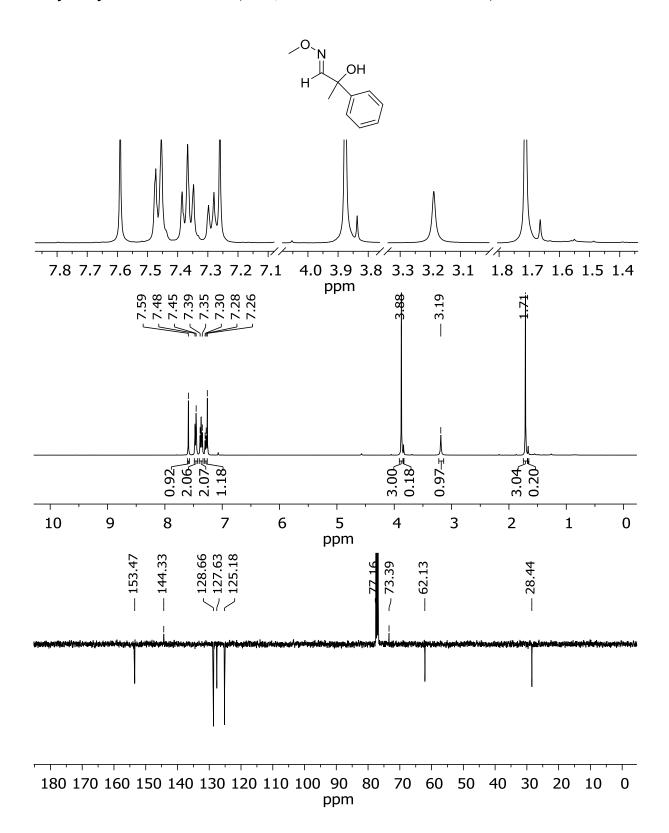

2-Hydroxy aldehyde S6k (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)

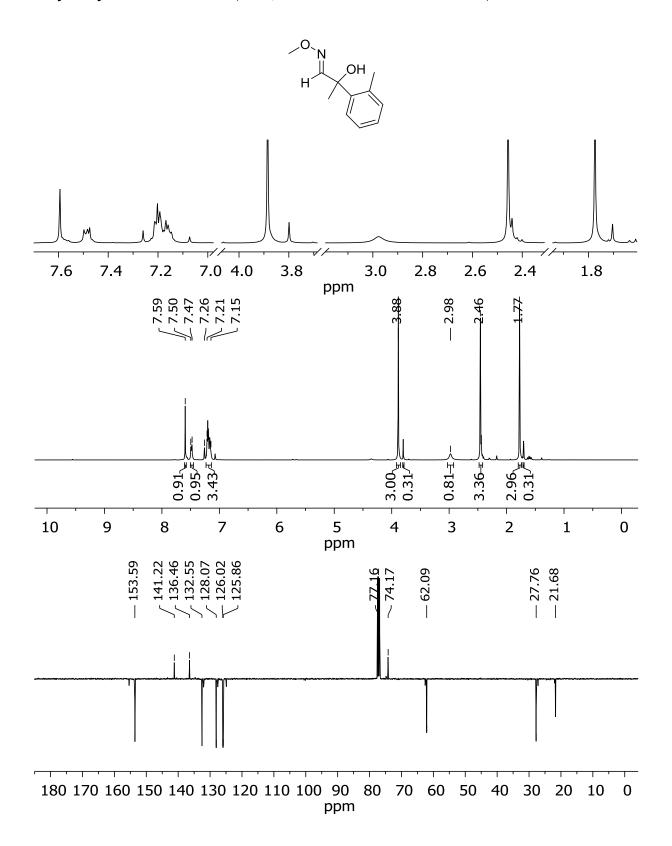

2-Hydroxy aldehyde S6I (CDCI₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

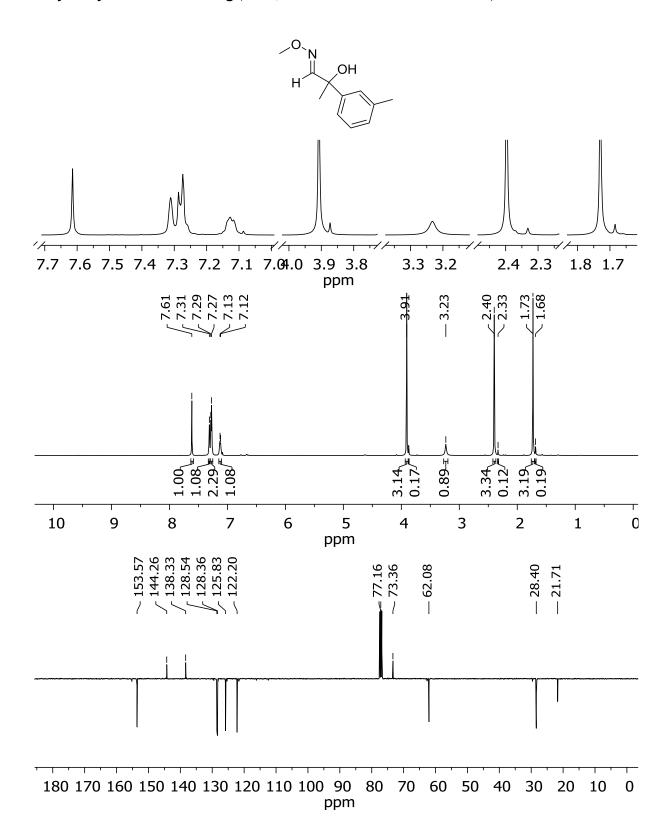

2-Hydroxy aldehyde S6m (CDCl $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)

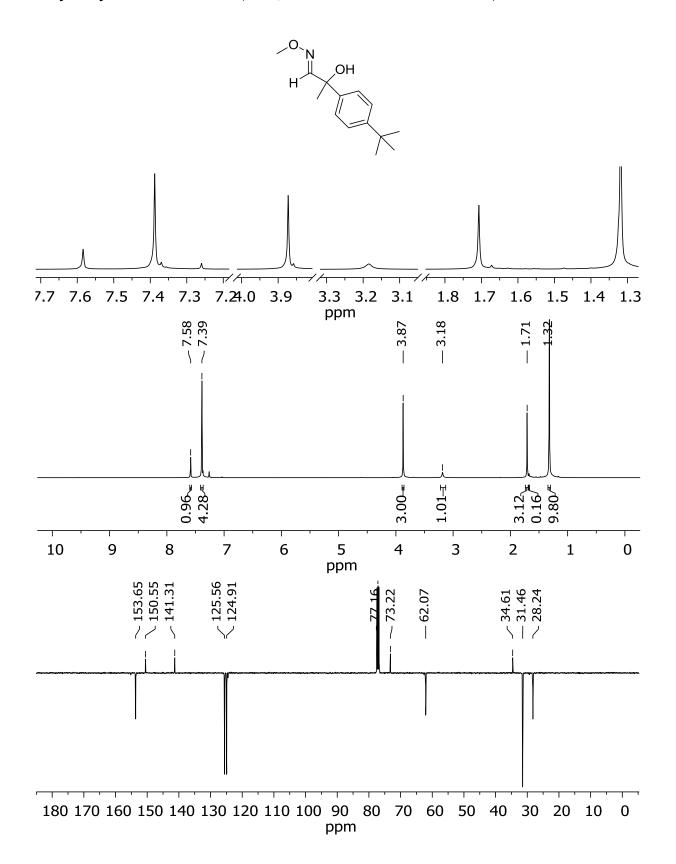

2-Hydroxy aldehyde S6n (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

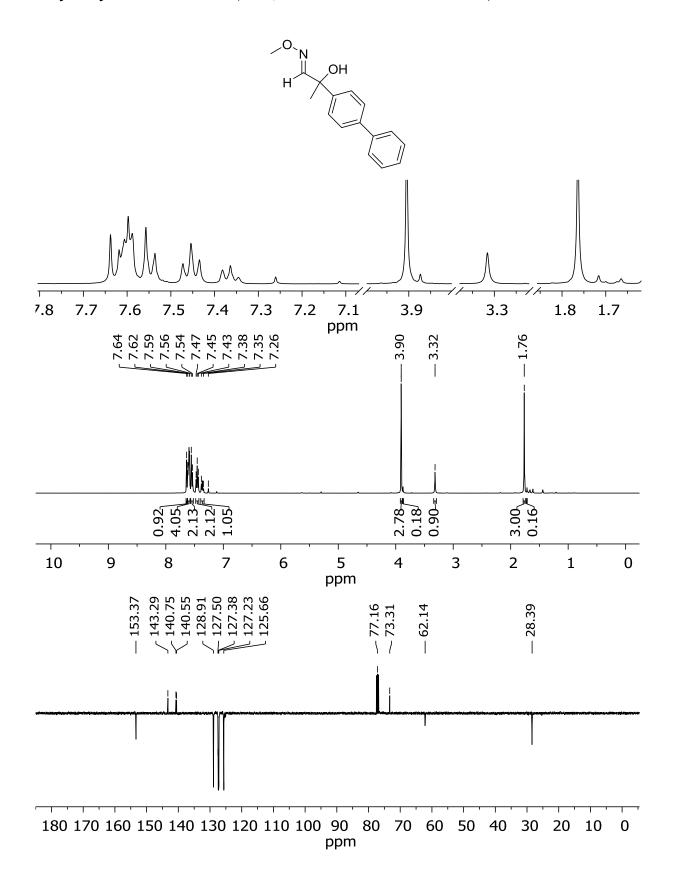

2-Hydroxy aldoxime ether 7b (CDCl $_3$; 1 H-NMR: 300 MHz, APT: 100 MHz)

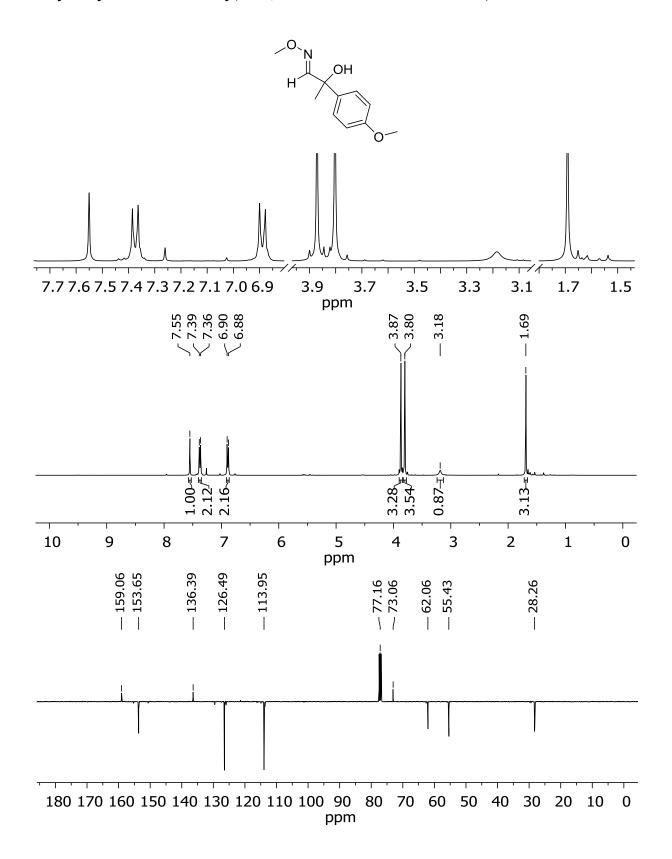

2-Hydroxy aldoxime ether 7c (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)

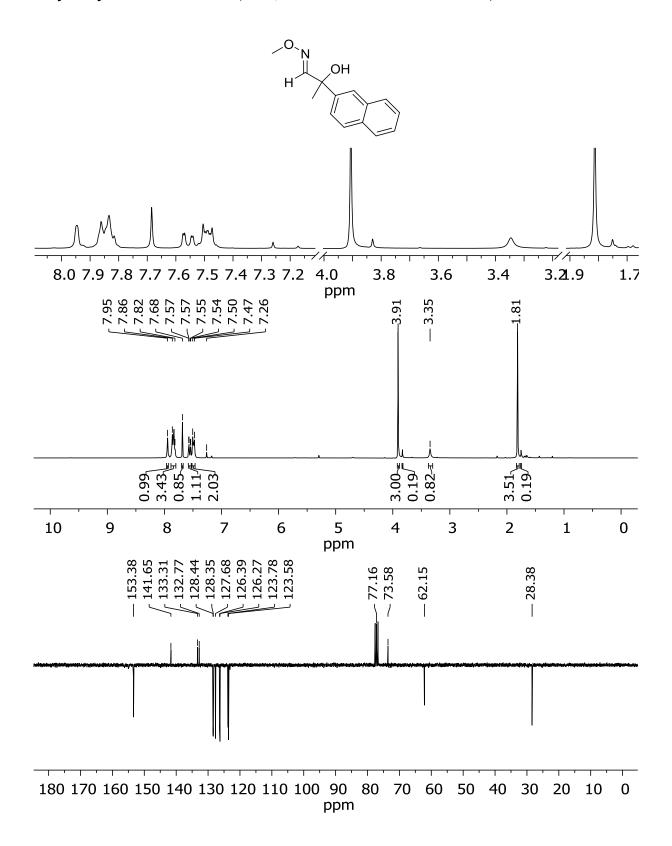

2-Hydroxy aldoxime ether 7d (CDCl $_3$; 1 H-NMR: 300 MHz, APT: 75 MHz)

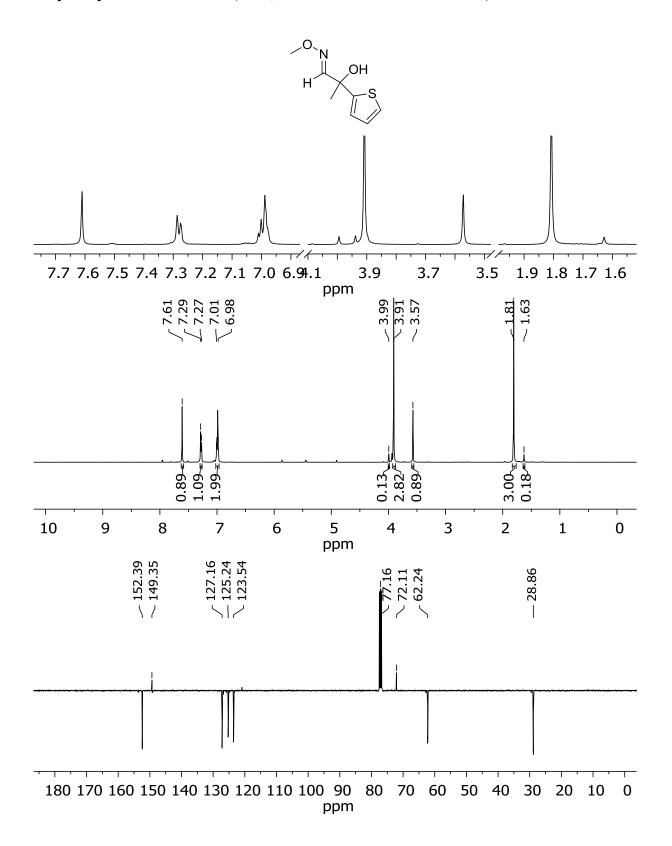

2-Hydroxy aldoxime ether 7e (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

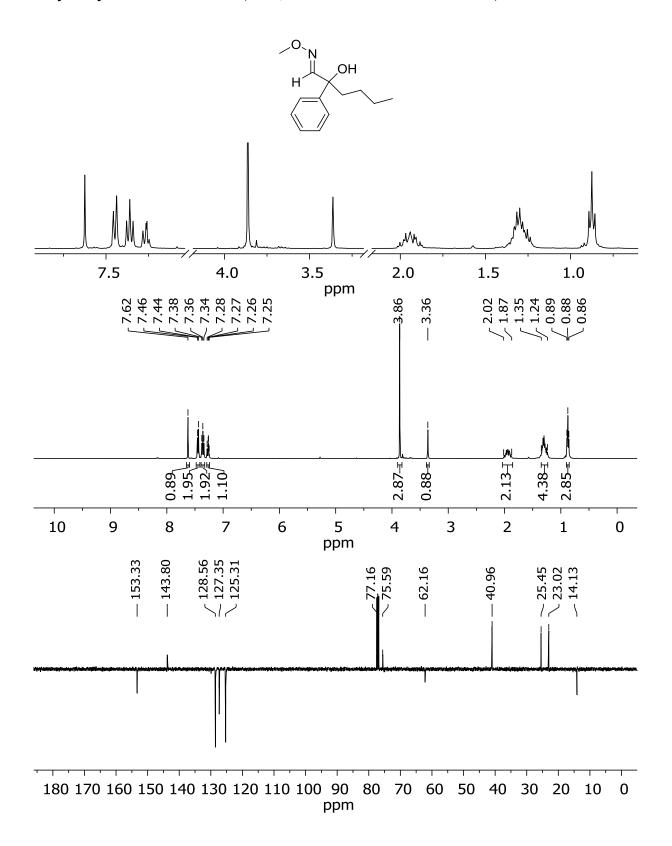

2-Hydroxy aldoxime ether 7f (CDCI₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

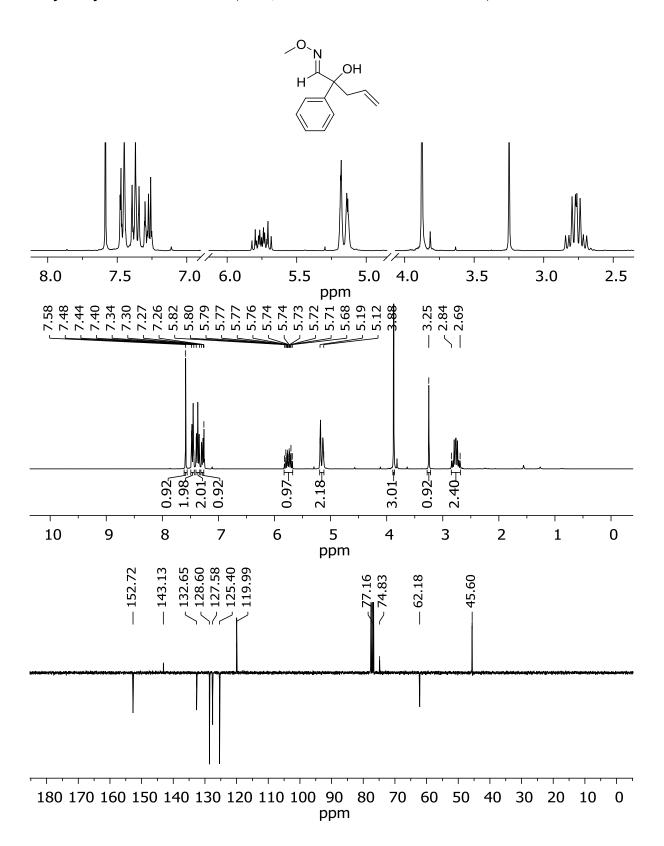

2-Hydroxy aldoxime ether 7g (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)


2-Hydroxy aldoxime ether 7h (CDCI $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)

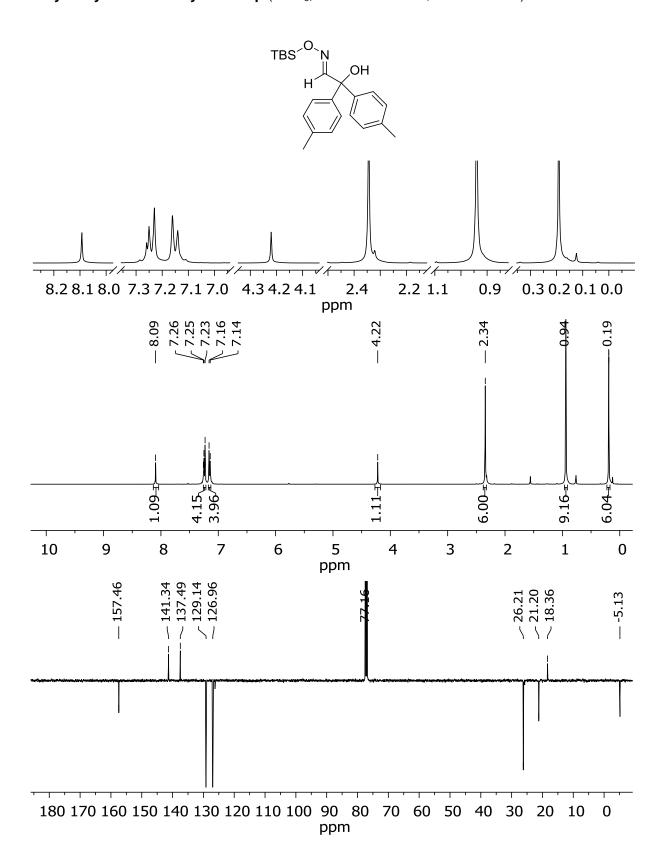

2-Hydroxy aldoxime ether 7i (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)


2-Hydroxy aldoxime ether 7j (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)


2-Hydroxy aldoxime ether 7k (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)


2-Hydroxy aldoxime ether 7I (CDCI₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

2-Hydroxy aldoxime ether 7m (CDCl $_3$; $^1\text{H-NMR}$: 400 MHz, APT: 100 MHz)


2-Hydroxy aldoxime ether 7n (CDCl $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)

2-Hydroxy aldoxime ether 7o (CDCI $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)

2-Hydroxy aldoxime silyl ether 7p (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

3 The FCR of Cyclic 2-Hydroxy Ketoxime Ethers

3.1 Optimization Studies of Compound 4a

entry	catalyst	additive	solvent	temp. [°C]	time	yield 4a [%]
1	Sc(OTf) ₃	4 Å MS (50 mg)	CH ₂ Cl ₂	40	2 d	traces
2	$Sc(OTf)_3$		CH_2CI_2	40	1 h	88
3	$Sc(OTf)_3$		CHCl ₃	RT	4 h	92
4	$Sc(OTf)_3$		CHCl ₃	60	1 h	87
5	$Sc(OTf)_3$		CH₃CN	60	0.5 h	87
6	$Sc(OTf)_3$		CH_3NO_2	60	0.5 h	81
7	$Ca(NTf_2)_2$	Bu_4NPF_6 (10 mol%)	CHCl ₃	60	1 h	76
8	LiNTf ₂	Bu_4NPF_6 (10 mol%)	CHCl ₃	60	1 h	86
9	Al(OTf) ₃		CH ₂ Cl ₂	40	0.5 h	84
10	Bi(OTf) ₃		CH_2CI_2	40	0.5 h	89
11	FeCl ₃		CH ₂ Cl ₂	40	0.5 h	87
12 ^a	FeCl ₃		CH ₂ Cl ₂	40	1 h	92

^a catalyst (5 mol%), solvent (0.6 mL).

3.2 Substrate Scope

General procedure 3 of the FCR

2-Hydroxy ketoxime ether **1** (or **2**, **3**) (1.0 equiv), a (hetero)arene (1.2 equiv) and FeCl₃ (0.05 equiv) were placed in an oven dried and sealable DURAN® test tube. Abs. CH_2Cl_2 (0.33 M) was added and the reaction mixture was heated to 40 °C while stirring. After complete reaction it was quenched with sat. $NaHCO_3$ -solution and extracted twice with CH_2Cl_2 . The combined organic phases were dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (5% \rightarrow 20% MTBE/hexane). The products **4** (or **5**, **6**) were dried in vacuo (~0.1 mbar) at 60 °C overnight.

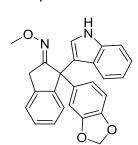
2-Indolyl ketoxime ether 4a

According to the general procedure 3, 2-hydroxy ketoxime ether 1a (51 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Compound 4a was obtained as a colorless solid (65 mg, 92%).

R_f: 0.23 (20% MTBE/hexane); **mp.**: 163-165 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.90 (bs, 1H), 7.40-7.36 (m, 3H), 7.31-7.24 (m, 5H), 7.21-7.18 (m, 2H), 7.14-7.10 (m, 2H), 6.93 (t, J = 7.5 Hz, 1H), 6.54 (d, J = 2.5 Hz, 1H), 4.02 (d, J = 21.5 Hz, 1H), 3.88 (d, J = 21.5 Hz, 1H), 3.86 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 166.5 (C=N),

147.4 (C_q), 144.1 (C_q), 137.5 (C_q), 137.3 (C_q), 128.6 (2x CH), 128.1 (2x CH), 127.7 (CH), 127.2 (CH), 126.7 (CH), 126.2 (CH), 126.0 (C_q), 125.1 (CH), 124.8 (CH), 122.3 (CH), 122.0 (CH), 121.0 (C_q), 119.2 (CH), 111.1 (CH), 62.1 (CH₃), 59.8 (C_q), 33.2 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3418, 2933, 1621, 1457, 1042, 862, 751, 700; **HR-MS** (ESI): calcd. for $C_{24}H_{20}N_2ONa$ ([M+Na]⁺): 375.1468, found: 375.1468; **M(C_{24}H_{20}N_2O):** 352.44.

2-Indolyl ketoxime ether 4b


According to the general procedure 3, 2-hydroxy ketoxime ether **1b** (54 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Compound **4b** was obtained as a colorless solid (70 mg, 96%).

R_f: 0.37 (20% MTBE/hexane); **mp.:** 197-199 °C; ¹**H-NMR** (300 MHz, DMSO-d6): δ (ppm) = 10.93 (bs, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.42-7.36 (m, 2H), 7.31 (t, J = 7.5 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.16-7.05 (m, 4H), 6.99 (ddd, J = 8.5, 6.5, 2.0 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H), 6.76 (bs, 1H), 6.20 (bs, 1H), 3.98 (d, J = 22.0 Hz, 1H), 3.74 (s, 3H), 3.61

(d, J = 22.0 Hz, 1H), 1.77 (s, 3H); ¹³**C-NMR** (75 MHz, DMSO-d6): δ (ppm) = 165.2 (C=N), 146.3 (C_q), 141.6 (C_q), 137.6 (C_q), 137.5 (C_q), 136.4 (C_q), 131.8 (CH), 129.3 (CH), 127.5 (CH), 127.1 (CH), 126.8 (CH), 125.5 (C_q), 125.5 (CH), 124.9 (CH), 124.8 (CH), 124.5 (CH), 122.6 (CH), 121.1 (CH), 118.1 (CH), 117.3 (C_q), 111.6 (CH), 61.6 (CH₃), 59.6 (C_q), 32.6 (CH₂), 20.0 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3415, 3055, 2934, 1617, 1475, 1457, 1412, 1040, 856, 748; **HR-MS** (ESI): calcd. for C₂₅H₂₂N₂ONa ([M+Na]⁺): 389.1624, found: 389.1607; **M**(C₂₅H₂₂N₂O): 366.46.

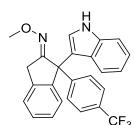
2-Indolyl ketoxime ether 4c

According to the general procedure 3, 2-hydroxy ketoxime ether **1c** (60 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Compound **4c** was obtained as a colorless solid (79 mg, >99%).

R_f: 0.20 (20% MTBE/hexane); **mp.**: 109-111 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.95 (bs, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.32-7.26 (m, 3H), 7.22 (t, J = 7.5 Hz, 1H), 7.17-7.13 (m, 2H), 6.99-6.95 (m, 2H), 6.82 (dd, J = 8.0, 2.0 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 6.59 (d, J = 2.5 Hz, 1H), 5.95 (m, 2H), 4.00 (d, J = 22.0 Hz, 1H), 3.90 (d, J = 22.0 Hz, 1H), 3.89 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 166.5 (C=N),

147.5 (C_q), 147.4 (C_q), 146.3 (C_q), 138.1 (C_q), 137.4 (C_q), 137.3 (C_q), 127.8 (CH), 127.3 (CH), 126.1 (CH), 125.9 (C_q), 125.1 (CH), 124.8 (CH), 122.3 (CH), 122.0 (CH), 121.8 (CH), 121.0 (C_q), 119.2 (CH), 111.2 (CH), 109.6 (CH), 107.5 (CH), 101.1 (CH₂), 62.1 (CH₃), 59.5 (C_q), 33.0 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3419, 2894, 1617, 1502, 1484, 1240, 1040, 745; **HR-MS** (ESI): calcd. for C₂₅H₂₀N₂O₃Na ([M+Na]⁺): 419.1366, found: 419.1355; **M(C₂₅H₂₀N₂O₃)**: 396.45.

2-Indolyl ketoxime ether 4d


According to the general procedure 3, 2-hydroxy ketoxime ether **1d** (58 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Compound **4d** was obtained as a colorless solid (77 mg, 99%).

R_f: 0.30 (20% MTBE/hexane); **mp.**: 88-90 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.92 (bs, 1H), 7.39-7.36 (m, 1H), 7.31-7.18 (m, 8H), 7.14 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.09 (m, 1H), 6.93 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.53 (d, J = 2.5 Hz, 1H), 3.97 (d, J = 22.0 Hz, 1H), 3.89 (d, J = 21.5 Hz, 1H), 3.85 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ

 $(\text{ppm}) = 166.2 \ (\text{C=N}), \ 147.0 \ (\text{C}_q), \ 142.8 \ (\text{C}_q), \ 137.5 \ (\text{C}_q), \ 137.3 \ (\text{C}_q), \ 132.6 \ (\text{C}_q), \ 130.1 \ (2x \text{CH}), \ 128.2 \ (2x \text{CH}), \ 128.0 \ (\text{CH}), \ 127.4 \ (\text{CH}), \ 126.0 \ (\text{CH}), \ 125.8 \ (\text{C}_q), \ 125.2 \ (\text{CH}), \ 124.7 \ (\text{CH}), \ 122.3 \ (\text{CH}), \ 122.2 \ (\text{CH}), \ 120.6 \ (\text{C}_q), \ 119.4 \ (\text{CH}), \ 111.2 \ (\text{CH}), \ 62.2 \ (\text{CH}_3), \ 59.4 \ (\text{C}_q), \ 33.1 \ (\text{CH}_2); \ \textbf{IR} \ (\text{KBr}): \ \tilde{v} \ (\text{cm}^{-1}) = 3415, \ 2935, \ 1617, \ 1488, \ 1457, \ 1094, \ 1042, \ 1014, \ 815, \ 754, \ 743; \ \textbf{HR-MS} \ (\text{ESI}): \ \text{calcd.} \ \text{for} \ \ \text{C}_{24}\text{H}_{19}{}^{35}\text{CIN}_2\text{ONa} \ ([\text{M+Na}]^+): \ 409.1078, \ \text{found:} \ 409.1076; \ \textbf{M}(\textbf{C}_{24}\text{H}_{19}\textbf{CIN}_2\textbf{O}): \ 386.88.$

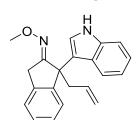
2-Indolyl ketoxime ether 4e

According to the general procedure 3, 2-hydroxy ketoxime ether **1e** (64 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 4.5 hours. Compound **4e** was obtained as a colorless solid (78 mg, 93%).

R_f: 0.30 (20% MTBE/hexane); **mp.:** 104-106 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.95 (bs, 1H), 7.52 (d', J = 8.5 Hz, 2H), 7.47 (d', J = 8.5 Hz, 2H), 7.40-7.38 (m, 1H), 7.32-7.13 (m, 5H), 7.08 (m, 1H), 6.96 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.55 (d, J = 2.5 Hz, 1H), 3.94 (s, 2H), 3.86 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 165.9 (C=N),

148.4 (C_q), 146.8 (C_q), 137.6 (C_q), 137.3 (C_q), 129.0 (2x CH), 128.8 (q, J = 32.5 Hz, C_q), 128.1 (CH), 127.5 (CH), 126.0 (CH), 125.8 (C_q), 125.3 (CH), 125.0 (q, J = 3.5 Hz, 2x CH), 124.8 (CH), 124.6 (q, J = 272.5 Hz, C_q), 122.4 (CH), 122.3 (CH), 120.3 (C_q), 119.5 (CH), 111.3 (CH), 62.2 (CH₃), 59.8 (C_q), 33.2 (CH₂); ¹⁹F-NMR (282 MHz, CDCl₃): δ (ppm) = -62.3; IR (KBr): \tilde{v} (cm⁻¹) = 3411, 2938, 1617, 1457, 1411, 1326, 1165, 1123, 1115, 1068, 1042, 1018, 824, 745; HR-MS (ESI): calcd. for C₂₅H₁₉F₃N₂ONa ([M+Na]⁺): 443.1342, found: 443.1338; M(C₂₅H₁₉F₃N₂O): 420.44.

2-Indolyl ketoxime ether 4f


According to the general procedure 3, 2-hydroxy ketoxime ether 1f (52 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 2 hours. Compound 4f was obtained as a colorless solid (69 mg, 97%).

R_f: 0.19 (20% MTBE/hexane); **mp.:** 164-165 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.97 (bs, 1H), 7.36 (d, J = 7.5 Hz, 1H), 7.31-7.19 (m, 5H), 7.11-7.06 (m, 2H), 6.98-6.89 (m, 3H), 6.73 (d, J = 2.5 Hz, 1H), 4.04 (d, J = 22.0 Hz, 1H), 3.93 (d, J = 22.0 Hz, 1H), 3.87 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 166.2 (C=N), 148.9 (C_q), 147.2 (C_q),

137.22 (C_q), 137.20 (C_q), 128.2 (CH), 127.4 (CH), 126.43 (CH), 126.40 (CH), 125.8 (C_q), 125.7 (CH), 125.2 (CH), 125.1 (CH), 124.5 (CH), 122.1 (CH), 121.4 (CH), 121.1 (C_q), 119.4 (CH), 111.2 (CH), 62.3 (CH₃), 56.9 (C_q), 33.0 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3412, 2934, 1618, 1457, 1041, 865, 743, 702; **HR-MS** (ESI): calcd. for $C_{22}H_{18}N_2OSNa$ ([M+Na]⁺): 381.1032, found: 381.1031; **M(C_{22}H_{18}N_2OS)**: 358.46.

2-Indolyl ketoxime ether 4g

According to the general procedure 3, 2-hydroxy ketoxime ether **1g** (44 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 6 hours. Compound **4g** was obtained as a colorless solid (55 mg, 87%).

R_f: 0.27 (20% MTBE/hexane); **mp.**: 185-187 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.23 (bs, 1H), 7.37 (d, J = 7.5 Hz, 1H), 7.31-7.24 (m, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.12-7.07 (m, 2H), 7.02 (d, J = 8.0 Hz, 1H), 6.94-6.88 (m, 2H), 5.56 (ddt, J = 17.0, 10.0, 7.0 Hz, 1H), 5.04 (d, J = 17.0 Hz, 1H), 4.95 (d, J = 10.0 Hz, 1H), 3.98 (d, J = 22.5 Hz, 1H),

3.86 (s, 3H), 3.80 (d, J= 22.5 Hz, 1H), 3.28 (dd, J= 13.0, 8.0 Hz, 1H), 3.06 (dd, J= 13.0, 7.0 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ (ppm) = 166.8 (C=N), 146.6 (C_q), 138.0 (C_q), 137.1 (C_q), 133.8 (CH), 127.6 (CH), 127.4 (CH), 125.9 (C_q), 124.8 (CH), 124.7 (CH), 122.0 (CH), 121.9 (CH), 120.9 (C_q), 120.7 (CH), 119.3 (CH), 118.5 (CH₂), 111.2 (CH), 62.0 (CH₃), 54.4 (C_q), 45.0 (CH₂), 34.4 (CH₂); IR (KBr): \tilde{v} (cm⁻¹) = 3259, 2931, 1640, 1457, 1045, 887, 746, 739; HR-MS (ESI): calcd. for C₂₁H₂₀N₂ONa ([M+Na]⁺): 339.1468, found: 339.1464; M(C₂₁H₂₀N₂O): 316.40.

2-Indolyl ketoxime ether 4h

According to the general procedure 3, 2-hydroxy ketoxime ether **1h** (38 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Compound **4h** was obtained as a colorless solid (56 mg, 96%).

R_f: 0.18 (20% MTBE/hexane); **mp.:** 165-166 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.30 (bs, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.31-7.25 (m, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.12-7.05 (m, 2H), 6.98 (d, J = 8.0 Hz, 1H), 6.90 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.87-6.85 (m, 2H), 4.07 (d, J = 23.0 Hz, 1H), 3.98 (d, J = 23.0 Hz, 1H), 3.86 (s, 3H), 1.92 (s, 3H);

¹³C-NMR (75 MHz, CDCl₃): δ (ppm) = 168.4 (C=N), 149.1 (C_q), 137.1 (C_q), 137.0 (C_q), 127.58 (CH), 127.56 (CH), 125.8 (C_q), 124.9 (CH), 124.1 (CH), 122.1 (CH), 121.8 (CH), 121.2 (C_q), 120.5 (CH), 119.2 (CH), 111.3 (CH), 61.9 (CH₃), 50.3 (C_q), 33.4 (CH₂), 28.0 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3285, 3020, 2969, 1654, 1478, 1459, 1336, 1245, 1043, 899, 853, 754, 739, 730; **HR-MS** (ESI): calcd. for C₁₉H₁₈N₂ONa ([M+Na]⁺): 313.1311, found: 313.1307; **M(C₁₉H₁₈N₂O)**: 290.37.

2-Indolyl ketoxime ether 5

According to the <u>general procedure 3</u>, 2-hydroxy ketoxime ether **2** (E/Z = 85:15, 41 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Compound **5** was obtained as a colorless solid (48 mg, 79%, E/Z > 95:5).

R_f: 0.25 (20% MTBE/hexane); **mp.**: 114-116 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.97 (bs, 1H), 7.45-7.40 (m, 3H), 7.32-7.23 (m, 4H), 7.13 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.00 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.74 (d, J = 2.5 Hz, 1H), 3.84 (s, 3H), 2.83-2.52 (m, 4H), 1.75 (p, J = 7.0 Hz, 2H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 168.4 (C=N),

143.8 (C_q), 137.4 (C_q), 128.2 (2x CH), 128.1 (2x CH), 126.4 (CH), 125.9 (C_q), 124.0 (CH), 121.9 (CH), 121.7 (CH), 120.0 (C_q), 119.1 (CH), 111.4 (CH), 61.9 (CH₃), 54.6 (C_q), 40.2 (CH₂), 27.9 (CH₂), 21.4 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3410, 3314, 3054, 2952, 2936, 2895, 1617, 1491, 1458, 1446, 1417, 1340, 1246, 1043, 862, 745, 699; **HR-MS** (ESI): calcd. for $C_{20}H_{20}N_2ONa$ ([M+Na]⁺): 327.1468, found: 327.1465; **M(C_{20}H_{20}N_2O)**: 304.39.

2-Indolyl ketoxime ether 6

According to the general procedure 3, 2-hydroxy ketoxime ether 3 (54 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 68 hours. Compound **6** was obtained as a colorless solid (64 mg, 87%).

R_f: 0.20 (20% MTBE/hexane); **mp.**: 204-206 °C; ¹**H-NMR** (300 MHz, DMSO-d6): δ (ppm) = 10.79 (bs, 1H), 7.36-7.17 (m, 6H), 7.08-6.99 (m, 4H), 6.85-6.75 (m, 2H), 6.60 (d, J = 8.0 Hz, 1H), 6.04 (d, J = 2.5 Hz, 1H), 3.59 3.86 (s, 3H), 2.88-2.78 (m, 1H), 2.72-2.60 (m, 2H), 2.32-2.21 (m, 1H); ¹³**C-NMR** (75 MHz, DMSO-d6): δ (ppm) = 160.3 (C=N), 142.7 (C_q), 140.8 (C_q), 138.2 (C_q), 137.1 (C_q), 128.7 (CH), 128.4 (2x CH), 127.9 (2x

CH), 127.8 (CH), 126.8 (CH), 126.6 (CH), 126.3 (C_q), 126.1 (CH), 125.9 (CH), 121.6 (CH), 120.7 (CH), 118.6 (C_q), 117.9 (CH), 111.5 (CH), 61.3 (CH₃), 54.7 (C_q), 26.1 (CH₂), 24.4 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3418, 3055, 2934, 1617, 1486, 1457, 1445, 1044, 859, 766, 744, 700; **HR-MS** (ESI): calcd. for C₂₅H₂₃N₂O ([M+H]⁺): 367.1805, found: 3671798; **M(C₂₅H₂₂N₂O)**: 366.46.

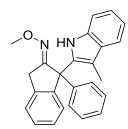
2-Indolyl ketoxime ether 4i

According to the general procedure 3, 2-hydroxy ketoxime ether 1i (59 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Compound 4i was obtained as a colorless solid (72 mg, 92%).

R_f: 0.72 (40% MTBE/hexane); **mp.**: 74-76 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.89 (bs, 1H), 7.46-7.42 (m, 3H), 7.35-7.29 (m, 4H), 7.26-7.22 (m, 3H), 7.17-7.14 (m, 2H), 6.97 (t, J = 7.5 Hz, 1H), 6.50 (d, J = 2.5 Hz, 1H), 5.81 (m, 1H), 5.06-5.02 (m, 2H), 4.15 (tt, J = 6.5, 3.5 Hz, 2H), 4.07 (d, J = 22.0 Hz,

1H), 3.94 (d, $J = 22.0 \,\text{Hz}$, 1H), 2.37 (q, $J = 7.0 \,\text{Hz}$, 2H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 166.8 (C=N), 147.3 (C_q), 144.0 (C_q), 137.6 (C_q), 137.3 (C_q), 135.2 (CH), 128.6 (2x CH), 128.0 (2x CH), 127.7 (CH), 127.2 (CH), 126.2 (CH), 126.2 (CH), 125.9 (C_q), 125.0 (CH), 124.9 (CH), 122.2 (CH), 121.9 (CH), 121.0 (C_q), 119.1 (CH), 116.5 (CH₂), 111.1 (CH), 73.2 (CH₂), 59.8 (C_q), 34.1 (CH₂), 33.3 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3412, 3057, 2928, 1639, 1491, 1457, 1414, 1043, 1032, 750, 744, 699; **HR-MS** (ESI): calcd. for C₂₇H₂₄N₂ONa ([M+Na]⁺): 415.1781, found: 415.1778; **M(C₂₇H₂₄N₂O)**: 392.50.

2-Indolyl ketoxime 4j'

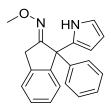

According to a modificiation of the general procedure 3, 2-hydroxy ketoxime silyl ether 1j (R^2 = TBS, 71 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Then, TBAF•3H₂O (0.13 g, 0.40 mmol, 2.0 equiv) was added and it was stirred at room temperature for 20 min. Compound 4j' was obtained as a colorless solid (59 mg, 87%).

R_f: 0.44 (50% MTBE/hexane); **mp.**: 151-153 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.93 (bs, 1H), 7.64 (bs, 1H), 7.41-7.39 (m, 3H), 7.32-7.19 (m, 7H), 7.14 (t, J= 7.5 Hz, 1H), 7.05 (d, J= 8.0 Hz, 1H), 6.93 (t, J= 7.5 Hz, 1H), 6.61 (d, J= 2.5 Hz, 1H), 4.08 (d, J= 22.0 Hz, 1H), 3.91 (d, J= 22.0 Hz, 1H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 168.3

(C=N), 147.2 (C_q), 143.6 (C_q), 137.4 (C_q), 137.2 (C_q), 128.5 (2x CH), 128.2 (2x CH), 127.9 (CH), 127.3 (CH), 126.8 (CH), 126.2 (CH), 125.9 (C_q), 125.2 (CH), 124.9 (CH), 122.1 (CH), 121.8 (CH), 121.0 (C_q), 119.4 (CH), 111.3 (CH), 59.8 (C_q), 32.6 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3420, 1629, 749; **HR-MS** (ESI): calcd. for C₂₃H₁₈N₂ONa ([M+Na]⁺): 361.1311, found: 361.1310; **M(C₂₃H₁₈N₂O)**: 338.41.

2-Indolyl ketoxime ether 4k

According to a modificiation of the general procedure 3, 2-hydroxy ketoxime ether **1a** (51 mg, 0.20 mmol, 1.0 equiv), 3-methylindole (26 mg, 0.20 mmol, 1.0 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 2 hours. Compound **4k** was obtained as a colorless solid (65 mg, 88%).

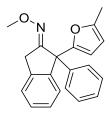


R_f: 0.46 (10% MTBE/hexane); **mp.**: 163-164 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.79 (bs, 1H), 7.52 (m, 1H), 7.42-7.07 (m, 12H), 4.02 (d, J = 22.0 Hz, 1H), 3.93 (s, 3H), 3.82 (d, J = 22.0 Hz, 1H), 1.83 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 165.8 (C=N), 145.3 (C_q), 143.2 (C_q), 137.8 (C_q), 135.9 (C_q), 134.6 (C_q), 130.3 (C_q), 128.5 (4x CH),

128.3 (CH), 127.6 (CH), 127.3 (CH), 126.5 (CH), 125.3 (CH), 121.7 (CH), 119.2 (CH), 118.5 (CH), 110.7 (CH), 109.5 (C_q), 62.4 (CH₃), 60.8 (C_q), 33.3 (CH₂), 9.8 (CH₃); **IR** (KBr): \tilde{V} (cm⁻¹) = 3397, 3053, 2936, 1596, 1491, 1458, 1332, 1240, 1034, 855, 745, 732, 700; **HR-MS** (ESI): calcd. for $C_{25}H_{22}N_2O$ Na ([M+Na]⁺): 389.1624, found: 389.1623; **M(C**₂₅H₂₂N₂O): 366.46.

2-Pyrrolyl ketoxime ether 4l

According to a modificiation of the general procedure 3, 2-hydroxy ketoxime ether **1a** (51 mg, 0.20 mmol, 1.0 equiv), pyrrole (42 μ L, 0.60 mmol, 3.0 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Compound **4I** was obtained as a colorless solid (58 mg, 96%). Small amounts (ca. 10%) of twice alkylated pyrrole was included which could not be separated by column chromatography.



R_f: 0.27 (5% MTBE/hexane); **mp.**: 158-159 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.77 (bs, 1H), 7.37-7.20 (m, 7H), 7.06 (m, 2H), 6.87 (td, J = 2.5, 1.5 Hz, 1H), 6.18 (dt, J = 3.5, 2.5 Hz, 1H), 5.96 (ddd, J = 3.5, 2.5, 1.5 Hz, 1H), 4.06 (d, J = 22.5 Hz, 1H), 3.97 (s, 3H), 3.94 (d, J = 22.5 Hz, 1H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 168.0 (C=N), 146.9 (C_q), 146.3 (C_q),

137.3 (C_q), 132.3 (C_q), 128.2 (2x CH), 128.0 (CH), 127.8 (2x CH), 127.4 (CH), 126.7 (CH), 126.1 (CH), 125.1 (CH), 118.5 (CH), 109.0 (CH), 107.8 (CH), 62.3 (CH₃), 60.0 (C_q), 34.1 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3429, 3055, 2935, 1654, 1491, 1476, 1457, 1445, 1414, 1116, 1091, 1035, 862, 794, 757, 730, 719, 698, 555; **HR-MS** (ESI): calcd. for $C_{20}H_{18}N_2ONa$ ([M+Na]⁺): 325.1311, found: 325.1311; **M(C_{20}H_{18}N_2O)**: 302.38.

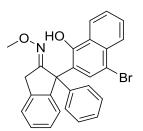
2-Furanyl ketoxime ether 4m

According to the general procedure 3, 2-hydroxy ketoxime ether **1a** (51 mg, 0.20 mmol, 1.0 equiv), 2-methylfuran (21 μ L, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Compound **4m** was obtained as a colorless oil (52 mg, 83%).

R_f: 0.54 (5% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.37-7.23 (m, 7H), 7.17-7.15 (m, 2H), 6.08 (d, J = 3.0 Hz, 1H), 5.93-5.92 (m, 1H), 3.97 (s, 3H), 3.95 (s, 2H), 2.29 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 164.7 (C=N), 153.5 (C_q), 152.7 (C_q), 145.3 (C_q), 144.1 (C_q), 137.9 (C_q), 128.2 (2x CH), 128.1 (3x CH), 127.4 (CH), 126.9 (CH), 126.6 (CH),

125.0 (CH), 110.1 (CH), 106.0 (CH), 62.2 (CH₃), 60.5 (C_q), 33.5 (CH₂), 13.9 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3449, 3025, 2937, 2916, 1602, 1554, 1491, 1478, 1459, 1446, 1217, 1204, 1164, 1044, 1025, 1009, 909, 863, 787, 755, 729, 720, 698; **HR-MS** (ESI): calcd. for C₂₁H₁₉NO₂Na ([M+Na]⁺): 340.1308, found: 340.1315; **M(C₂₁H₁₉NO₂):** 317.39.

2-Thiophenyl ketoxime ether 4n


According to the general procedure 3, 2-hydroxy ketoxime ether **1a** (51 mg, 0.20 mmol, 1.0 equiv), 2-bromothiophene (23 μ L, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 2 hours. Compound **4n** was obtained as a colorless oil (61 mg, 77%).

R_f: 0.59 (5% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.38-7.22 (m, 9H), 6.92 (d, J = 4.0 Hz, 1H), 6.66 (d, J = 4.0 Hz, 1H), 3.98-3.96 (m, 4H), 3.89 (d, J = 22.0 Hz, 1H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 166.3 (C=N), 150.8 (C_q), 146.4 (C_q), 144.6 (C_q), 137.6 (C_q), 129.2 (CH), 128.5 (CH), 128.3 (2x CH), 128.2 (2x CH), 127.5 (2x CH), 127.2 (CH),

126.1 (CH), 125.3 (CH), 112.0 (C_q), 62.4 (CH₃), 62.0 (C_q), 33.2 (CH₂); **IR** (film): \tilde{v} (cm⁻¹) = 2935, 1597, 1491, 1477, 1459, 1445, 1436, 1043, 970, 862, 796, 754, 732, 697; **HR-MS** (ESI): calcd. for $C_{20}H_{16}^{79}BrNOSNa$ ([M+Na]⁺): 420.0028, found: 420.0032; **M(C₂₀H₁₆BrNOS)**: 398.32.

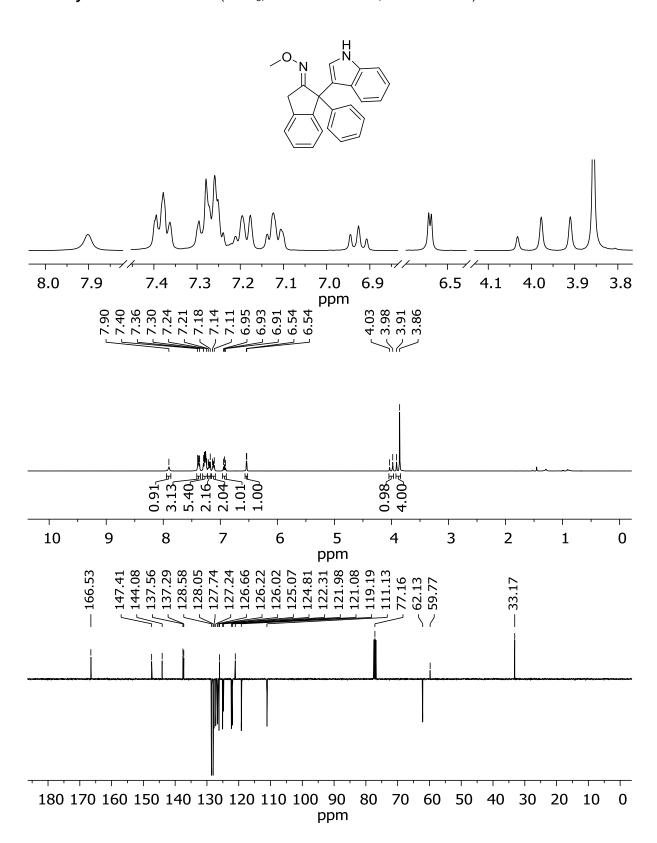
2-Naphthyl ketoxime ether 4o

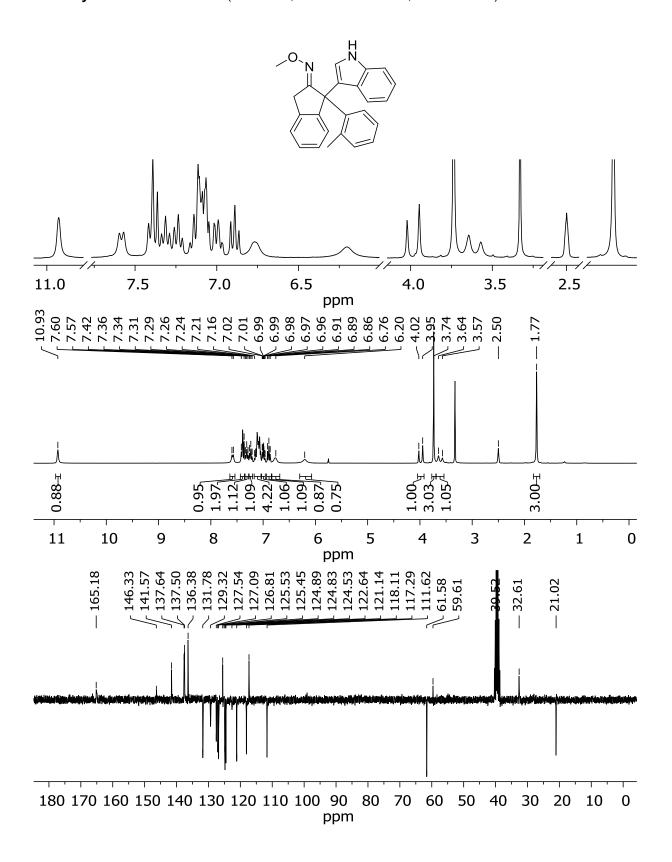
According to the general procedure 3, 2-hydroxy ketoxime ether **1a** (51 mg, 0.20 mmol, 1.0 equiv), 4-bromo-1-naphthol (54 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Compound **4o** was obtained as a colorless solid (87 mg, 95%).

R_f: 0.72 (10% MTBE/hexane); **mp.:** 164-166 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 9.41 (bs, 1H), 8.43 (d, J = 8.5 Hz, 1H), 8.14 (d, J = 8.5 Hz, 1H), 7.62 (ddd, J = 8.5, 7.0, 1.5 Hz, 1H), 7.53 (ddd, J = 8.0, 7.0, 1.5 Hz, 1H), 7.44-7.42 (m, 1H), 7.38-7.22 (m, 5H), 7.18 (s, 1H), 7.15-7.12 (m, 2H), 7.01-6.98 (m, 1H), 4.16 (d, J = 23.0 Hz, 1H), 3.98

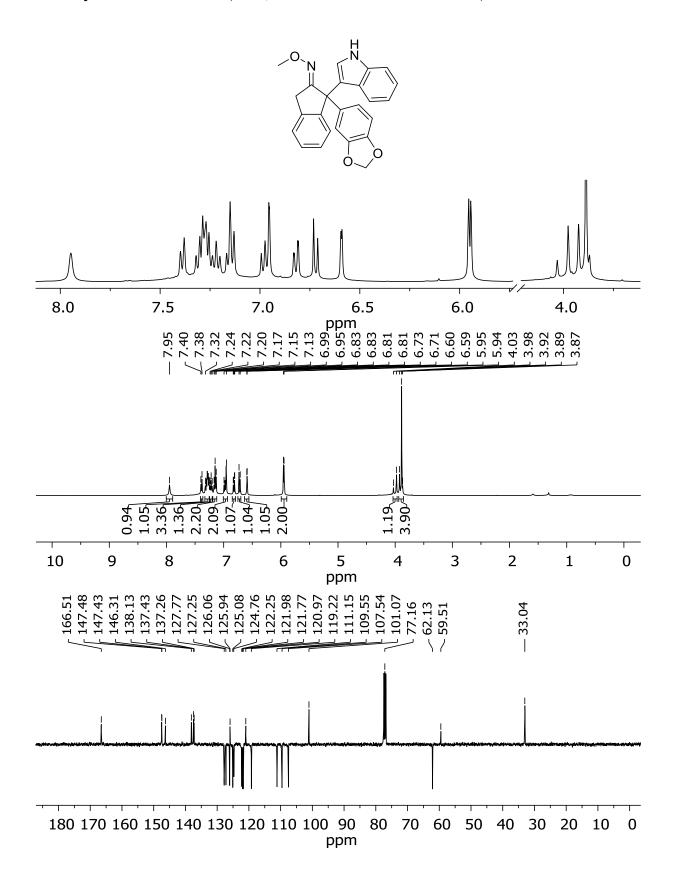
(s, 3H), 3.91 (d, J = 23.0 Hz, 1H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 170.8 (C=N), 152.0 (C_q), 145.7 (C_q), 144.2 (C_q), 136.6 (C_q), 132.6 (C_q), 130.1 (CH), 128.5 (C_q), 128.54 (2x CH), 128.45 (2x CH), 128.1 (CH), 128.0 (CH), 127.7 (CH), 127.5 (CH), 127.1 (CH), 126.7 (CH), 125.9 (CH), 125.6 (CH), 123.9 (CH), 123.2 (C_q), 112.4 (C_q), 63.8 (C_q), 62.8 (CH₃), 34.0 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3481, 3069, 2933, 1586, 1494, 1458, 1445, 1369, 1276, 1258, 1044, 880, 758, 698, 690, 629; **HR-MS** (ESI): calcd. for C₂₆H₂₀⁷⁹BrNO₂Na ([M+Na]⁺): 480.0570, found: 480.0570; **M(C₂₆H₂₀BrNO₂):** 458.36.

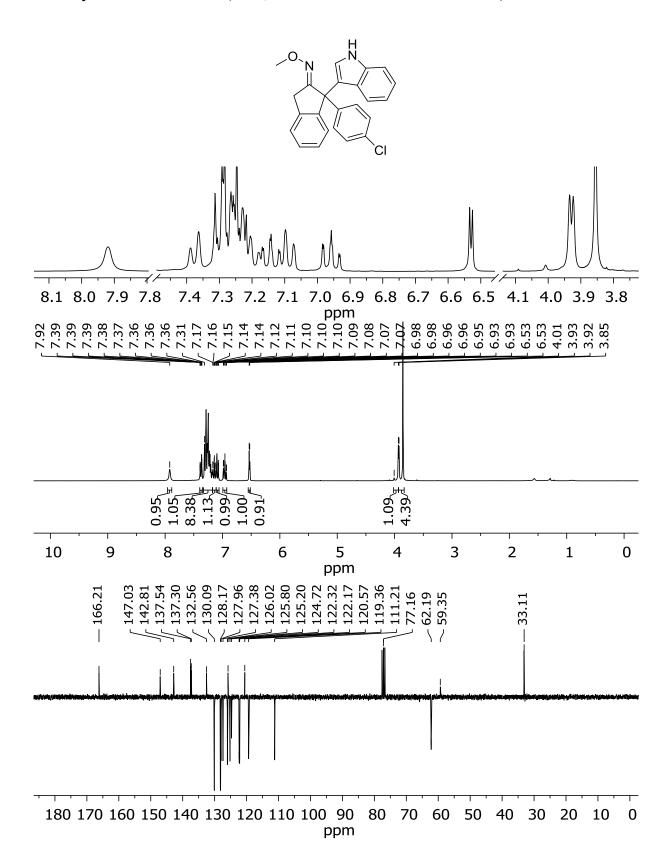
2-Phenyl ketoxime ether 4p

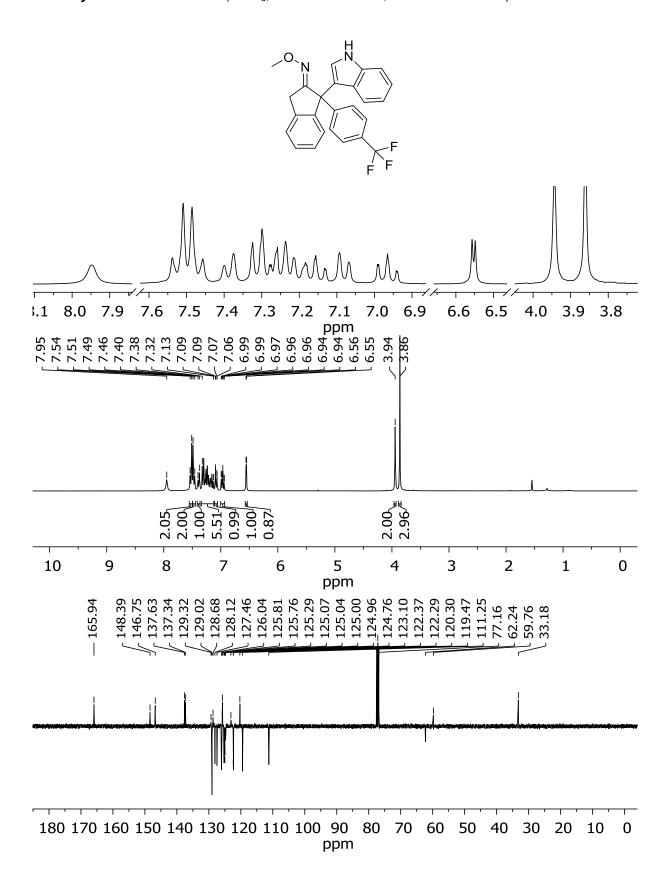

According to the general procedure 3, 2-hydroxy ketoxime ether **1a** (51 mg, 0.20 mmol, 1.0 equiv), anisole (26 μ L, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 24 hours. Compound **4p** was obtained as a colorless oil (38 mg, 56%).

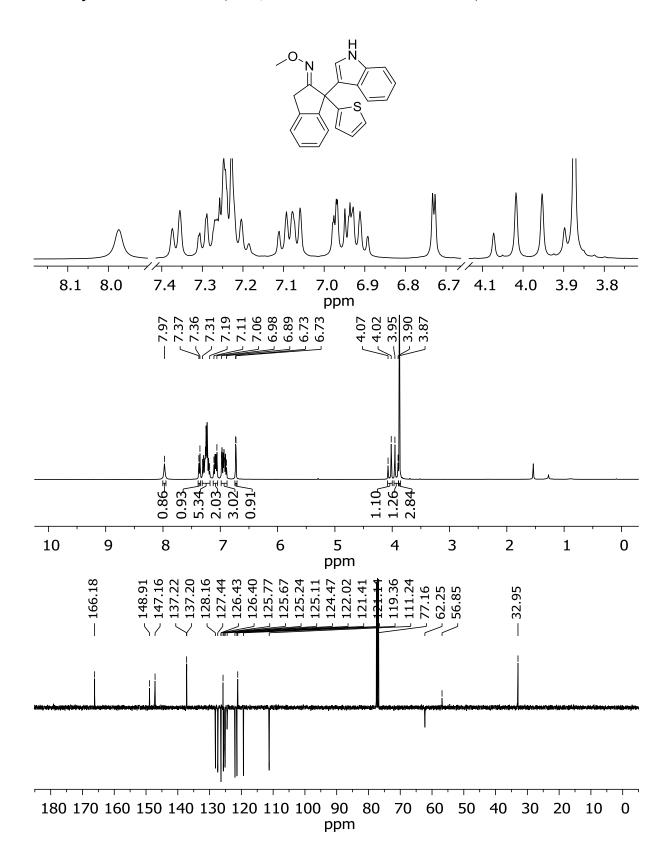

R_f: 0.53 (10% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.38-7.36 (m, 1H), 7.32-7.25 (m, 7H), 7.18 (dʻ, J = 9.0 Hz, 2H), 7.11-7.10 (m, 1H), 6.84 (dʻ, J = 9.0 Hz, 2H), 3.95 (s, 3H), 3.91 (s, 3H), 3.82 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 167.5 (C=N), 158.3 (C_q), 147.4 (C_q), 145.8 (C_q), 137.7 (C_q), 137.6 (C_q), 130.2 (2x CH),

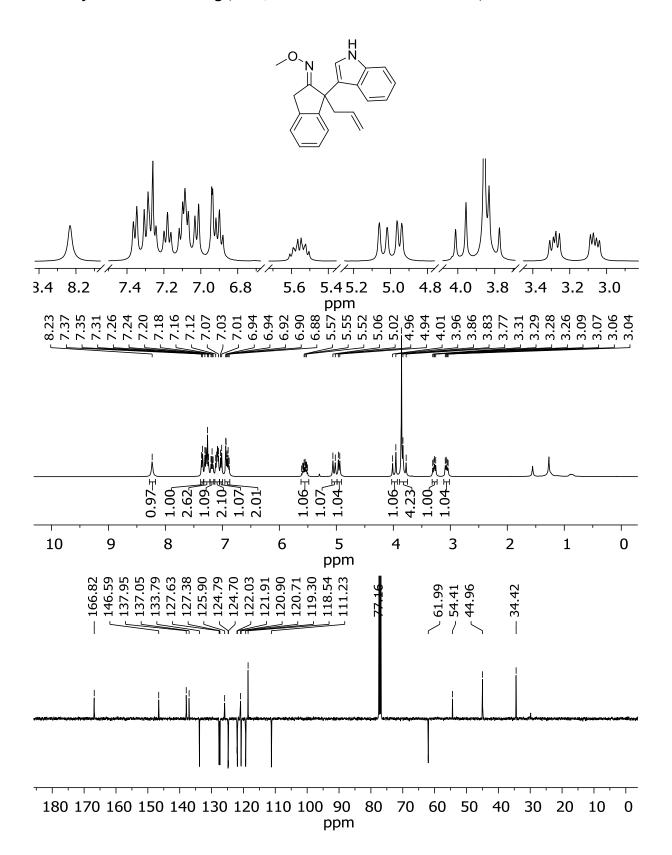
129.0 (2x CH), 128.0 (2x CH), 127.7 (CH), 127.3 (CH), 126.7 (CH), 126.6 (CH), 125.2 (CH), 113.4 (2x CH), 64.3 (C_q), 61.1 (C_{3}), 55.3 (C_{3}), 33.5 (C_{2}); **IR** (film): \tilde{v} (cm⁻¹) = 3021, 3007, 2936, 2898, 1607, 1509, 1460, 1444, 1297, 1250, 1216, 1181, 1043, 862, 826, 755, 724, 699, 589; **HR-MS** (ESI): calcd. for $C_{23}H_{21}NO_{2}Na$ ([M+Na]⁺): 366.1465, found: 366.1465; **M(C_{23}H_{21}NO_{2}):** 343.43.

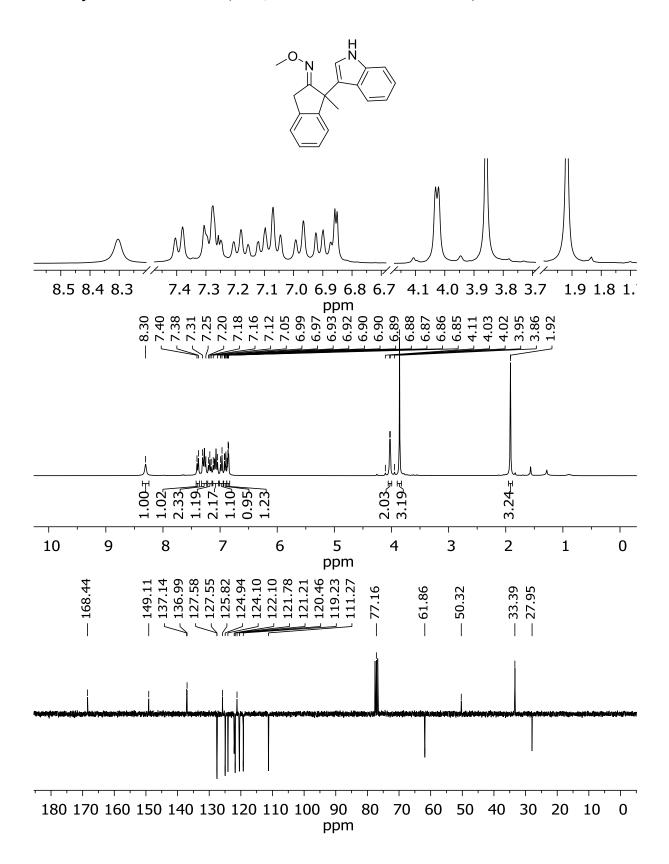

3.3 ¹H-NMR and ¹³C-NMR Spectra

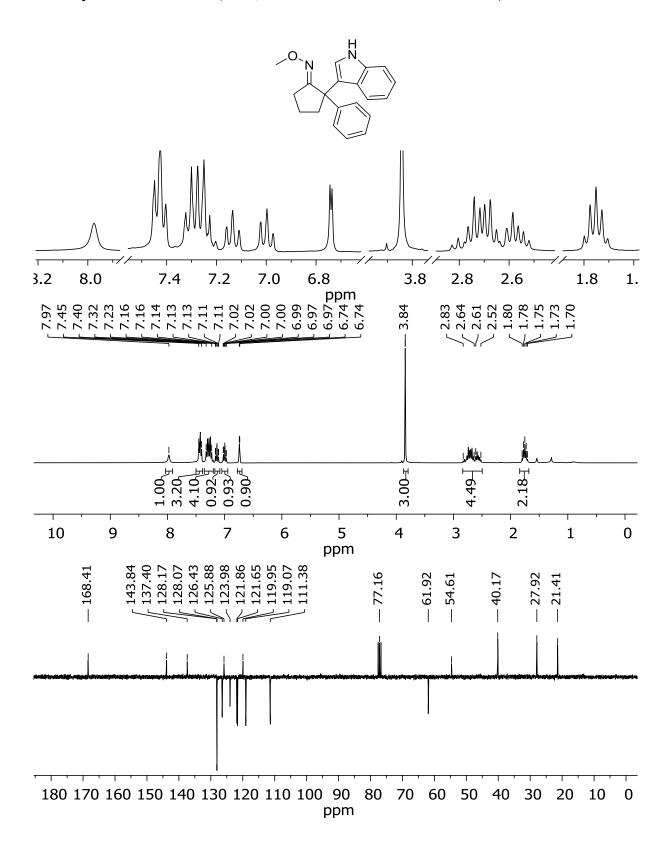

2-Indolyl ketoxime ether 4a (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

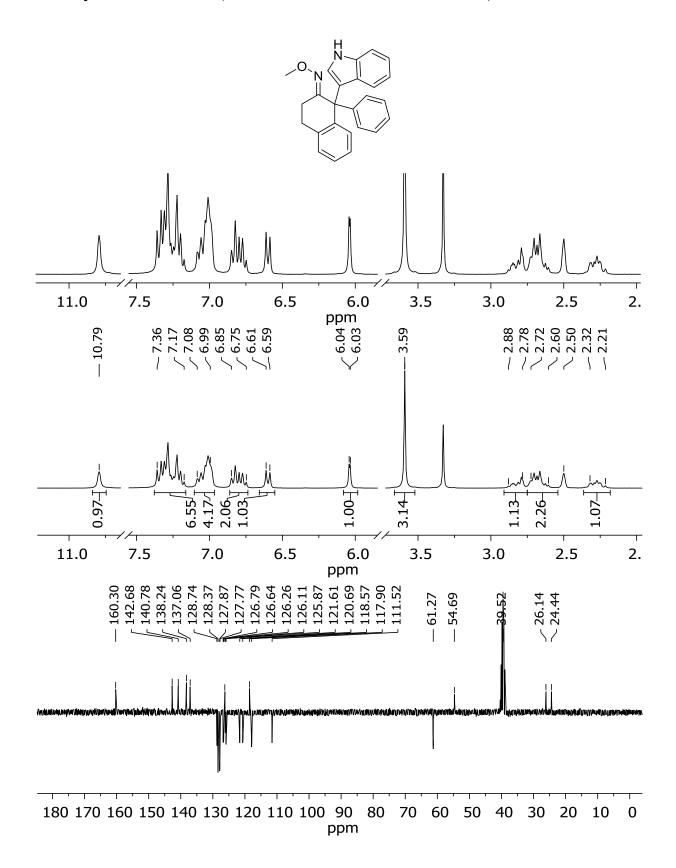


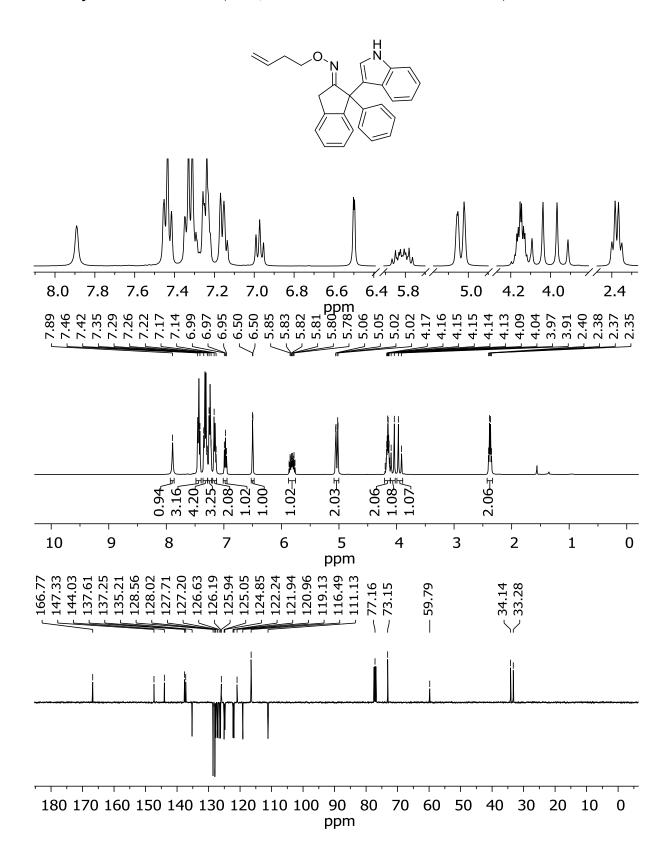


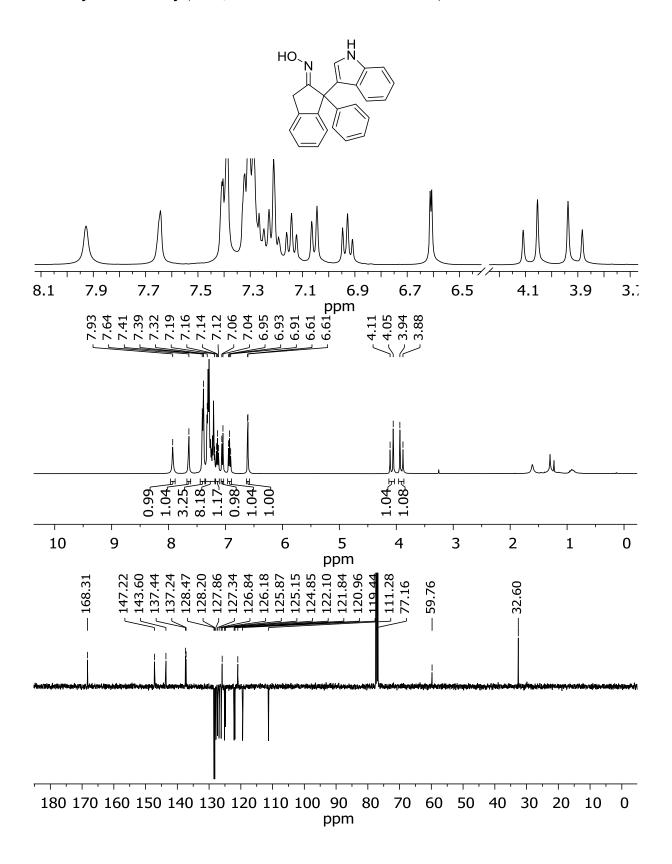

2-Indolyl ketoxime ether 4c (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)



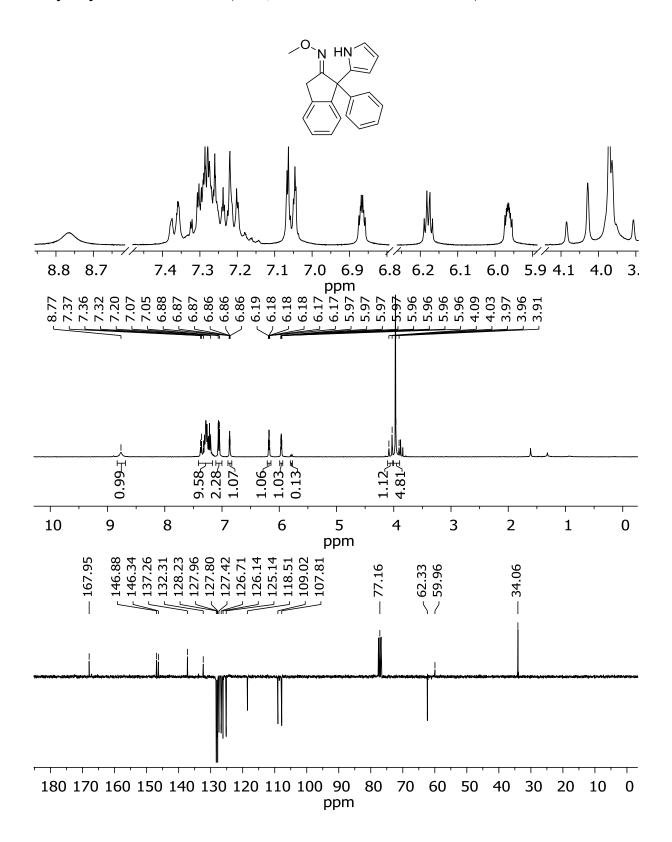


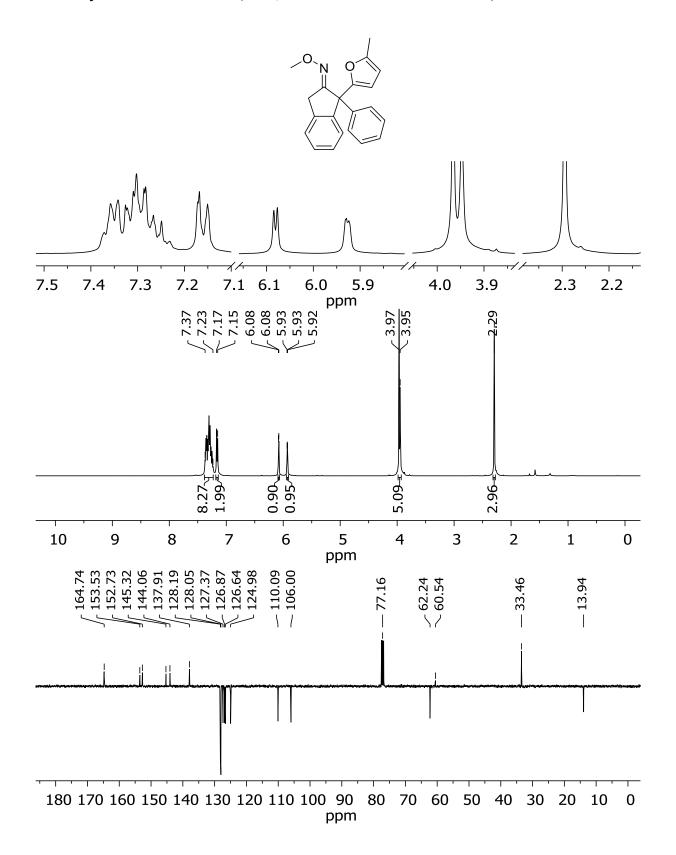


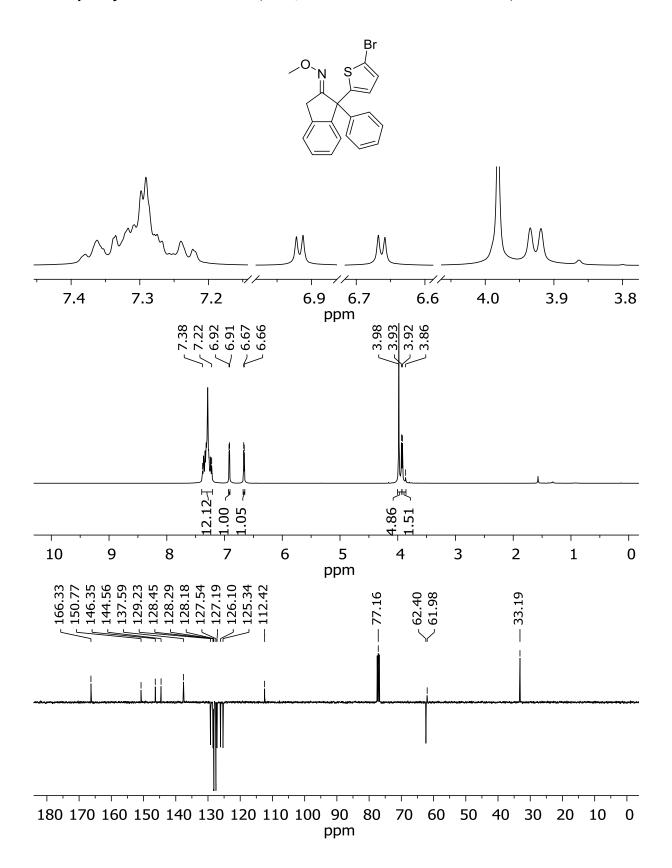


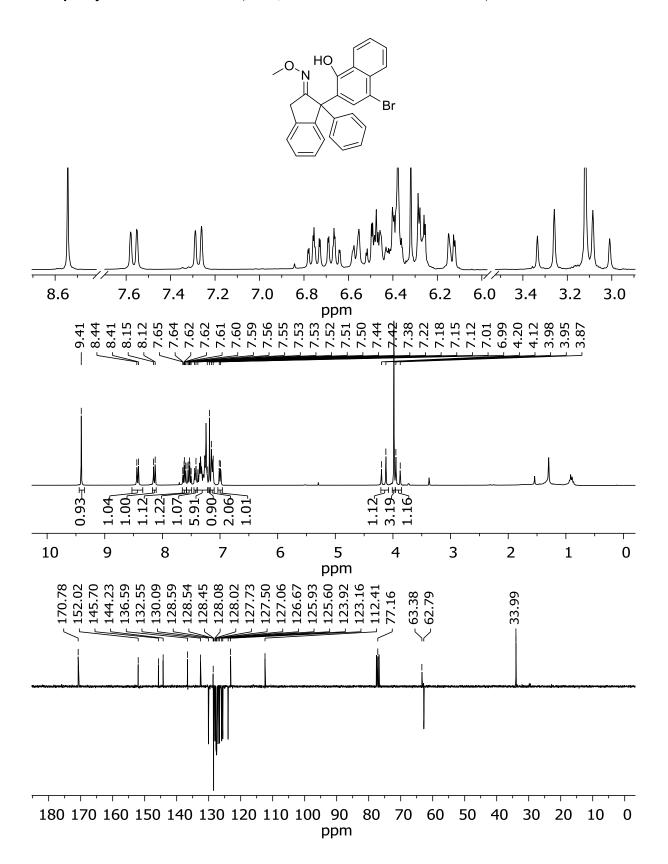

2-Indolyl ketoxime ether 5 (CDCl $_3$; 1 H-NMR: 400 MHz, 13 C-NMR: 100 MHz)

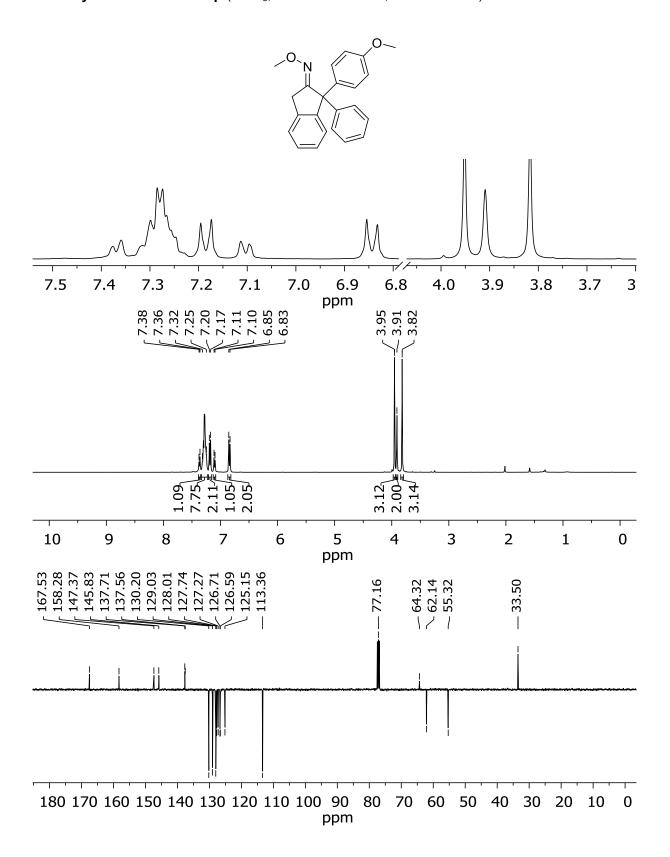
2-Indolyl ketoxime ether 4i (CDCI₃; ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz)




2-Indolyl ketoxime ether 4k (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)


2-Pyrrolyl ketoxime ether 4l (CDCl₃; ¹H-NMR: 400 MHz, APT: 75 MHz)


2-Furanyl ketoxime ether 4m (CDCl $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)


2-Thiophenyl ketoxime ether 4n (CDCl $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)

2-Naphthyl ketoxime ether 4o (CDCI₃; ¹H-NMR: 300 MHz, APT: 75 MHz)

2-Phenyl ketoxime ether 4p (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

4 The FCR of 2-Hydroxy Aldoxime Ethers

4.1 Substrate Scope

General procedure 4 of the FCR

R² O N (Het)ArH (1.5 equiv)
Ca(NTf₂)₂ (10 mol%) R² O N

$$nBu_4NPF_6$$
 (10 mol%) H (Het)Ar
 R^1 Ar CHCl₃, 60 °C R² R1 Ar

2-Hydroxy aldoxime ether **7** (1.0 equiv), a (hetero)arene (1.5 equiv), $Ca(NTf_2)_2$ (0.10 equiv) and nBu_4NPF_6 (0.10 equiv) were placed in an oven dried and sealable DURAN® test tube. Abs. $CHCl_3$ (0.2 M) was added and the reaction mixture was heated to 60 °C while stirring. After complete reaction it was quenched with sat. $NaHCO_3$ -solution and extracted twice with CH_2Cl_2 . The combined organic phases were dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (5% \rightarrow 20% MTBE/hexane).

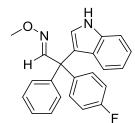
2-Indolyl aldoxime ether 8a

According to the general procedure 4, 2-hydroxy aldoxime ether **7a** (48 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 3 hours. Compound **8a** was obtained as a colorless solid (57 mg, 84%).

R_f: 0.32 (20% MTBE/hexane); **mp.:** 120-121 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.34 (s, 1H), 7.98 (bs, 1H), 7.33-7.24 (m, 11H), 7.20-7.14 (m, 2H), 6.99 (t, J = 7.5 Hz, 1H), 6.41 (d, J = 2.5 Hz, 1H), 3.83 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 154.5 (HC=N), 143.6 (2x C_q), 137.1 (C_q), 129.8 (4x CH), 128.0 (4x CH), 126.9 (2x CH), 126.6

 (C_q) , 125.7 (CH), 122.5 (CH), 122.1 (CH), 119.9 (C_q) , 119.4 (CH), 111.4 (CH), 61.8 (CH₃), 55.1 (C_q) ; **IR** (KBr): \tilde{v} (cm⁻¹) = 3418, 3056, 2935, 1617, 1457, 1020, 748, 702; **HR-MS** (ESI): calcd. for $C_{23}H_{20}N_2ONa$ ([M+Na]⁺): 363.1468, found: 363.1465; **M(C₂₃H₂₀N₂O)**: 340.43.

2-Indolyl aldoxime ether 8b


According to the general procedure 4, 2-hydroxy aldoxime ether **7b** (55 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 5 hours. Compound **8b** was obtained as a colorless solid (67 mg, 89%).

R_f: 0.32 (20% MTBE/hexane); **mp.:** 81-82 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.24 (s, 1H), 8.01 (bs, 1H), 7.34-7.27 (m, 4H), 7.26-7.23 (m, 2H), 7.21-7.13 (m, 5H), 7.10 (d, J = 8.5 Hz, 1H), 6.97 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.44 (d, J = 2.5 Hz, 1H), 3.81 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 154.0 (HC=N), 143.3 (C_q), 142.0

 (C_q) , 137.1 (C_q) , 132.8 (C_q) , 131.4 $(2x\ CH)$, 129.6 $(2x\ CH)$, 128.2 $(2x\ CH)$, 128.1 $(2x\ CH)$, 127.1 (CH), 126.3 (C_q) , 125.5 (CH), 122.3 $(2x\ CH)$, 119.6 (CH), 119.6 (C_q) , 111.4 (CH), 61.9 (CH_3) , 54.8 (C_q) ; **IR** (KBr): \tilde{v} (cm^{-1}) = 3412, 3056, 2936, 1617, 1489, 1457, 1095, 1057, 1035, 1022, 1014, 816, 764, 744, 703; **HR-MS** (ESI): calcd. for $C_{23}H_{19}^{\ 35}CIN_2ONa$ $([M+Na]^+)$: 397.1078, found: 397.1083; **M(C_{23}H_{19}CIN_2O)**: 374.87.

2-Indolyl aldoxime ether 8c

According to the general procedure 4, 2-hydroxy aldoxime ether **7c** (52 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 4 hours. Compound **8c** was obtained as a colorless solid (70 mg, 97%).

R_f: 0.23 (20% MTBE/hexane); **mp.**: 77-78 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.27 (s, 1H), 8.00 (bs, 1H), 7.33-7.27 (m, 4H), 7.22-7.09 (m, 6H), 6.99-6.93 (m, 3H), 6.42 (d, J = 2.5 Hz, 1H), 3.81 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 161.7 (d, J = 246.0 Hz, C_q), 154.3 (HC=N), 143.5 (C_q), 139.1 (d, J = 3.5 Hz, C_q), 137.1 (C_q), 131.5

(d, J= 8.0 Hz, 2x CH), 129.6 (2x CH), 128.2 (2x CH), 127.1 (CH), 126.4 (C_q), 125.5 (CH), 122.3 (CH), 122.2 (CH), 119.9 (C_q), 119.6 (CH), 114.7 (d, J= 21.0 Hz, 2x CH), 111.4 (CH), 61.9 (CH₃), 54.7 (C_q); ¹⁹**F-NMR** (282 MHz, CDCl₃): δ (ppm) = -116.2; **IR** (KBr): \tilde{v} (cm⁻¹) = 3411, 3057, 2937, 1602, 1506, 1457, 1445, 1228, 1161, 1105, 1057, 1035, 1022, 854, 827, 808, 763, 744, 704, 585; **HR-MS** (ESI): calcd. for C₂₃H₁₉FN₂ONa ([M+Na]⁺): 381.1374, found: 381.1379; **M(C₂₃H₁₉FN₂O)**: 358.42.

2-Indolyl aldoxime ether 8d

According to the general procedure 4, 2-hydroxy aldoxime ether **7d** (54 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 3 hours. Compound **8d** was obtained as a colorless solid (69 mg, 93%).

R_f: 0.29 (20% MTBE/hexane); **mp.**: 85-86 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.26 (s, 1H), 7.96 (bs, 1H), 7.31 (d, J = 8.5 Hz, 1H), 7.17-7.09 (m, 10H), 6.95 (t, J = 7.5 Hz, 1H), 6.42 (d, J = 2.5 Hz, 1H), 3.80 (s, 3H), 2.35 (s, 6H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 154.7 (HC=N), 140.8 (2x C_q), 137.1 (C_q), 136.3 (2x C_q), 129.6 (4x CH), 128.7 (4x CH), 126.7 (C_q), 125.6 (CH), 122.6 (CH), 122.0 (CH), 120.3 (C_q),

119.4 (CH), 111.3 (CH), 61.8 (CH₃), 54.5 (C_q), 21.1 (2x CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3415, 3054, 2935, 1617, 1509, 1457, 1057, 1029, 1019, 810, 786, 742; **HR-MS** (ESI): calcd. for $C_{25}H_{24}N_2ONa$ ([M+Na]⁺): 391.1781, found: 391.1782; **M(C₂₅H₂₄N₂O)**: 368.48.

2-Indolyl aldoxime ether 8e

According to the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 7 hours. Compound **8e** was obtained as a colorless solid (49 mg, 89%).

R_f: 0.29 (20% MTBE/hexane); **mp.**: 103-105 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.08 (bs, 1H), 8.02 (s, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.30-7.23 (m, 5H), 7.15 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.15 (d, J = 2.5 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 6.93 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 3.88 (s, 3H), 1.94 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) =

154.8 (HC=N), 145.5 (C_q), 137.1 (C_q), 128.5 (2x CH), 127.3 (2x CH), 126.7 (CH), 125.6 (C_q), 122.4 (CH), 122.2 (CH), 121.2 (CH), 120.5 (C_q), 119.5 (CH), 111.4 (CH), 61.6 (CH₃), 45.7 (C_q), 26.0 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3418, 3056, 2976, 2935, 1617, 1490, 1457, 1447, 1338, 1054, 881, 764, 744, 703; **HR-MS** (ESI): calcd. for $C_{18}H_{18}N_2ONa$ ([M+Na]⁺): 301.1311, found: 301.1301; **M(C_{18}H_{18}N_2O):** 278.36.

2-Indolyl aldoxime ether 8f

According to the general procedure 4, 2-hydroxy aldoxime ether **7f** (39 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 27 hours. Compound **8f** was obtained as a colorless solid (50 mg, 85%).

R_f: 0.28 (20% MTBE/hexane); **mp.:** 83-85 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.12 (s, 1H), 8.08 (bs, 1H), 7.39 (dd, J = 5.5, 3.5 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.23-7.20 (m, 2H), 7.15 (ddd, J = 8.0, 6.5, 2.0 Hz, 1H), 7.11-7.08 (m, 2H), 6.94-6.88 (m, 2H), 3.89 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 155.6

(HC=N), 142.9 (C_q), 137.1 (C_q), 136.9 (C_q), 132.7 (CH), 127.7 (CH), 127.1 (CH), 126.2 (CH), 125.8 (C_q), 122.1 (CH), 121.6 (CH), 120.7 (C_q), 120.5 (CH), 119.5 (CH), 111.4 (CH), 61.5 (CH₃), 46.0 (C_q), 24.3 (CH₃), 21.6 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3418, 3058, 2979, 2937, 1618, 1486, 1456, 1417, 1336, 1244, 1101, 1049, 1013, 878, 765, 744, 728, 623, 588; **HR-MS** (ESI): calcd. for C₁₉H₂₁N₂O ([M+H]⁺): 293.1648, found: 293.1644; **M(C₁₉H₂₀N₂O)**: 292.38.

2-Indolyl aldoxime ether 8g

According to the general procedure 4, 2-hydroxy aldoxime ether **7g** (39 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 4 hours. Compound **8g** was obtained as a colorless solid (50 mg, 86%).

R_f: 0.26 (20% MTBE/hexane); **mp.**: 81-83 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.07-8.04 (m, 2H), 7.35 (d, J = 8.0 Hz, 1H), 7.22-7.13 (m, 3H), 7.10-7.06 (m, 4H), 6.95 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 3.91 (s, 3H), 2.32 (s, 3H), 1.95 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 155.1 (HC=N), 145.5 (C_q), 138.0 (C_q), 137.1 (C_q), 128.4 (CH), 127.8 (CH), 127.5 (CH), 125.7 (C_q), 124.4 (CH), 122.3 (CH), 122.1

(CH), 121.3 (CH), 120.6 (C_q), 119.4 (CH), 111.4 (CH), 61.6 (CH₃), 45.6 (C_q), 26.0 (CH₃), 21.7 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3417, 3056, 2981, 2937, 2816, 1700, 1604, 1485, 1457, 1417, 1050, 908, 880, 744, 710; **HR-MS** (ESI): calcd. for C₁₉H₂₀N₂ONa ([M+Na]⁺): 315.1468, found: 315.1460; **M(C₁₉H₂₀N₂O)**: 292.38.

2-Indolyl aldoxime ether 8h

According to the general procedure 4, 2-hydroxy aldoxime ether **7h** (47 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 4 hours. Compound **8h** was obtained as a colorless solid (64 mg, 96%).

R_f: 0.32 (20% MTBE/hexane); **mp.**: 75-77 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.07 (bs, 1H), 8.02 (s, 1H), 7.37-7.30 (m, 3H), 7.25-7.11 (m, 4H), 7.04 (d, J = 2.5 Hz, 1H), 6.96 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 3.90 (s, 3H), 1.95 (s, 3H), 1.33 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 155.2 (HC=N), 149.4 (C_q), 142.4 (C_q), 137.1 (C_q), 126.9 (2x CH), 125.8 (C_q), 125.4 (2x CH), 122.4 (CH), 122.1 (CH), 121.4 (CH),

120.7 (C_q), 119.4 (CH), 111.4 (CH), 61.6 (CH₃), 45.3 (C_q), 34.5 (C_q), 31.5 (3x CH₃), 25.9 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3417, 2962, 2938, 1618, 1458, 1053, 743; **HR-MS** (ESI): calcd. for C₂₂H₂₆N₂ONa ([M+Na]⁺): 357.1937, found: 357.1931; **M(C₂₂H₂₆N₂O)**: 334.46.

2-Indolyl aldoxime ether 8i

According to the general procedure 4, 2-hydroxy aldoxime ether **7i** (51 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 4 hours. Compound **8i** was obtained as a colorless solid (64 mg, 90%).

R_f: 0.21 (20% MTBE/hexane); **mp.**: 147-148 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.09 (bs, 1H), 8.03 (s, 1H), 7.58 (m, 2H), 7.53 (dʻ, J = 8.5 Hz, 2H), 7.45-7.31 (m, 6H), 7.19-7.09 (m, 3H), 6.95 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 3.89 (s, 3H), 1.97 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 154.8 (HC=N), 144.6 (C_q), 140.9 (C_q), 139.5 (C_q), 137.2 (C_q), 128.9 (2x CH), 127.7 (2x CH), 127.3 (CH), 127.18 (2x CH),

127.15 (2x CH), 125.7 (C_q), 122.4 (CH), 122.2 (CH), 121.3 (CH), 120.5 (C_q), 119.6 (CH), 111.4 (CH), 61.7 (CH₃), 45.5 (C_q), 26.1 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3419, 3028, 2979, 2934, 2897, 1617, 1485, 1457, 1416, 1336, 1244, 1105, 1049, 1007, 882, 839, 765, 743, 699; **HR-MS** (ESI): calcd. for C₂₄H₂₃N₂O ([M+H]⁺): 355.1805, found: 355.1802; **M(C₂₄H₂₂N₂O)**: 354.45.

2-Indolyl aldoxime ether 8j

According to the general procedure 4, 2-hydroxy aldoxime ether **7j** (42 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 4 hours. Compound **8j** was obtained as a colorless solid (54 mg, 88%).

R_f: 0.23 (20% MTBE/hexane); **mp.**: 102-103 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.08 (bs, 1H), 7.99 (s, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.21 (d', J = 9.0 Hz, 2H), 7.18-7.13 (m, 1H), 7.09-7.06 (m, 2H), 6.95 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.83 (d', J = 9.0 Hz, 2H), 3.89 (s, 3H), 3.80 (s, 3H), 1.92 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 158.3

 (C_q) , 155.1 (HC=N), 137.5 (C_q) , 137.2 (C_q) , 128.4 (2x CH), 125.7 (C_q) , 122.3 (CH), 122.1 (CH), 121.3 (CH), 120.7 (C_q) , 119.4 (CH), 113.8 (2x CH), 111.4 (CH), 61.6 (CH₃), 55.3 (CH₃), 45.0 (C_q) , 26.1 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3416, 3329, 2985, 2975, 2936, 2900, 1608, 1509, 1457, 1338, 1296, 1247, 1179, 1105, 1051, 1013, 882, 833, 763, 747; **HR-MS** (ESI): calcd. for $C_{19}H_{20}N_2O_2Na$ ([M+Na]⁺): 331.1417, found: 331.1416; **M(C₁₉H₂₀N₂O₂):** 308.38.

2-Indolyl aldoxime ether 8k

According to the general procedure 4, 2-hydroxy aldoxime ether **7k** (46 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 4 hours. Compound **8k** was obtained as a colorless solid (95 mg, 62%).

R_f: 0.29 (20% MTBE/hexane); **mp.**: 143-145 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.15 (s, 1H), 8.08 (bs, 1H), 7.85-7.79 (m, 3H), 7.75 (d, J = 8.5 Hz, 1H), 7.51-7.46 (m, 2H), 7.42-7.35 (m, 2H), 7.18-7.12 (m, 2H), 7.06 (dd, J = 8.0, 1.0 Hz, 1H), 6.89 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 3.95 (s, 3H), 2.05 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) =

154.8 (HC=N), 143.1 (C_q), 137.1 (C_q), 133.5 (C_q), 132.4 (C_q), 128.24 (CH), 128.23 (CH), 127.6 (CH), 126.1 (CH), 126.0 (CH), 125.9 (CH), 125.7 (C_q), 125.4 (CH), 122.5 (CH), 122.2 (CH), 121.1 (CH), 120.3 (C_q), 119.6 (CH), 111.4 (CH), 61.7 (CH₃), 45.8 (C_q), 26.0 (CH₃); **IR** (KBr): \tilde{V} (cm⁻¹) = 3417, 3338, 3051, 2986, 2973, 2933, 2896, 1630, 1617, 1596, 1505, 1456, 1443, 1420, 1369, 1337, 1244, 1111, 1106, 1050, 1014, 945, 891, 882, 863, 824, 767, 750, 477; **HR-MS** (ESI): calcd. for $C_{22}H_{20}N_2ONa$ ([M+Na]⁺): 351.1468, found: 351.1467; **M(C_{22}H_{20}N_2O):** 308.38.

2-Indolyl aldoxime ether 81

According to the general procedure 4, 2-hydroxy aldoxime ether **7I** (37 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 4 hours. Compound **8I** was obtained as a colorless oil (48 mg, 85%).

R_f: 0.18 (20% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.03 (bs, 1H), 8.00 (s, 1H), 7.36-7.33 (m, 2H), 7.24-7.17 (m, 2H), 7.04 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.99.6.96 (m, 2H), 6.94 (ddd, J = 3.5, 1.5 Hz, 1H), 3.92 (s, 3H), 2.08 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 154.4 (HC=N), 150.5 (C_q), 137.0 (C_q), 126.8 (CH), 125.5 (C_q),

124.8 (CH), 124.5 (CH), 122.2 (CH), 121.9 (CH), 121.0 (CH), 120.9 (C_q), 119.6 (CH), 111.5 (CH), 61.8 (CH), 43.4 (C_q), 26.9 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3413, 2982, 2935, 2897, 1617, 1457, 1416, 1336, 1245, 1233, 1105, 1050, 1013, 885, 851, 747, 700; **HR-MS** (ESI): calcd. for C₁₆H₁₆N₂OSNa ([M+Na]⁺): 307.0876, found: 307.0871; **M(C₁₆H₁₆N₂OS)**: 284.38.

2-Indolyl aldoxime ether 8m

According to the general procedure 4, 2-hydroxy aldoxime ether **7m** (44 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 4 hours. Compound **8m** was obtained as a colorless oil (48 mg, 75%).

R_f: 0.34 (20% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.09 (bs, 1H), 7.92 (s, 1H), 7.34 (dt, J = 8.0, 1.0 Hz, 1H), 7.33-7.26 (m, 5H), 7.17-7.11 (m, 2H), 6.99 (d, J = 8.0, 1.5, 1.0 Hz, 1H), 6.91 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 3.87 (s, 3H), 2.50 (ddd, J = 13.5, 11.0, 5.0 Hz, 1H), 2.35 (ddd, J = 13.5, 11.0, 5.0 Hz, 1H), 1.37-1.11 (m, 4H), 7.15 (t, J = 7.0 Hz, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 154.5 (HC=N),

143.6 (C_q), 137.0 (C_q), 128.2 (4x CH), 126.6 (CH), 126.0 (C_q), 123.0 (CH), 122.0 (CH), 121.5 (CH), 119.3 (CH), 119.2 (C_q), 111.3 (CH), 61.6 (CH₃), 49.4 (C_q), 37.1 (CH₂), 27.2 (CH₂), 23.4 (CH₂), 14.2 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3417, 3057, 2955, 2936, 2869, 1599, 1490, 1457, 1446, 1416, 1338, 1243, 1216, 1104, 1063, 1041, 1014, 881, 759, 744, 701; **HR-MS** (ESI): calcd. for $C_{21}H_{24}N_2ONa$ ([M+Na]⁺): 343.1781, found: 343.1786; **M(C₂₁H₂₄N₂O)**: 320.44.

2-Indolyl aldoxime ether 8n

According to the general procedure 4, 2-hydroxy aldoxime ether **7n** (41 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 120 hours. Compound **8n** was obtained as a yellowish oil (21 mg, 34%).

R_f: 0.36 (20% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.07 (bs, 1H), 7.94 (s, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.31-7.24 (m, 5H), 7.18 (d, J = 2.5 Hz, 1H), 7.14 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 6.91 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 5.75 (ddt, J = 17.0, 10.0, 7.0 Hz, 1H), 4.98-4.90 (m, 2H), 3.86 (s, 3H), 3.26 (ddt, J = 14.0,

7.0, 1.5 Hz, 1H), 3.19 (ddt, J = 14.0, 7.0, 1.5 Hz, 1H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 154.0 (HC=N), 142.9 (C_q), 136.9 (C_q), 135.2 (CH), 128.3 (2x CH), 128.2 (2x CH), 126.8 (CH), 126.0 (C_q), 123.3 (CH), 122.1 (CH), 121.5 (CH), 119.6 (CH), 118.6 (C_q), 117.4 (CH₂), 111.4 (CH), 61.7 (CH₃), 49.1 (C_q), 42.1 (CH₂); **IR** (film): \tilde{v} (cm⁻¹) = 3418, 3075, 3061, 2937, 2898, 2816, 1638, 1617, 1598, 1490, 1458, 1417, 1337, 1243, 763; **HR-MS** (ESI): calcd. for C₂₀H₂₀N₂ONa ([M+Na]⁺): 327.1468, found: 327.1464; **M(C₂₀H₂₀N₂O)**: 304.39.

2-Indolyl aldoxime ether 80

According to the general procedure 4, 2-hydroxy aldoxime ether **7o** (51 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 24 hours. Compound **8o** was obtained as a colorless oil (48 mg, 67%).

R_f: 0.28 (20% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.08 (s, 1H), 8.00 (bs, 1H), 7.42-7.23 (m, 11H), 7.14 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.01-6.98 (m, 2H), 6.90 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 5.16 (d, J = 12.0 Hz, 1H), 5.13 (d, J = 12.0 Hz, 1H), 1.93 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 155.6

(HC=N), 145.4 (C_q), 137.8 (C_q), 137.1 (C_q), 128.6 (2x CH), 128.49 (2x CH), 128.46 (2x CH), 128.0 (CH), 127.3 (2x CH), 126.7 (CH), 125.6 (C_q), 122.5 (CH), 122.1 (CH), 121.2 (CH), 120.4 (C_q), 119.5 (CH), 111.4 (CH), 76.0 (CH₂), 45.9 (C_q), 26.1 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3421, 3060, 3029, 2980, 2931, 1598, 1492, 1455, 1416, 1370, 1336, 1245, 1105, 1029, 1014, 909, 763, 700, 584; **HR-MS** (ESI): calcd. for C₂₄H₂₂N₂ONa ([M+Na]⁺): 377.1624, found: 377.1637; **M(C₂₄H₂₂N₂O)**: 354.45.

2-Indolyl aldoxime 8p'

According to a modification of the general procedure 4, 2-hydroxy aldoxime silyl ether **7p** (74 mg, 0.20 mmol, 1.0 equiv), indole (35 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 4 hours. Then, TBAF•3H₂O (126 mg, 0.40 mmol, 2.0 equiv) was added and it was stirred at room temperature for 20 min. Compound **8p'** was obtained as a yellow solid (63 mg, 89%).

R_f: 0.22 (30% MTBE/hexane); **mp.:** 217-218 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.28 (s, 1H), 7.99 (bs, 1H), 7.35-7.33 (m, 2H), 7.15 (ddd, J= 8.0, 7.0, 1.0 Hz, 1H), 7.10-7.05 (m, 9H), 6.95 (ddd, J= 8.0, 7.0, 1.0 Hz, 1H), 6.48 (d, J= 2.5 Hz, 1H), 2.34 (s, 6H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 156.0 (HC=N), 140.5 (2x C_q), 137.1 (C_q), 136.5 (2x C_q), 129.5 (4x CH), 128.8 (4x CH), 126.6 (C_q), 125.5 (CH),

122.5 (CH), 122.2 (CH), 120.1 (C_q), 119.6 (CH), 111.4 (CH), 54.5 (C_q), 21.2 (2x CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3409, 3053, 3024, 2919, 1617, 1509, 1456, 1416, 1243, 1105, 962, 946, 888, 809, 794, 767, 741; **HR-MS** (ESI): calcd. for $C_{24}H_{21}N_2O$ ([M-H]⁻): 353.1659, found: 353.1669; **M(C_{24}H_{22}N_2O)**: 354.45.

2-Indolyl aldoxime ether 8q

According to the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), 2-methylindole (39 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 28 hours. Compound **8q** was obtained as a colorless oil (38 mg, 66%).

R_f: 0.33 (20% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.98 (s, 1H), 7.75 (bs, 1H), 7.40-7.23 (m, 6H), 7.07 (ddd, J = 8.0, 7.0, 1.5 Hz, 1H), 6.96 (dd, J = 8.0, 1.5 Hz, 1H), 6.89 (ddd, J = 8.0, 7.0, 1.5 Hz, 1H), 3.91 (s, 3H), 2.22 (s, 3H), 2.03 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 156.6 (HC=N), 145.9 (C_q), 135.2 (C_q), 131.7 (C_q),

128.6 (2x CH), 127.6 (C_q), 127.3 (2x CH), 126.6 (CH), 121.0 (CH), 120.7 (CH), 119.2 (CH), 115.3 (C_q), 110.3 (CH), 61.6 (CH₃), 46.5 (C_q), 24.6 (CH₃), 14.6 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3403, 3057, 2984, 2936, 2899, 1618, 1490, 1458, 1422, 1298, 1053, 881, 747, 704; **HR-MS** (ESI): calcd. for C₁₉H₂₀N₂ONa ([M+Na]⁺): 315.1468, found: 315.1466; **M(C₁₉H₂₀N₂O)**: 292.38.

2-Indolyl aldoxime ether 8r

According to the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), 7-methylindole (39 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 5 hours. Compound **8r** was obtained as a colorless solid (36 mg, 62%).

R_f: 0.21 (20% MTBE/hexane); **mp.**: 106-107°C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.05 (bs, 2H), 7.33-7.26 (m, 5H), 7.15 (d, J = 2.5 Hz, 1H), 7.00-6.99 (m, 1H), 6.91-6.87 (m, 2H), 3.91 (s, 3H), 2.52 (s, 3H), 1.97 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 154.9 (HC=N), 145.5 (C_q), 136.7 (C_q), 128.5 (2x CH), 127.3 (2x CH), 126.7 (CH), 125.2

 (C_q) , 122.7 (CH), 122.1 (CH), 121.1 (C_q) , 120.5 (C_q) , 119.7 (CH), 119.0 (CH), 61.6 (CH₃), 45.7 (C_q) , 26.0 (CH₃), 16.7 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3320, 3052, 2973, 2936, 1616, 1598, 1491, 1455, 1445, 1438, 1372, 1343, 1324, 1168, 1115, 1069, 1057, 1044, 955, 870, 785, 762, 755, 716, 698, 645, 559; **HR-MS** (ESI): calcd. for $C_{19}H_{20}N_2ONa$ ([M+Na]⁺): 315.1468, found: 315.1465; **M(C_{19}H_{20}N_2O):** 292.38.

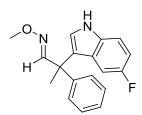
2-Indolyl aldoxime ether 8s

According to the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), 5-methoxyindole (44 mg, 0.30 mmol, 1.5 equiv), Ca(NTf₂)₂ (12 mg, 20 μ mol, 0.10 equiv) and nBu₄NPF₆ (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 25 hours. Compound **8s** was obtained as a colorless oil (22 mg, 35%).

R_f: 0.22 (20% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.00 (bs, 1H), 7.97 (s, 1H), 7.30-7.22 (m, 6H), 7.07 (d, J = 2.5 Hz, 1H), 6.81 (dd, J = 9.0, 2.5 Hz, 1H), 6.41 (d, J = 2.5 Hz, 1H), 3.88 (s, 3H), 3.59 (s, 3H), 1.92 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 154.8 (HC=N), 153.6 (C_q), 145.3 (C_q), 137.3 (C_q), 128.5 (2x CH),

127.3 (2x CH), 126.7 (CH), 126.1 (C_q), 123.1 (CH), 120.2 (C_q), 112.2 (CH), 112.0 (CH), 103.2 (CH), 61.7 (CH₃), 55.8 (CH₃), 45.6 (C_q), 25.9 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3418, 2935, 1579, 1484, 1455, 1442, 1215, 1051, 702; **HR-MS** (ESI): calcd. for $C_{19}H_{20}N_2O_2Na$ ([M+Na]⁺): 331.1417, found: 331.1415; **M(C_{19}H_{20}N_2O_2)**: 308.38.

2-Indolyl aldoxime ether 8t


According to the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), 6-chloroindole (46 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 3 hours. Compound **8t** was obtained as a colorless oil (63 mg, >99%).

R_f: 0.23 (20% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.09 (bs, 1H), 7.95 (s, 1H), 7.33-7.24 (m, 6H), 7.07 (d, J = 2.5 Hz, 1H), 6.89 (m, 2H), 3.88 (s, 3H), 1.91 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 154.6 (HC=N), 145.2 (C_q), 137.5 (C_q), 128.6 (2x CH), 128.2 (C_q), 127.2 (2x CH), 126.9 (CH), 124.3 (C_q),

123.0 (CH), 122.0 (CH), 120.8 (C_q), 120.3 (CH), 111.3 (CH), 61.7 (CH₃), 45.6 (C_q), 26.0 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3423, 2934, 1617, 1455, 1051, 883, 805, 700; **HR-MS** (ESI): calcd. for C₁₈H₁₇³⁵CIN₂ONa ([M+Na]⁺): 335.0922, found: 335.0922; **M(C₁₈H₁₇CIN₂O):** 312.80.

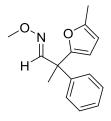
2-Indolyl aldoxime ether 8u

According to the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), 5-fluoroindole (41 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 3 hours. Compound **8u** was obtained as a colorless oil (57 mg, 96%).

R_f: 0.17 (20% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.09 (bs, 1H), 7.95 (s, 1H), 7.33-7.23 (m, 6H), 7.12 (d, J = 2.5 Hz, 1H), 6.89 (dt, J = 9.0, 2.5 Hz, 1H), 6.66 (dd, J = 10.0, 2.5 Hz, 1H), 3.88 (s, 3H), 1.91 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 157.4 (d, J = 234.5 Hz, CF), 154.5 (HC=N), 145.0 (C_q), 133.6 (C_q), 128.6 (2x

CH), 127.2 (2x CH), 126.9 (CH), 126.1 (d, J = 10.0 Hz, C_q), 124.1 (CH), 120.8 (d, J = 5.0 Hz, C_q), 112.0 (d, J = 9.5 Hz, CH), 110.7 (d, J = 26.5 Hz, CH), 106.1 (d, J = 24.0 Hz, CH), 61.7 (CH₃), 45.6 (C_q), 25.9 (CH₃); ¹⁹**F-NMR** (282 MHz, CDCl₃): δ (ppm) = -282.3; **IR** (film): \tilde{v} (cm⁻¹) = 3426, 3358, 2981, 2936, 2899, 1629, 1580, 1485, 1455, 1448, 1419, 1344, 1288, 1239, 1191, 1182, 1161, 1109, 1051, 1029, 936, 883, 855, 799, 766, 751, 733, 702; **HR-MS** (ESI): calcd. for $C_{18}H_{17}FN_2ONa$ ([M+Na]⁺): 319.1217, found: 319.1215; **M(C_{18}H_{17}FN_2O)**: 296.35.

2-Indolyl aldoxime ether 8v


According to the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), methyl indole-5-carboxylate (53 mg, 0.30 mmol, 1.5 equiv), Ca(NTf₂)₂ (12 mg, 20 μ mol, 0.10 equiv) and nBu₄NPF₆ (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 3 hours. Compound **8v** was obtained as a colorless solid (66 mg, 98%).

R_f: 0.34 (40% MTBE/hexane); **mp.:** 155-156 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.49 (bs, 1H), 8.01 (s, 1H), 7.86-7.84 (m, 2H), 7.33 (d, J = 9.0 Hz, 1H), 7.29-7.22 (m, 5H), 7.09 (d, J = 2.5 Hz, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 1.95 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 168.2 (C=O), 154.7 (HC=N), 145.0

 (C_q) , 139.8 (C_q) , 128.6 (2x CH), 127.2 (2x CH), 126.9 (CH), 125.3 (C_q) , 124.1 (CH), 123.8 (CH), 123.6 (CH), 122.1 (C_q) , 121.6 (C_q) , 111.2 (CH), 61.7 (CH₃), 51.9 (CH₃), 45.6 (C_q) , 26.1 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3307, 2937, 1692, 1617, 1436, 1355, 1317, 1300, 1252, 1117, 1051, 884, 764, 753, 701; **HR-MS** (ESI): calcd. for $C_{20}H_{20}N_2O_3Na$ ([M+Na]⁺): 359.1366, found: 359.1370; **M(C_{20}H_{20}N_2O_3)**: 336.39.

2-Furanyl aldoxime ether 8w

According to the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), 2-methylfuran (27 μ L, 0.30 mmol, 1.5 equiv), Ca(NTf₂)₂ (12 mg, 20 μ mol, 0.10 equiv) and nBu₄NPF₆ (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 3 hours. Compound **8w** was obtained as a colorless oil (41 mg, 85%).

R_f: 0.63 (5% MBTE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.85 (s, 1H), 7.34-7.21 (m, 3H), 7.15-7.12 (m, 2H), 6.13 (d, J = 3.0 Hz, 1H), 5.95 (dq, J = 3.0, 1.0 Hz, 1H), 3.91 (s, 3H), 2.26 (s, 3H), 1.78 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 155.1 (C_q), 153.0 (HC=N), 152.1 (C_q), 144.7 (C_q), 128.6 (2x CH), 127.0 (CH), 126.9 (2x CH), 107.8 (CH), 106.0 (CH),

61.8 (CH₃), 46.9 (C_q), 24.2 (CH₃), 13.8 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 2989, 2937, 1446, 1054, 1218, 1054, 1023, 888, 783, 700; **HR-MS** (ESI): calcd. for C₁₅H₁₇NO₂Na ([M+Na]⁺): 266.1152, found: 266.1155; **M(C₁₅H₁₇NO₂):** 243.31.

2-Phenyl aldoxime ether 8x

According to a modification of the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), 1,3,5-trimethoxybenzene (101 mg, 0.60 mmol, 3.0 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 2 hours. Compound **8x** was obtained as a colorless solid (54 mg, 82%).

R_f: 0.43 (20% MTBE/hexane); **mp.:** 112-113 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.83 (s, 1H), 7.26-7.15 (m, 4H), 7.14-7.09 (m, 1H), 6.12 (s, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 3.48 (s, 6H), 1.92 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 160.1 (C_q), 159.5 (2x C_q), 158.5 (HC=N), 147.9 (C_q), 128.1 (2x CH), 125.7 (2x CH), 125.3 (CH), 116.6

 (C_q) , 93.2 (2x CH), 61.2 (CH₃), 56.1 (2x CH₃), 55.3 (CH₃), 47.5 (C_q), 21.4 (3-CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3455, 2998, 2939, 1605, 1585, 1490, 1474, 1457, 1439, 1416, 1338, 1231, 1206, 1190, 1157, 1122, 1053, 1042, 948, 878, 817, 717, 701; **HR-MS** (ESI): calcd. for $C_{19}H_{23}NO_4Na$ ([M+Na]⁺): 352.1519, found: 352.1521; **M(C₁₉H₂₃NO₄):** 329.40.

2-Phenyl aldoxime ether 8y

According to a modification of the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), 1,3-dimethoxybenzene (79 μ L, 0.60 mmol, 3.0 equiv), Ca(NTf₂)₂ (12 mg, 20 μ mol, 0.10 equiv) and nBu₄NPF₆ (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 2 hours. Compound **8y** was obtained as a colorless solid (49 mg, 81%).

R_f: 0.28 (5% MTBE/hexane); **mp.**: 45-46 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.14 (s, 1H), 7.31 (d, J = 8.5 Hz, 1H), 7.29-7.24 (m, 2H), 7.20-7.17 (m, 1H), 7.11-7.09 (m, 2H), 6.55 (dd, J = 8.5, 2.5 Hz, 1H), 6.45 (d, J = 2.5 Hz, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.45 (s, 3H), 1.82 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 160.3 (C₀), 158.5

 (C_q) , 155.8 (HC=N), 148.0 (C_q) , 128.4 (CH), 128.1 (2x CH), 125.7 (2x CH), 125.8 (CH), 125.7 (C_q) , 104.1 (CH), 100.3 (CH), 61.5 (CH₃), 55.5 (CH₃), 55.3 (CH₃), 48.0 (C_q) , 26.1 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3444, 3011, 2975, 2934, 1606, 1586, 1503, 1490, 1463, 1440, 1407, 1373, 1320, 1308, 1291, 1275, 1209, 1181, 1165, 1153, 1121, 1064, 1046, 1036, 962, 943, 882, 824, 769, 705, 638, 573, 527; **HR-MS** (ESI): calcd. for $C_{18}H_{21}NO_3Na$ ([M+Na]⁺): 322.1414, found: 322.1419; **M(C_{18}H_{21}NO_3):** 299.37.

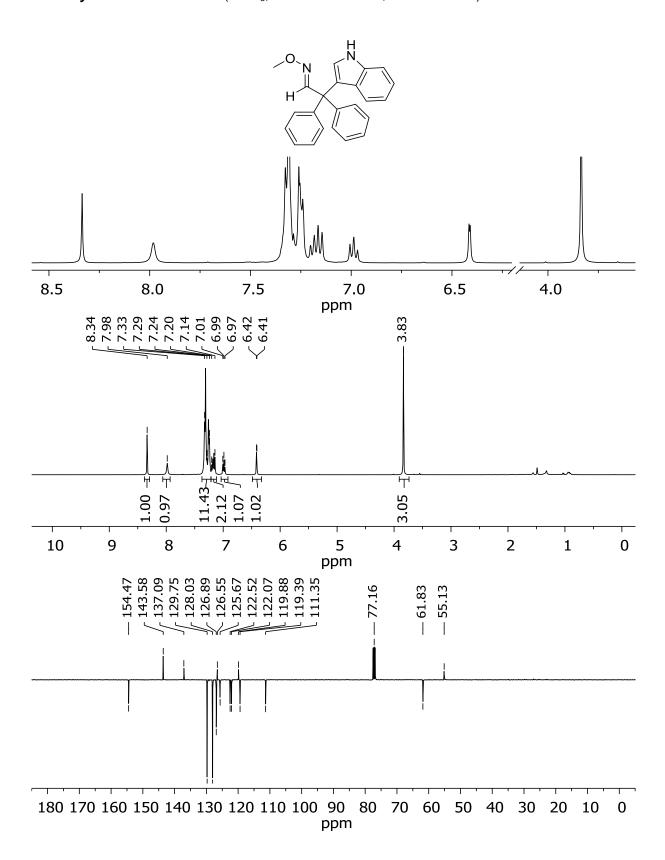
2-Phenyl aldoxime ether 8z

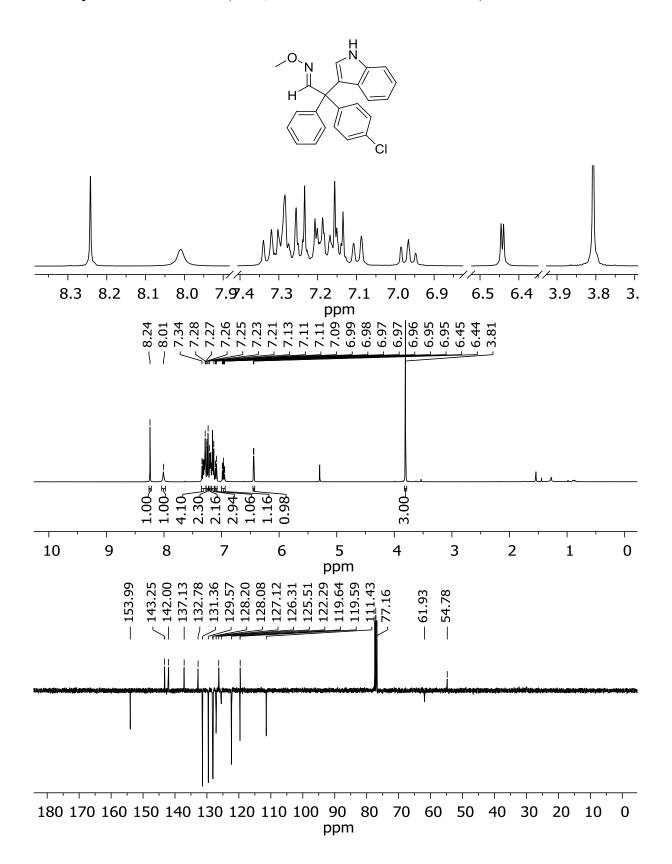
According to the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), 1-bromo-2,4-dimethoxybenzene (43 μ L, 0.30 mmol, 1.5 equiv), Ca(NTf₂)₂ (12 mg, 20 μ mol, 0.10 equiv) and nBu₄NPF₆ (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 2 hours. Compound **8z** was obtained as a colorless solid (27 mg, 36%).

R_f: 0.34 (20% MTBE/hexane); **mp.**: 110-111 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.07 (s, 1H), 7.31 (s, 1H), 7.22-7.22 (m, 2H), 7.18-7.14 (m, 1H), 7.06-7.04 (m, 2H), 6.43 (s, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.43 (s, 3H), 1.77 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 157.8 (C_q), 156.1 (C_q), 155.0 (HC=N), 147.5 (C_q), 132.0 (CH), 128.3

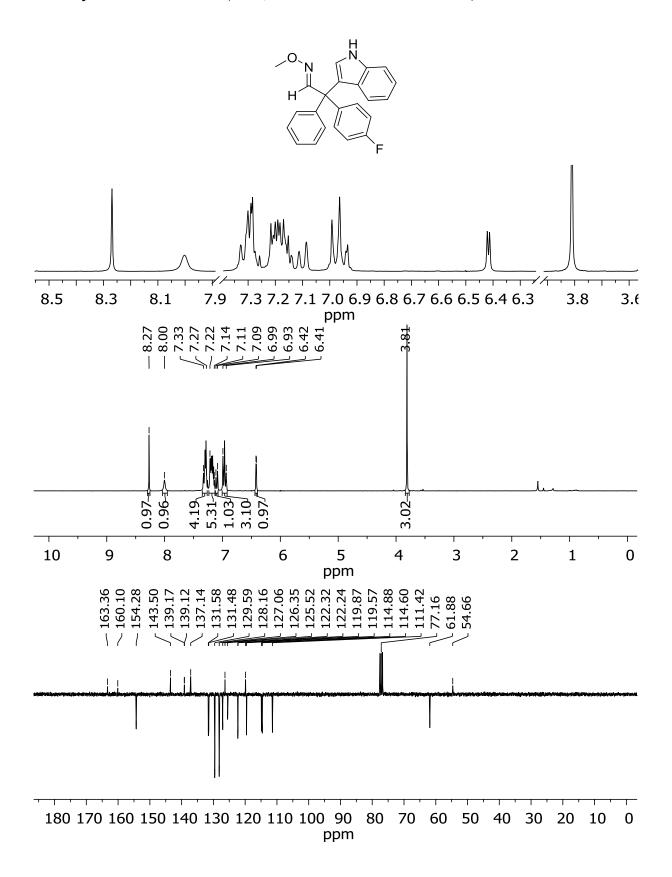
(2x CH), 127.1 (C_q), 126.0 (CH), 125.8 (2x CH), 102.1 (C_q), 98.3 (CH), 61.6 (CH₃), 56.5 (CH₃), 55.7 (CH₃), 47.9 (C_q), 26.2 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3445, 2983, 2961, 2938, 1597, 1500, 1490, 1464, 1445, 1438, 1379, 1294, 1210, 1167, 1049, 1029, 890, 884, 818, 768, 703; **HR-MS** (ESI): calcd. for $C_{18}H_{20}^{79}BrNO_3Na$ ([M+Na]⁺): 400.0519, found: 400.0504; **M(C₁₈H₂₀BrNO₃):** 378.27.

Bis(pyrrol-2-yl)ethyl alcohol 9

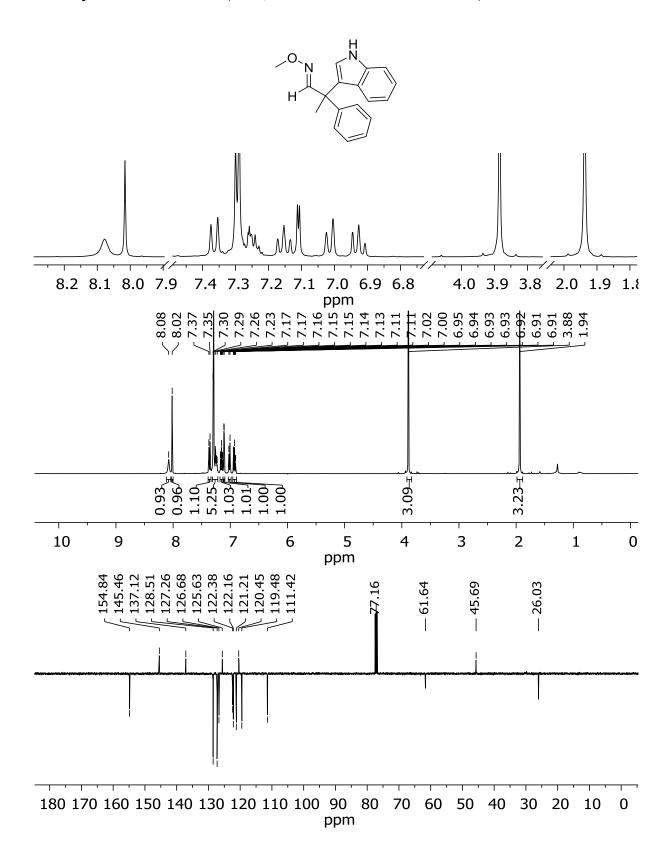

According to the general procedure 4, 2-hydroxy aldoxime ether **7e** (36 mg, 0.20 mmol, 1.0 equiv), 2-methylpyrrole (24 mg, 0.30 mmol, 1.5 equiv), $Ca(NTf_2)_2$ (12 mg, 20 μ mol, 0.10 equiv) and nBu_4NPF_6 (7.7 mg, 20 μ mol, 0.10 equiv) in 1.0 mL abs. CHCl₃ were used. The reaction mixture was stirred at 60 °C for 72 hours. Compound **9** was obtained as a brown oil (13 mg, 22%).

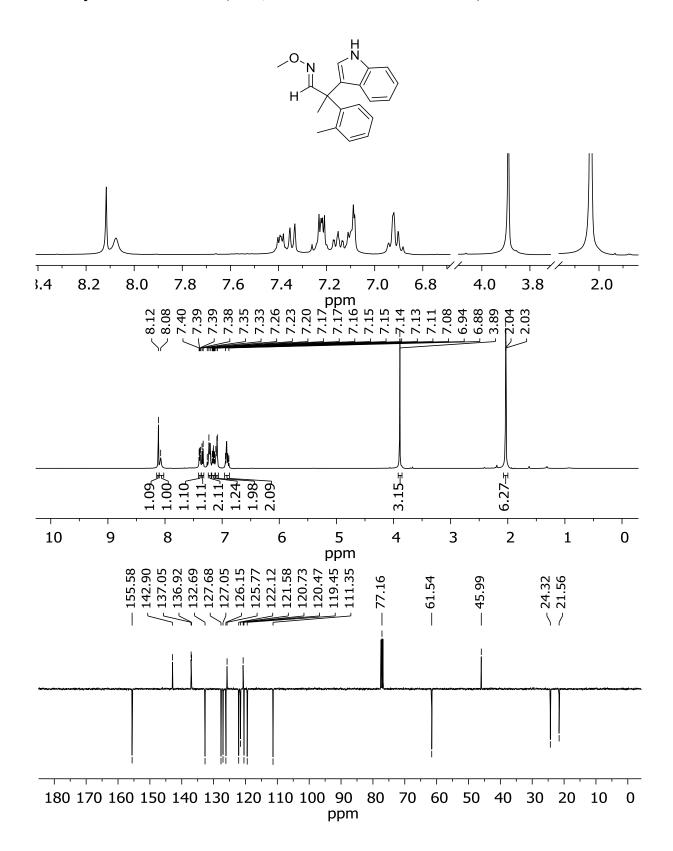

R_f: 0.15 (20% MTBE/hexane); ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.43 (bs, 1H), 7.44-7.42 (m, 2H), 7.36 (t', J = 7.5 Hz, 2H), 7.30-7.26 (m, 2H), 5.99 (t, J = 3.0 Hz, 1H), 5.82 (t, J = 3.0 Hz, 1H), 5.59 (t, J = 3.0 Hz, 1H), 5.35 (t, J = 3.0 Hz, 1H), 4.53 (s, 1H), 2.60 (bs, 1H), 2.27 (s, 3H), 2.04 (s, 3H), 1.45 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 148.0 (C_q), 128.4 (2x CH), 128.4 (2x C_q), 127.4 (C_q), 127.0

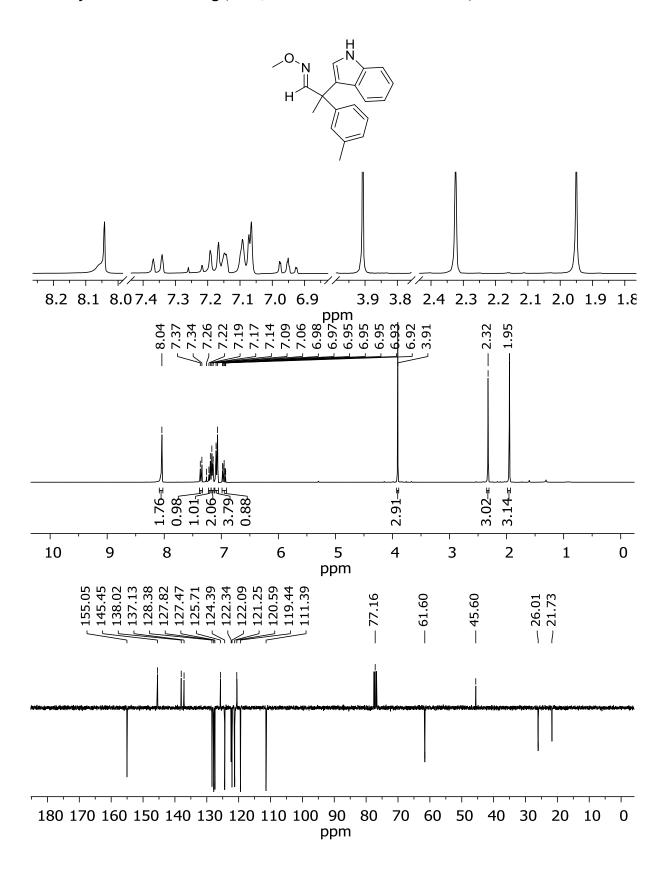
(CH), 126.8 (C_q), 124.9 (2x CH), 108.7 (CH), 107.8 (CH), 105.9 (CH), 105.4 (CH), 77.8 (C_q), 49.1 (CH), 29.2 (CH₃), 13.4 (CH₃), 13.0 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3439, 2976, 2925, 2854, 1682, 1586, 1445, 1053, 1039, 770, 700; **HR-MS** (ESI): calcd. for C₁₉H₂₂N₂ONa ([M+Na]⁺): 317.1624; **M(C₁₉H₂₂N₂O)**: 294.40.

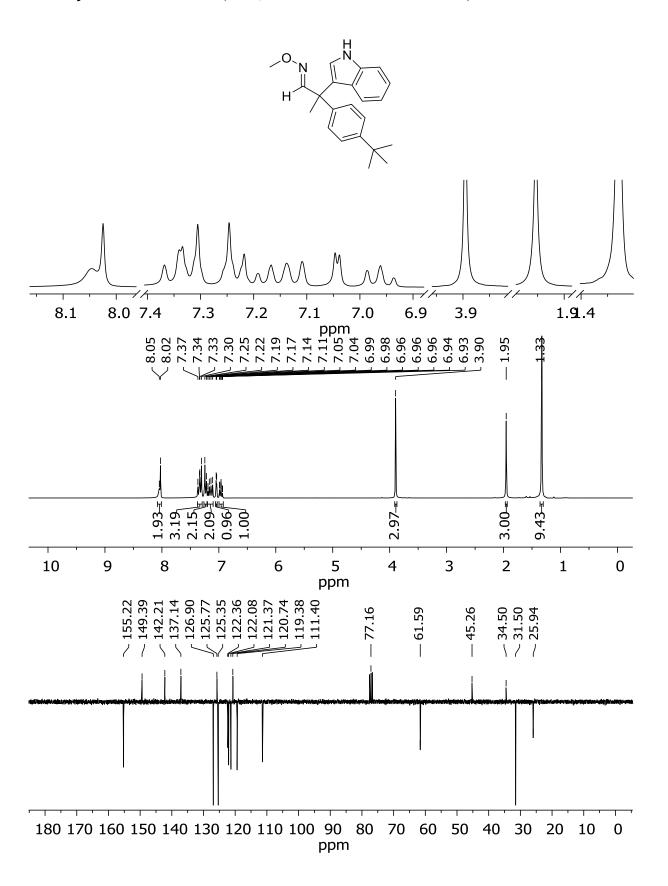

4.2 ¹H-NMR and ¹³C-NMR Spectra

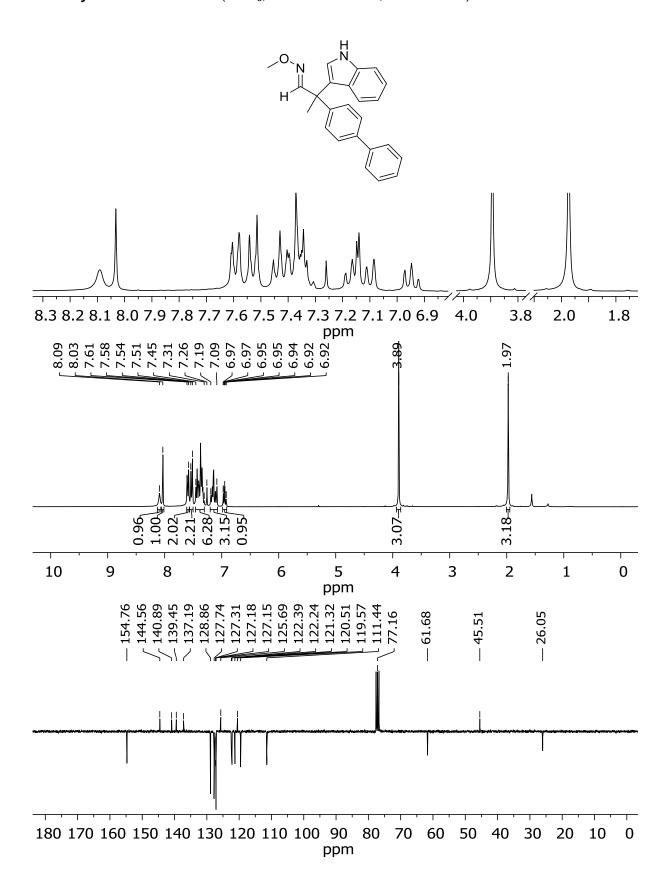
2-Indolyl aldoxime ether 8a (CDCl $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)

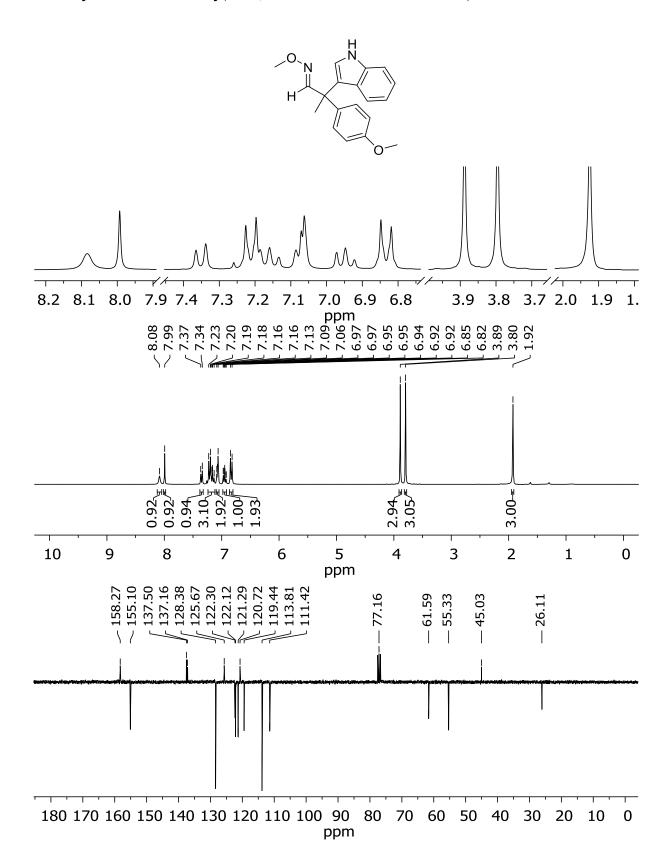

2-Indolyl aldoxime ether 8c (CDCI₃; ¹H-NMR: 300 MHz, APT: 75 MHz)

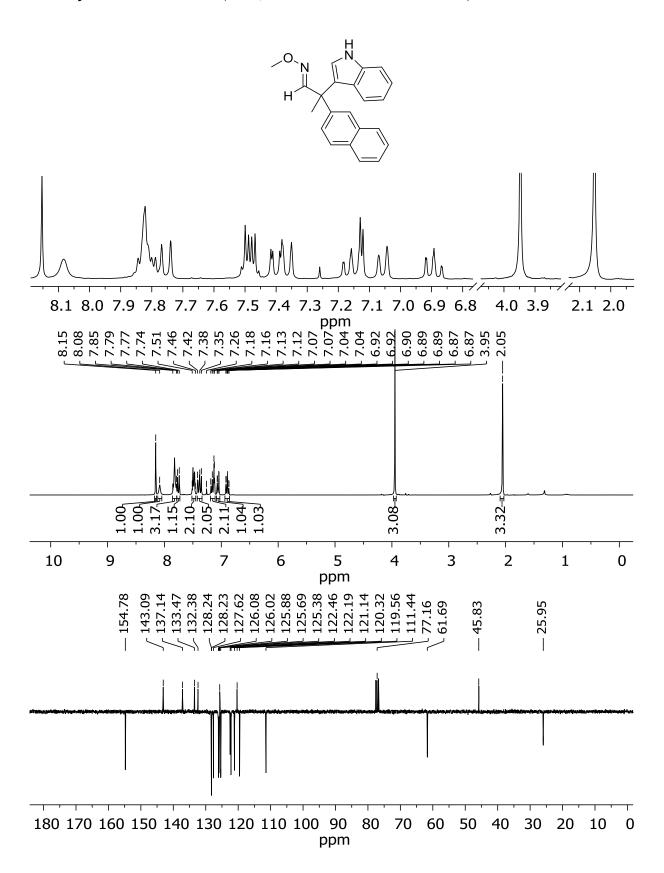

2-Indolyl aldoxime ether 8d (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)


2-Indolyl aldoxime ether 8e (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

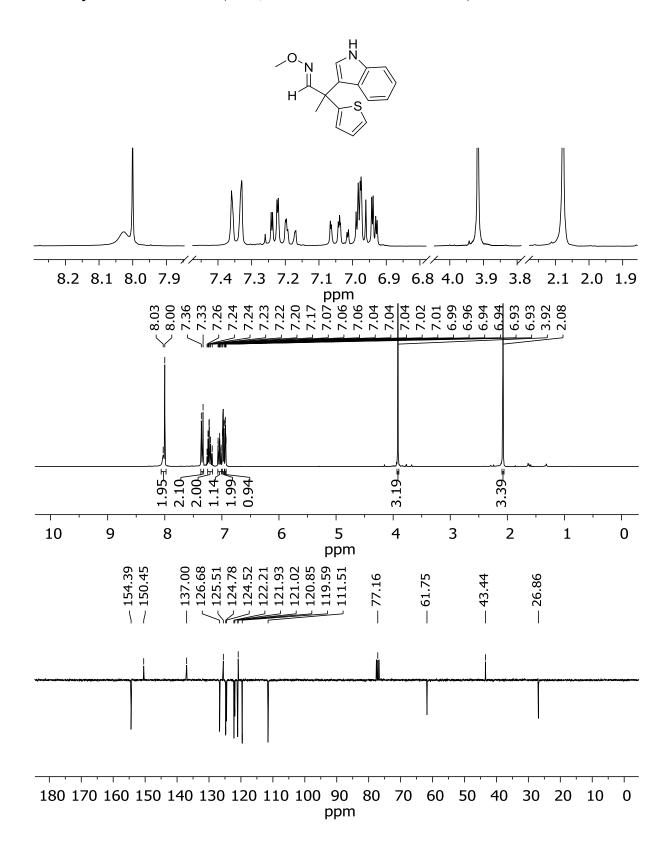

2-Indolyl aldoxime ether 8f (CDCI $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)

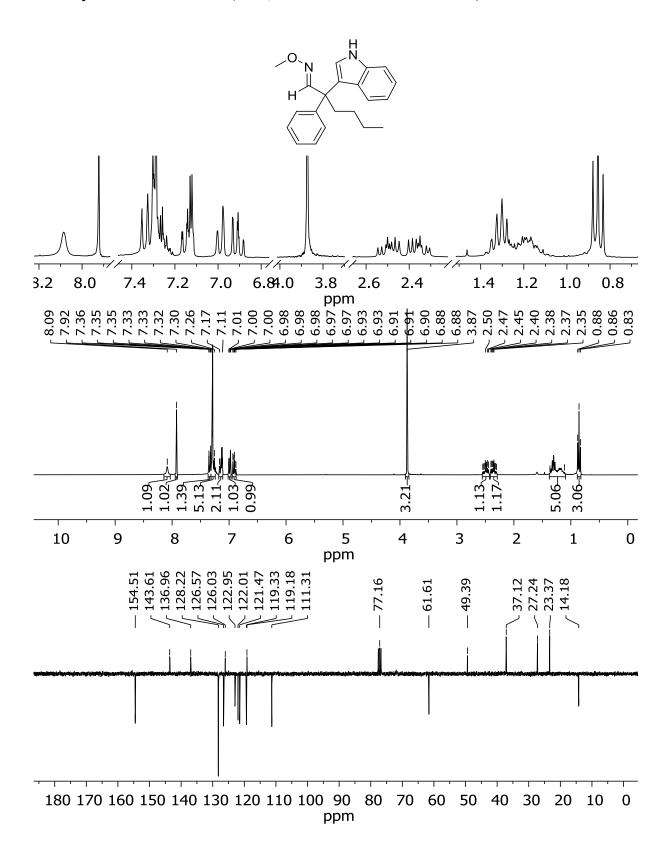


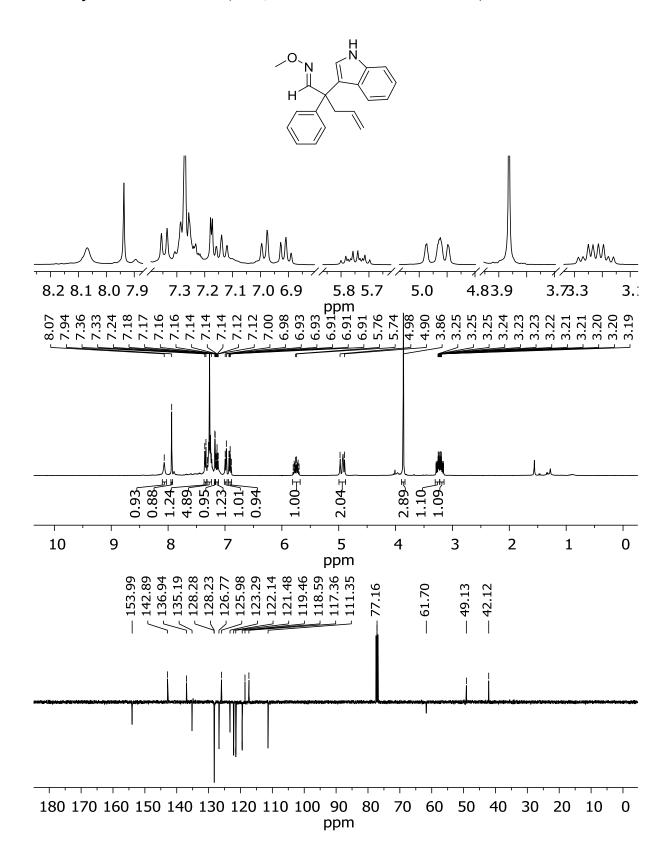

2-Indolyl aldoxime ether 8g (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)



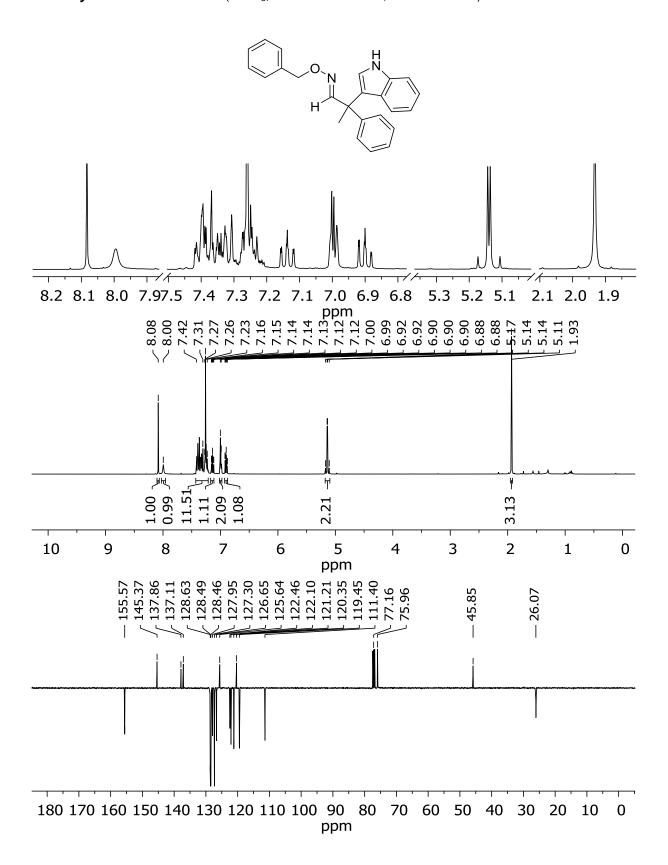
2-Indolyl aldoxime ether 8h (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)

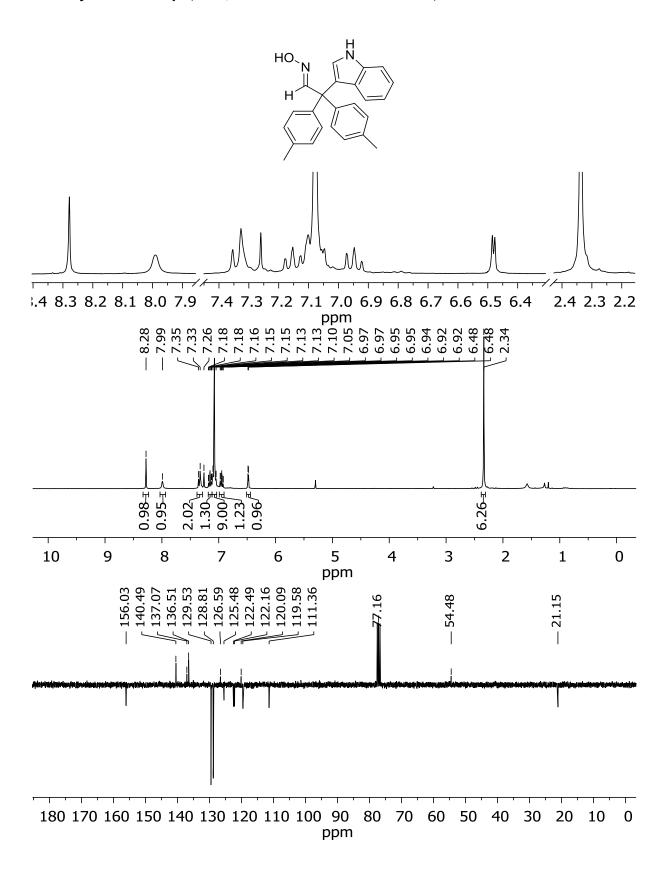




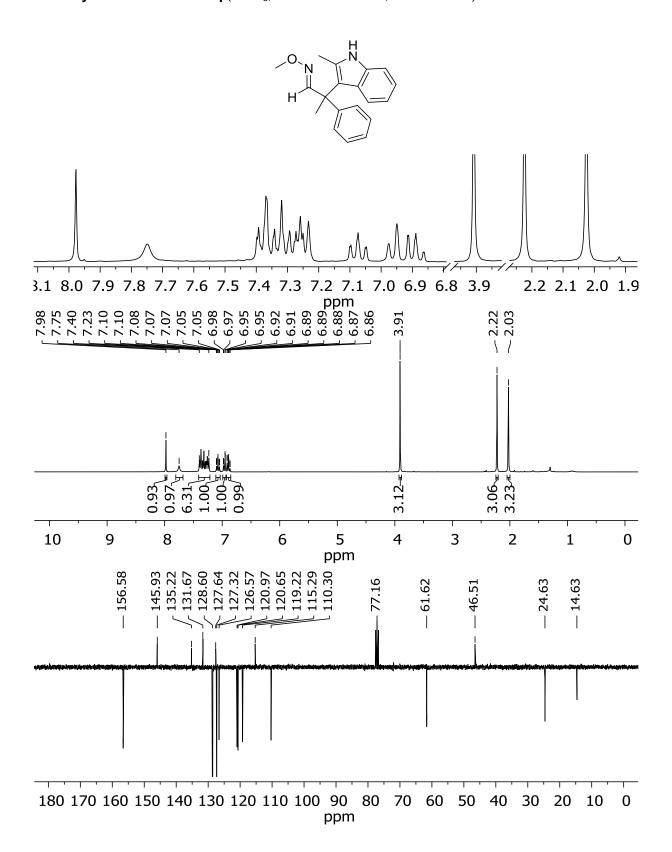


2-Indolyl aldoxime ether 8I (CDCl $_3$; 1 H-NMR: 300 MHz, APT: 75 MHz)

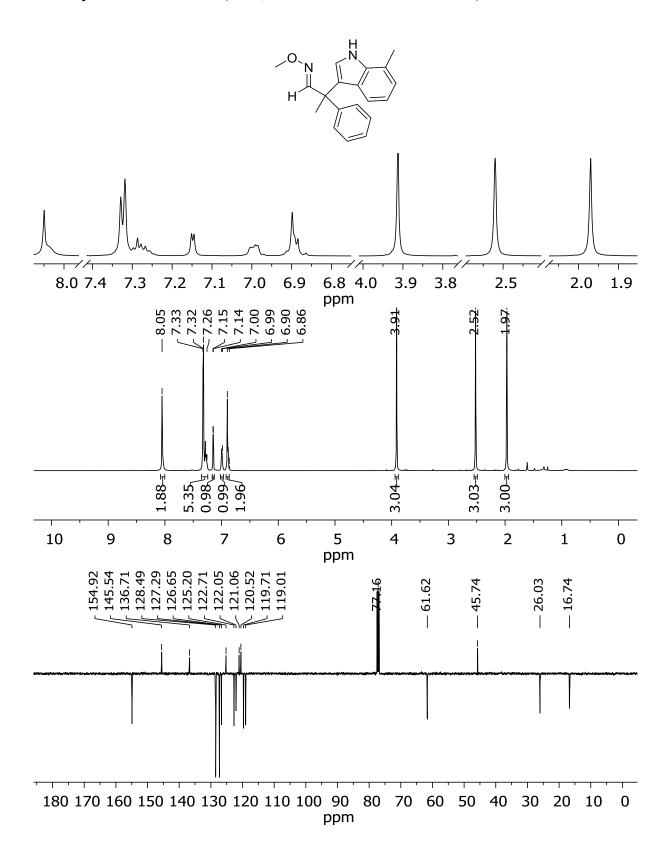


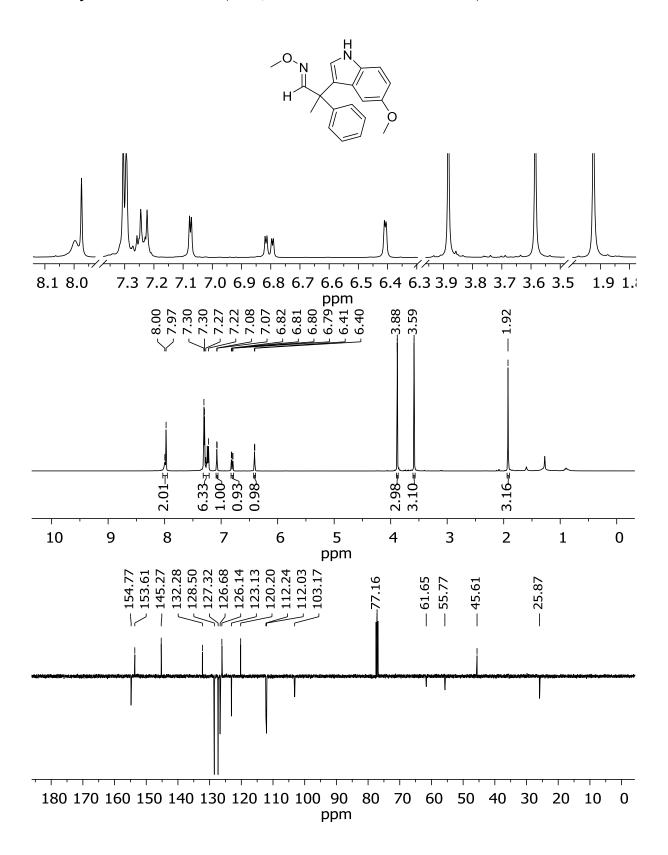


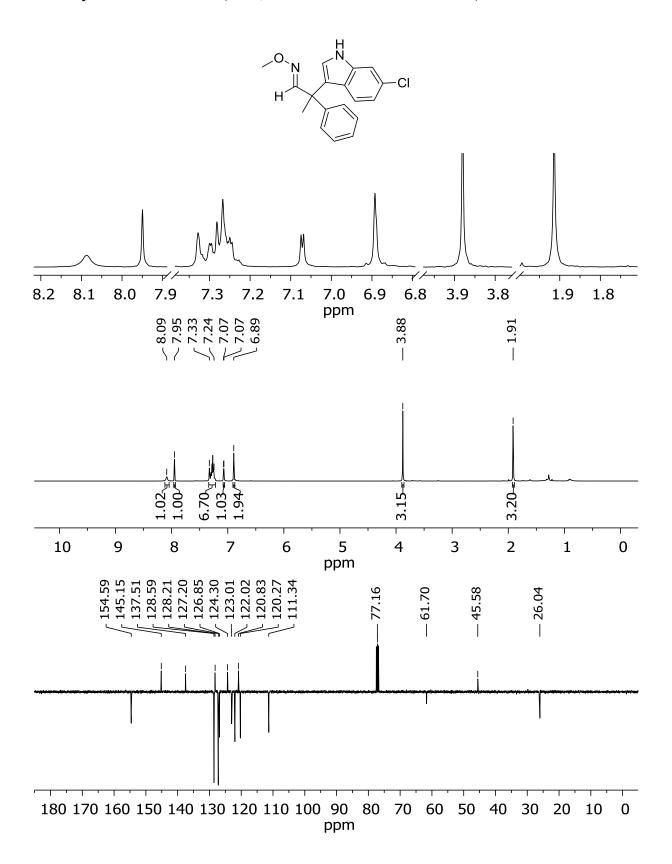
2-Indolyl aldoxime ether 8n (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

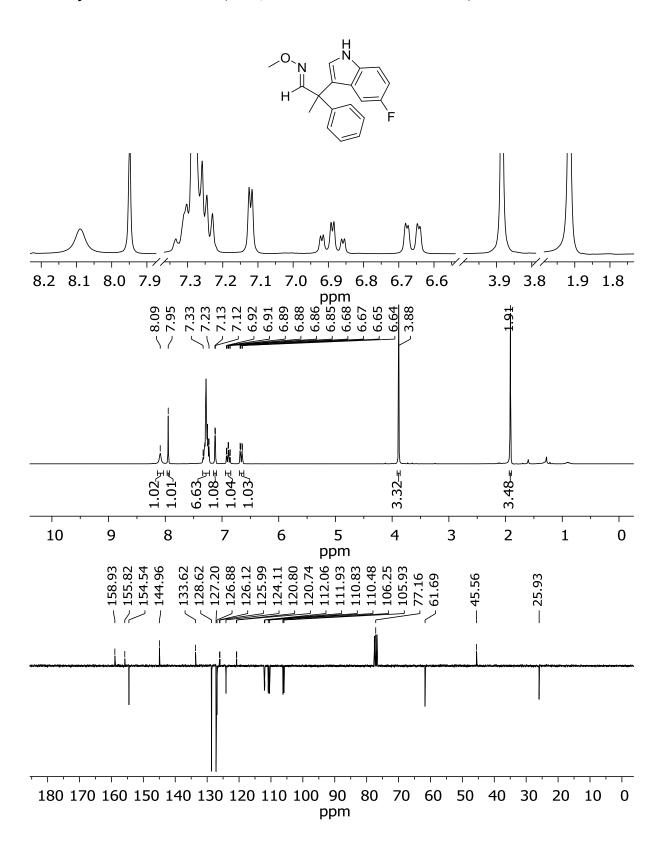


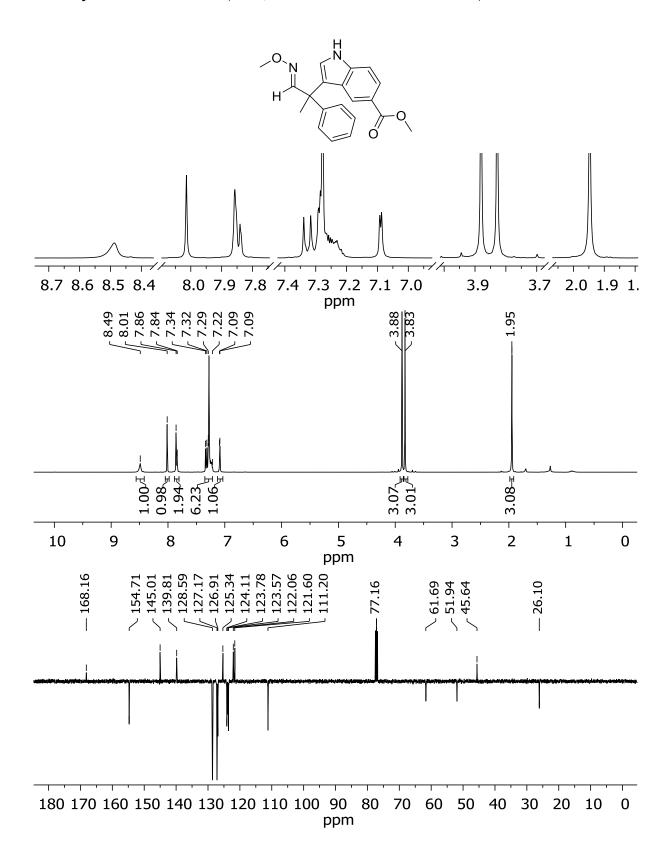
2-Indolyl aldoxime ether 80 (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

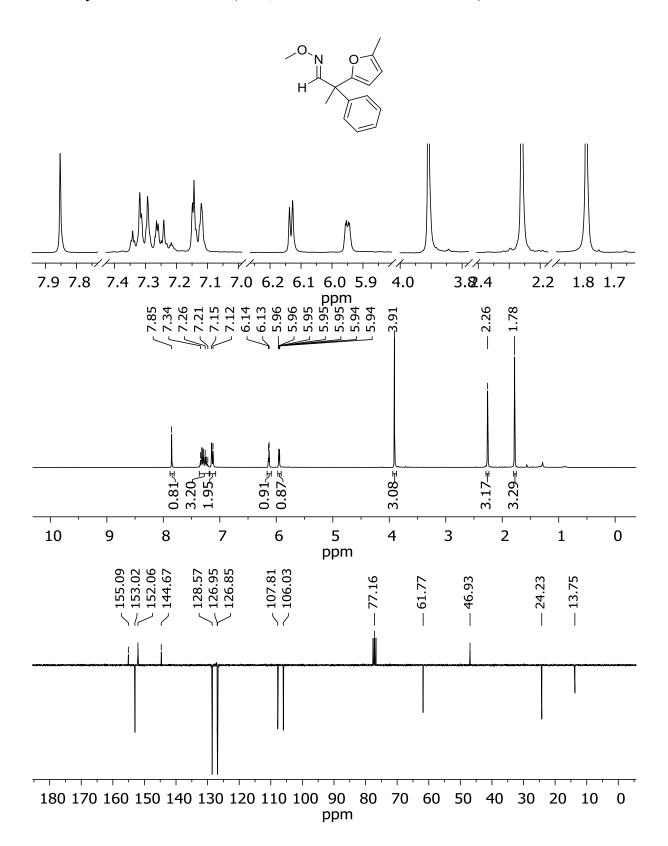


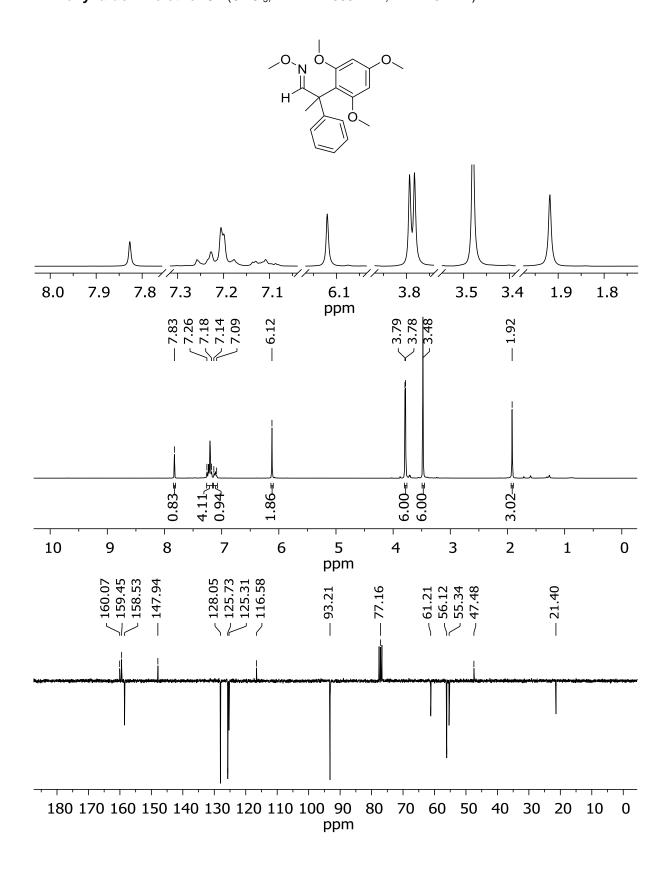

2-Indolyl aldoxime ether 8q (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)

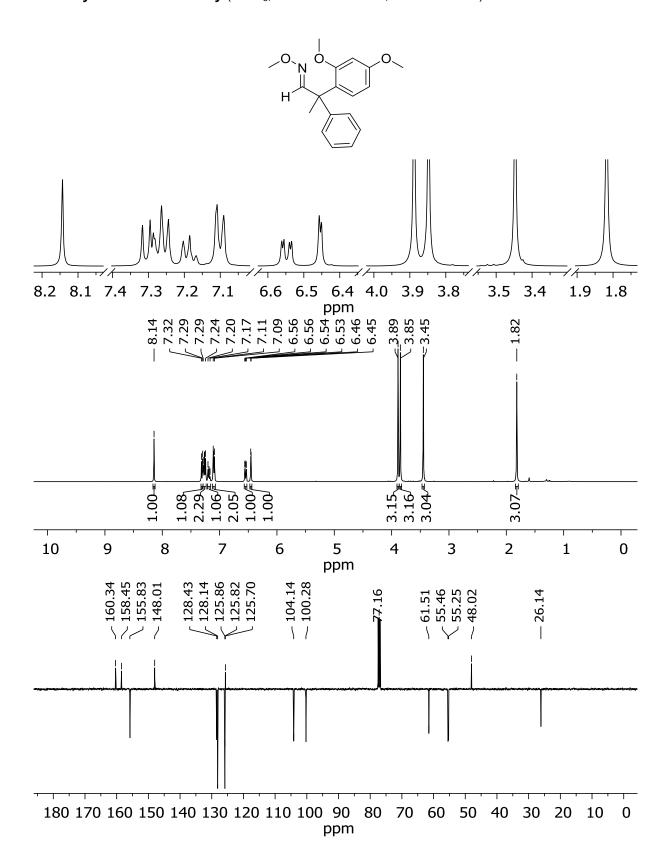

2-Indolyl aldoxime ether 8r (CDCI $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)

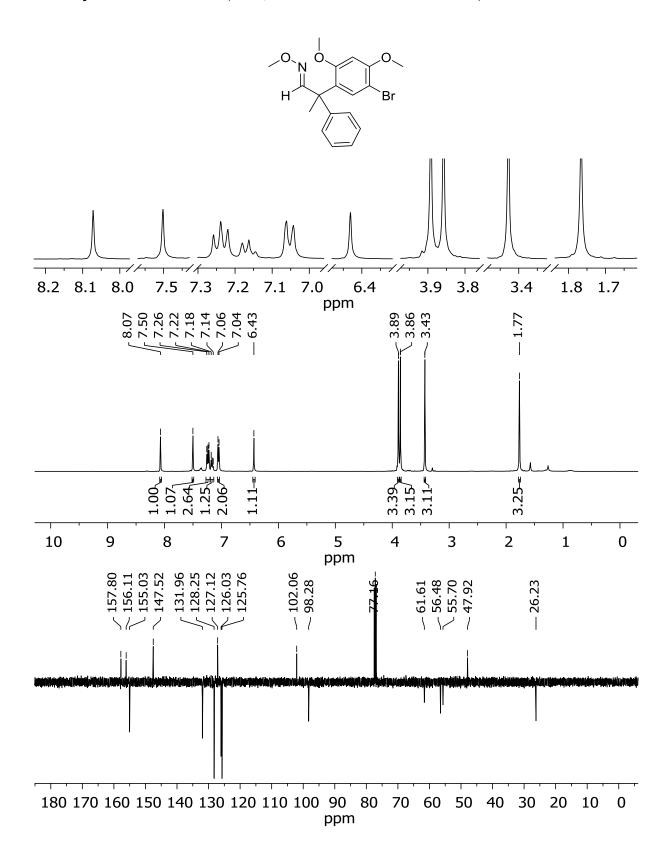

2-Indolyl aldoxime ether 8s (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

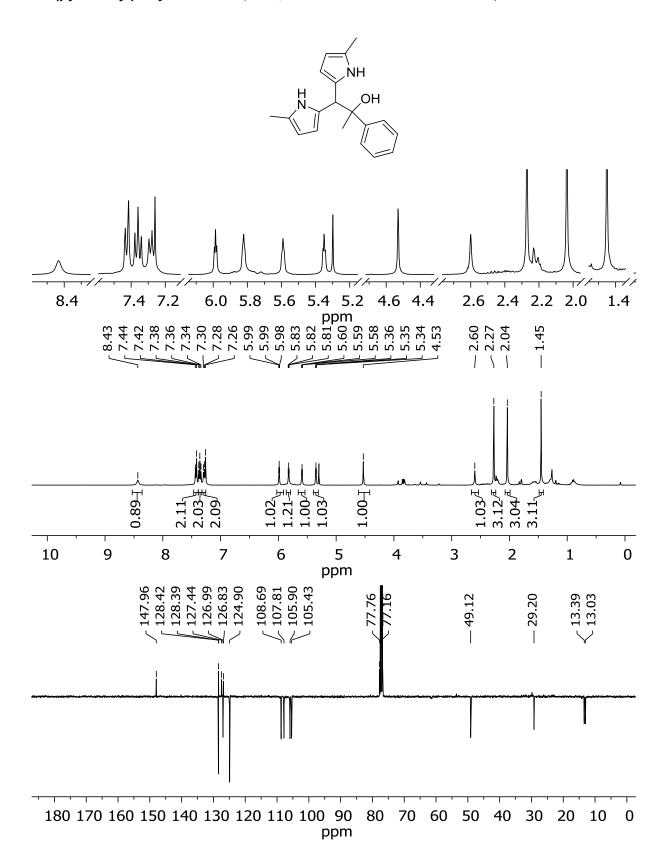

2-Indolyl aldoxime ether 8t (CDCI $_3$; 1 H-NMR: 400 MHz, APT: 100 MHz)


2-Indolyl aldoxime ether 8u (CDCI₃; ¹H-NMR: 300 MHz, APT: 75 MHz)


2-Indolyl aldoxime ether 8v (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)


2-Furanyl aldoxime ether 8w (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)


2-Phenyl aldoxime ether 8x (CDCl₃; ¹H-NMR: 300 MHz, APT: 75 MHz)


2-Phenyl aldoxime ether 8y (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

2-Phenyl aldoxime ether 8z (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

Bis(pyrrol-2-yl)ethyl alcohol 9 (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)

5 Derivatization of the FCR-Products

5.1 Procedures

2-Indolyl ketone 10

Concentrated HCl (0.20 mL) was added to a solution of **4a** (35 mg, 0.10 mmol, 1.0 equiv) dissolved in 0.80 mL MeOH and 0.20 mL CH_2CI_2 at room temperature. The reaction mixture was stirred at 40 °C for 2 hours and then treated with 2.0 mL H_2O . The aqueous phase was separated and extracted twice with CH_2CI_2 . The combined organic phases were dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (10% \rightarrow 20% MTBE/hexane). Compound **10** was obtained as a colorless solid (26 mg, 80%).

R_f: 0.19 (20% MTBE/hexane); **mp.**: 153-154 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.05 (bs, 1H), 7.42 (d, J= 7.5 Hz, 1H), 7.35-7.22 (m, 8H), 7.17-7.12 (m, 2H), 7.08 (d, J= 8.0 Hz, 1H), 6.94 (t, J= 7.5 Hz, 1H), 6.62 (d, J= 2.5 Hz, 1H), 3.78 (d, J= 22.0 Hz, 1H), 3.69 (d, J= 22.0 Hz, 1H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 213.8 (C=O), 145.9 (C_q),

140.9 (C_q), 137.1 (C_q), 135.7 (C_q), 128.7 (2x CH), 128.4 (2x CH), 128.0 (CH), 127.9 (CH), 127.2 (CH), 126.7 (CH), 125.9 (C_q), 125.5 (CH), 124.9 (CH), 122.4 (CH), 121.7 (CH), 119.9 (CH), 117.8 (C_q), 111.3 (CH), 64.2 (C_q), 42.1 (CH₂); **IR** (KBr): \tilde{v} (cm⁻¹) = 3411, 1747, 1617, 1457, 764, 746, 700; **HR-MS** (ESI): calcd. for $C_{23}H_{17}NONa$ ([M+Na]⁺): 346.1202, found: 346.1208; **M(C_{23}H_{17}NO)**: 323.40.

sequential two-steps-reaction:

According to the general procedure 3, 2-hydroxy ketoxime ether **1a** (51 mg, 0.20 mmol, 1.0 equiv), indole (28 mg, 0.24 mmol, 1.2 equiv) and FeCl₃ (1.6 mg, 10 μ mol, 0.05 equiv) in 0.6 mL abs. CH₂Cl₂ were used. The reaction mixture was stirred at 40 °C for 1 hour. Notwithstanding the general procedure 3, 1.6 mL MeOH and 0.40 mL concentrated HCl were added and the mixture was stirred at 40 °C for another 4 hours. After complete hydrolysis 3.0 mL H₂O were added. The aqueous phase was separated and extracted twice with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (10% \rightarrow 20% MTBE/hexane). Compound **10** was obtained as a colorless solid (56 mg, 86%). The spectroscopic data are in agreement with those listed above.

p-Tosyl-protected 2-indolyl aldoxime ether 11

pTsCl (1.37 g, 7.18 mmol, 5.00 equiv) was added portionwise to a solution of **8e** (400 mg, 1.44 mmol, 1.00 equiv), KOH (403 mg, 7.18 mmol, 5.00 equiv) and nBu₄NPF₆ (97.6 mg, 290 μ mol, 0.20 equiv) in a mixture of 5.0 mL toluene and 2.5 mL H₂O at room temperature. The reaction mixture was stirred for 1 hour and then treated with 4.0 mL H₂O. The aqueous phase was separated and extracted twice with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (4% \rightarrow 8% MTBE/hexane). Compound **11** was obtained as a colorless solid (617 mg, 99%).

R_f: 0.42 (20% MTBE/hexane); **mp.**: 44-46 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.97 (d, J = 8.5 Hz, 1H), 7.88 (s, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.53 (s, 1H), 7.27-7.21 (m, 6H), 7.16-7.14 (m, 2H), 7.00 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 3.87 (s, 3H), 2.37 (s, 3H), 1.90 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 153.4 (HC=N), 145.1 (C_q), 144.0 (C_q), 136.0 (C_q), 135.3 (C_q),

130.1 (2x CH), 129.0 (C_q), 128.7 (2x CH), 127.1 (CH), 127.01 (4x CH), 126.99 (C_q), 124.7 (CH), 124.1 (CH), 123.0 (CH), 121.9 (CH), 113.9 (CH), 61.8 (CH₃), 45.6 (C_q), 25.7 (CH₃), 21.7 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3446, 2936, 1597, 1447, 1372, 1187, 1175, 1134, 1090, 1053, 748, 701, 677, 577, 538; **HR-MS** (ESI): calcd. for $C_{25}H_{24}N_2O_3SNa$ ([M+Na]⁺): 455.1400, found: 455.1396; **M(C_{25}H_{24}N_2O_3S)**: 432.54.

p-Tosyl-protected 2-indolyl aldehyde S7

Concentrated HCI (0.10 mL) was added to a solution of **11** (87 mg, 0.20 mmol, 1.0 equiv) dissolved in 1.0 mL THF and 1.0 mL of 37% aqueous HCHO-solution at room temperature. The reaction mixture was stirred at 70 °C for 4 hours and then treated with 2.0 mL H_2O . The aqueous phase was separated and extracted twice with EtOAc. The combined organic phases were dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (5% \rightarrow 10% MTBE/hexane). Compound **\$7** was obtained as a colorless solid (79 mg, 98%).

R_f: 0.30 (20% MTBE/hexane); **mp.**: 143-144 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 9.87 (s, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.56 (s, 1H), 7.34-7.25 (m, 6H), 7.15-7.13 (m, 2H), 7.03 (m, 1H), 6.90 (d, J = 8.0 Hz, 1H), 2.37 (s, 3H), 1.83 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm) = 198.3 (HC=O), 145.3 (C_q), 139.7 (C_q), 135.9 (C_q), 135.2 (C_q), 130.1 (2x CH), 129.1 (2x CH),

128.9 (C_q), 127.8 (CH), 127.7 (3x CH), 127.0 (2x CH), 125.0 (CH), 123.2 (CH), 122.8 (C_q), 121.9 (CH), 114.0 (CH), 55.6 (C_q), 22.6 (CH₃), 21.8 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3427, 2988, 1723, 1447, 1373, 1178, 1130, 1090, 1040, 765, 755, 727, 674, 578, 539; **HR-MS** (ESI): calcd. for C₂₄H₂₁NO₃SNa ([M+Na]⁺): 426.1134, found: 426.1127; **M(C₂₄H₂₁NO₃S):** 403.50.

2-Indolyl aldehyde 12

KOH (28 mg, 0.50 mmol, 5.0 equiv) was added to a solution of **S7** (40 mg, 0.10 mmol, 1.0 equiv) in 0.50 mL MeOH. The reaction mixture was stirred at 70 °C for 4 hours and then treated with 2.0 mL H_2O and 2.0 mL EtOAc. The aqueous phase was separated and

extracted twice with EtOAc. The combined organic phases were dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (10% \rightarrow 20% MTBE/hexane). Compound **12** was obtained as a colorless solid (25 mg, 99%).

R_f: 0.20 (20% MTBE/hexane); **mp.:** 60-61 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 9.98 (s, 1H), 8.30 (bs, 1H), 7.42-7.31 (m, 4H), 7.27-7.24 (m, 2H), 7.22-7.15 (m, 2H), 7.05 (ddt, J = 8.0, 1.5, 1.0 Hz, 1H), 6.96 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 1.83 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 199.2 (HC=O), 141.4 (C_q), 137.1 (C_q), 128.8 (2x CH), 127.9 (2x

CH), 127.3 (CH), 125.8 (C_q), 123.5 (CH), 122.5 (CH), 121.2 (CH), 119.8 (CH), 115.8 (C_q), 111.6 (CH), 55.8 (C_q), 23.1 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3390, 2983, 2934, 2824, 2719, 1719, 1537, 1490, 1454, 1415, 1365, 1333, 1242, 1115, 1106, 1025, 1010, 897, 837, 760, 747, 713, 700, 584, 572, 533, 428; **HR-MS** (ESI): calcd. for $C_{17}H_{15}NONa$ ([M+Na]⁺): 272.1046, found: 272.1044; **M(C_{17}H_{15}NO)**: 249.31.

3-(Methoxyaminoethyl)indole 13

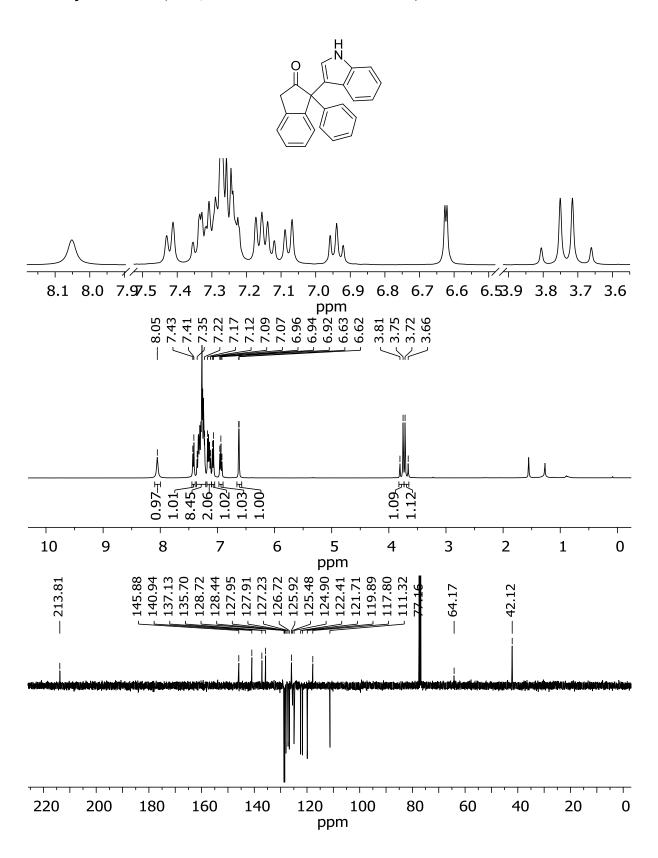
NaCNBH₃ (50 mg, 0.80 mmol, 4.0 equiv) followed by an ethanolic solution of HCl (1.25 M in EtOH, 0.64 mL, 0.80 mmol, 4.0 equiv) were added to a solution of **11** (87 mg, 0.20 mmol, 1.0 equiv) in 1.0 mL abs. EtOH at room temperature. The reaction mixture was stirred at room temperature for 25 hours and then quenched with sat. Na₂CO₃-solution. It was extracted twice with CH_2CI_2 and the combined organic phases were dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (10% \rightarrow 20% MTBE/hexane). Compound **13** was obtained as a colorless oil (81 mg, 93%).

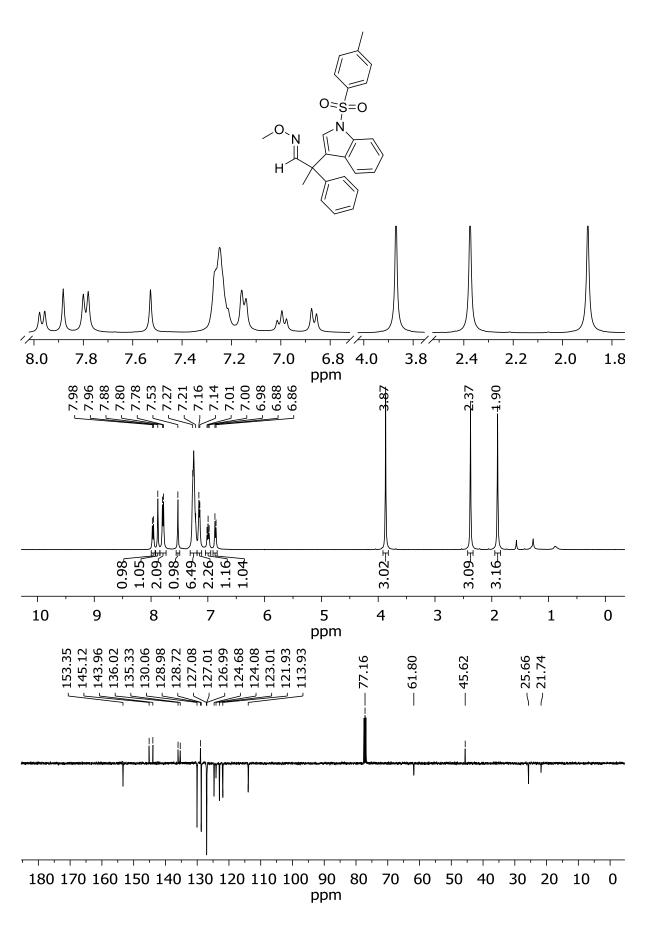
R_f: 0.32 (20% MTBE/hexane); ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.98 (d, J = 8.5 Hz, 1H), 7.79 (d', J = 8.5 Hz, 2H), 7.63 (s, 1H), 7.26-7.14 (m, 8H), 6.95 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.80 (ddd, J = 8.0, 1.0, 0.5 Hz, 1H), 5.12 (bs, 1H), 3.65 (d, J = 11.0 Hz, 1H), 3.60 (d, J = 11.0 Hz, 1H), 3.45 (s, 3H), 2.37 (s, 3H), 1.80 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 145.1 (C₉), 145.0 (C₉),

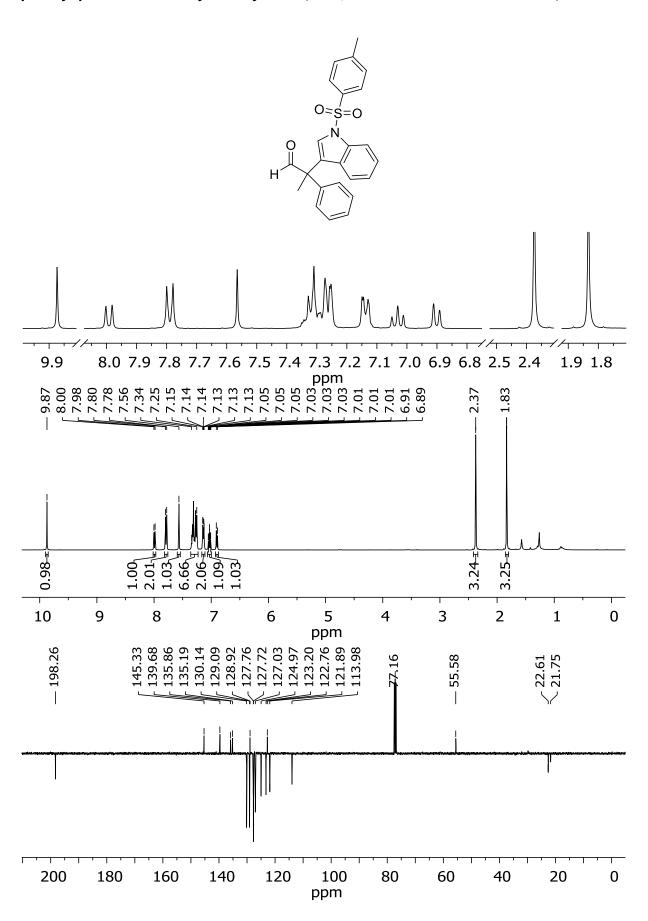
136.1 (C_q), 135.2 (C_q), 129.9 (2x CH), 129.4 (C_q), 128.7 (C_q), 128.3 (2x CH), 126.9 (2x CH),

126.69 (2x CH), 126.66 (CH), 124.5 (CH), 124.0 (CH), 123.0 (CH), 121.9 (CH), 114.0 (CH), 61.5 (CH₃), 60.0 (CH₂), 42.5 (C_q), 27.0 (CH₃), 21.7 (CH₃); **IR** (film): \tilde{v} (cm⁻¹) = 3446, 2934, 1598, 1447, 1370, 1187, 1175, 1134, 759, 750, 711, 701, 669, 575, 538; **HR-MS** (ESI): calcd. for $C_{25}H_{27}N_2O_3SNa$ ([M+H]⁺): 435.1737, found: 435.1736; **M(C₂₅H₂₆N₂O₃S)**: 434.55.

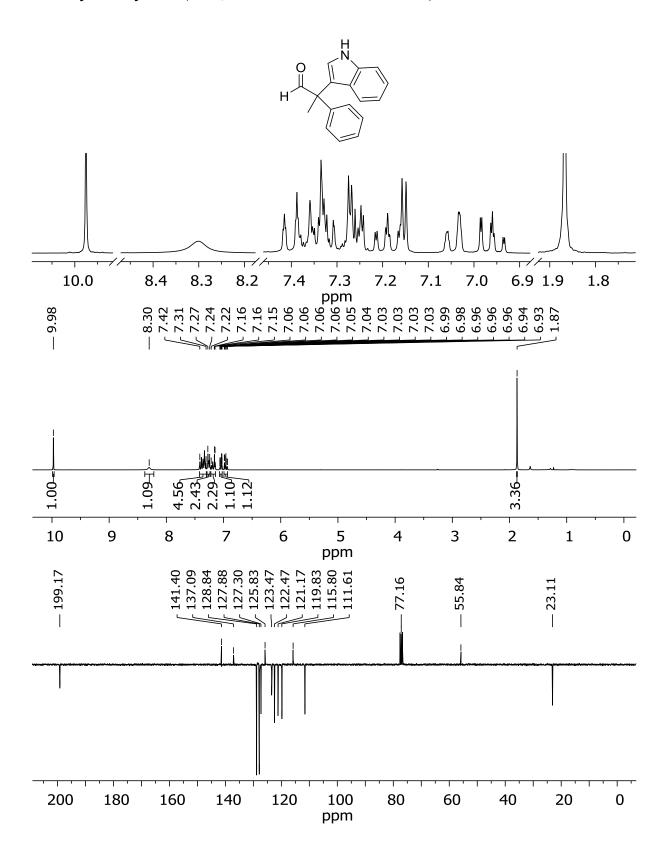
N-(Indol-3-ylethyl)carbamate 14

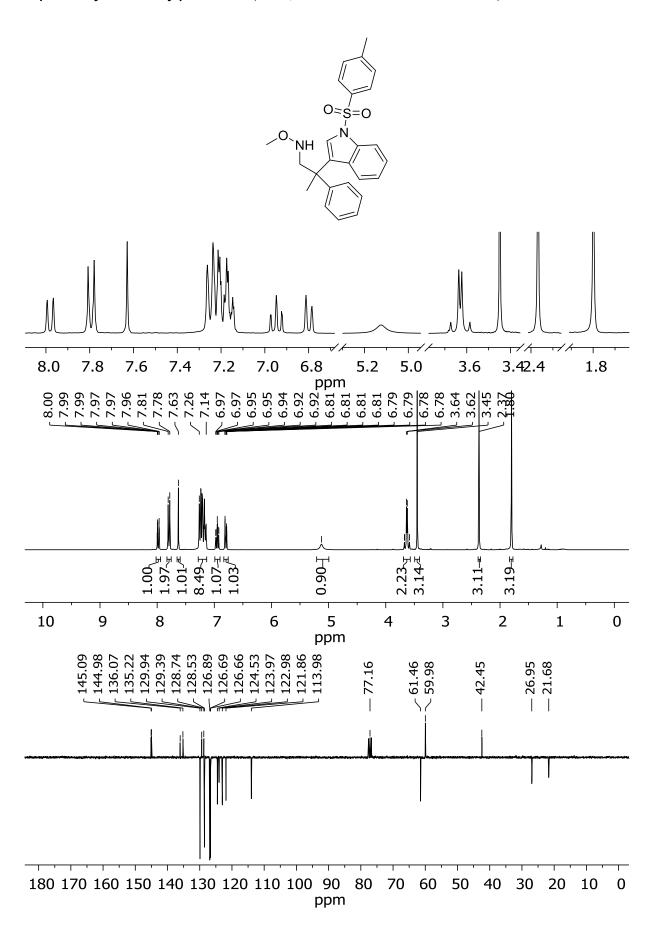

BH₃•SMe₂ (2.0 M in THF, 200 μ L, 0.40 mmol, 4.0 equiv) was added dropwise to a solution of 11 (43 mg, 0.10 mmol, 1.0 equiv) in 0.5 mL abs. THF at room temperature. The reaction mixture was stirred at 70 °C for 18 hours and then treated with 2.0 mL H₂O and 2.0 mL EtOAc. The aqueous phase was separated and extracted twice with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was dissolved in 0.5 mL abs. CH₂Cl₂ and Boc₂O (46 μ L, 0.20 mmol, 2.0 equiv) was added. It was stirred at room temperature for 24 hours and then quenched with 1.0 mL of 1 M HCl-solution. The aqueous phase was separated and extracted twice with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (10% \rightarrow 20% MTBE/hexane). Compound 14 was obtained as a colorless solid (43 mg, 84%).

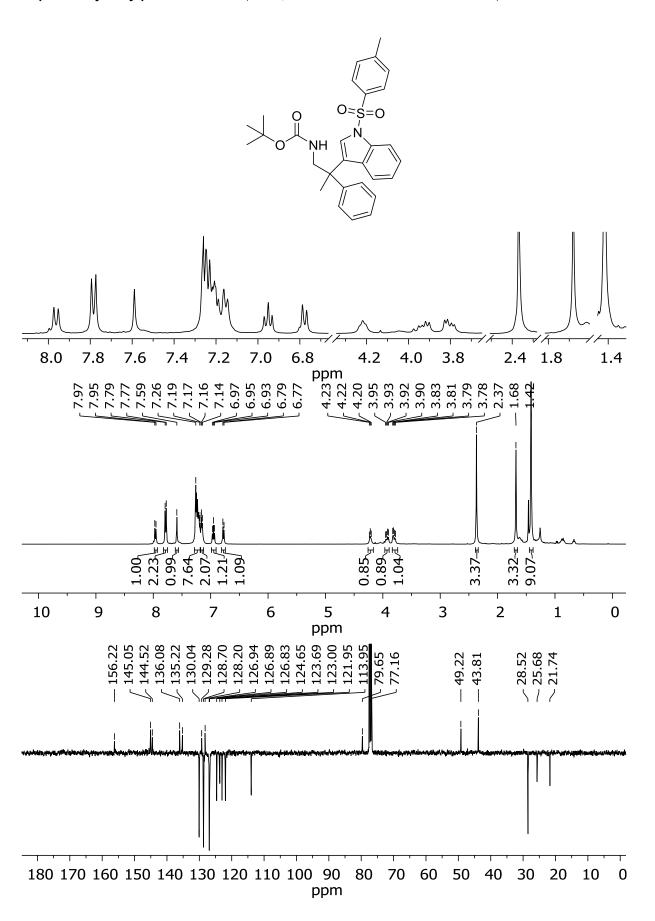

R_f: 0.26 (20% MTBE/hexane); **mp.**: 95-96 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 7.96 (d, J = 8.5 Hz, 1H), 7.78 (d', J = 8.0 Hz, 2H), 7.59 (s, 1H), 7.26-7.14 (m, 8H), 6.95 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 4.22 (t, J = 6.5 Hz, 1H), 3.93 (dd, J = 13.0, 7.0 Hz, 1H), 3.80 (dd, J = 13.0, 5.5 Hz, 1H), 2.37 (s, 3H), 1.68 (s, 3H), 1.42 (s, 9H); ¹³**C-NMR**


(100 MHz, CDCl₃): δ (ppm) = 156.2 (C=O), 145.1 (C_q), 144.5 (C_q), 136.1 (C_q), 135.2 (C_q), 130.0 (2x CH), 129.3 (C_q), 128.7 (2x CH), 128.2 (C_q), 126.94 (2x CH), 126.89 (2x CH), 126.8 (CH), 124.7 (CH), 123.7 (CH), 123.0 (CH), 122.0 (CH), 114.0 (CH), 79.7 (C_q), 49.2 (CH₂), 43.8 (C_q), 28.5 (3x CH₃), 25.7 (CH₃), 21.7 (CH₃); **IR** (KBr): \tilde{v} (cm⁻¹) = 3444, 2978, 1715, 1505, 1447, 1368, 1175, 576; **HR-MS** (ESI): calcd. for C₂₉H₃₂N₂O₄SNa ([M+Na]⁺): 527.1975, found: 527.1973; **M(C₂₉H₃₂N₂O₄S)**: 504.65.

5.2 ¹H-NMR and ¹³C-NMR Spectra


2-Indolyl ketone 10 (CDCl₃; ¹H-NMR: 400 MHz, APT: 100 MHz)





2-Indolyl aldehyde 12 (CDCI₃; ¹H-NMR: 300 MHz, APT: 75 MHz)

6 Reference

- [1] M. Schlegel, C. Schneider *Org Lett.* **2018**, *20*, 3119-3123.
- [2] X. Zhang, R. J. Staples, A. L. Rheingold, W. D. Wulff, J. Am. Chem. Soc. 2014, 136, 13971-13974.
- [3] J. M. E. Hughes, J. L. Gleason, *Angew. Chem. Int. Ed.* **2017**, *56*, 10830-10834.