Supporting Information

A Stereoselective Sequential Organocascade and Multicomponent Approach

for the preparation of Tetrahydropyridines and Chimeric Derivatives

Radell Echemendía,^{a,b} Gustavo P. da Silva,^a Meire Y. Kawamura,^a Alexander F. de la Torre,^{a,c} Arlene G. Corrêa,^a Marco A. B. Ferreira,^a* Daniel G. Rivera^{b,*} and Márcio W. Paixão^{a,*}

[a] Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, Brazil, 13565-905. Email: mwpaixao@ufscar.br

[b] Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, Havana, Cuba. <u>dgr@fq.uh.cu</u>

[c] Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.

Table of Contents

General. Experimental Procedures. Optimization Studies	S2-S3
Analytical data of tetrahydropyridine compounds	S4-S21
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5a	S23
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5b	S24
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound $5c$	S25
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5d	S27
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5 e	S28
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5 f	S29
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound $5g$	S30
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5h	S31
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5 i	S32
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5 j	S33
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound $5k$	S34
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5 l	S35
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound $5m$	S36
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5n	S37
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 50	S38
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 5p	S39
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 6	S40
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 7	S41
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 8	S42
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 9	S43
¹ H and ¹³ C NMR spectra in CD ₃ OD of compound 10	S44
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 11	S45
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 12	S46
¹ H and ¹³ C NMR spectra in CDCl ₃ of compound 13	S47
Chiral Stationary Phase HPLC chromatograms	S48-S70

General Aspects and Materials

Melting points are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded at 400 MHz for ¹H and 100 MHz for ¹³C, respectively. Chemical shifts (δ) are reported in parts per million relatives to the residual solvent signals, and coupling constants (*J*) are reported in hertz. High resolution mass spectra (HRMS) were recorded using electron spray ionization (ESI) (Hybrid linear ion trap–orbitrap FT-MS /MS – and QqTOF Microtof – QII models). Reagents and materials were of the highest commercially available grade and used without further purification. Flash column chromatography was carried out using silica gel 60 (230-400 mesh) and analytical thin layer chromatography (TLC) was performed using silica gel aluminum sheets. Visualization of the compounds was achieved by UV or KMnO4. HPLC chromatograms were obtained on an apparatus with an LC-10AT Pump, SPD-10AUV-Vis Detector, SCL-10A System Controller, using a Chiralpak AD-H (4,6 mmØ · 250 mmL, particle size 5 µm), Chiralpak OD-H (4,6 mmØ · 250 mmL, particle size 5 µm), Chiralpak AS-H (4,6 mmØ · 250 mmL, particle size 5 µm) columns as chiral stationary phases Optical rotations were measured with a Polarimeterat 589 nm, 20 °C.

Experimental Section

General one-pot reaction procedure A: To a solution of Jørgensen catalyst (0.01 mmol, 0.1 equiv.), 3,5-dinitrobenzoicacid (0.02 mmol, 0.2 equiv.), and α , β -unsaturated aldehyde **2** (0.10 mmol, 1.0 equiv.) in toluene (1.0 mL) was added α -cyanoketones **1** (0.15 mmol, 1.5 equiv.) at 0°C¹. The resulting solution was stirred for 48h. 2,2,2-trifluoroethanol (1.0 mL), the amine (0.15 mmol, 1.5 equiv.) and the isocyanide (0.15 mmol, 1.5 equiv.) were added in a 10 mL glass tube and introduced in the microwave reactor. NEt₃ (0.15 mmol, 1.5 equiv.) was added when α -amino acid and peptide methyl ester hydrochlorides were employed as amino components. The flask was irradiated for 20 min (300 W) under high-speed magnetic stirring, while the temperature was raised up to 70 °C. The reaction course was monitored by TLC, and additional cycles of 5 min were applied in cases of poor consumption of the starting material. The volatiles was concentrated under reduced pressure and the resulting crude product was purified by flash column chromatography.

General one-pot reaction procedure B: To a solution of Jørgensen catalyst (0.01 mmol, 0.1 equiv.), 3,5-dinitrobenzoicacid (0.02 mmol, 0.2 equiv.), and α , β -unsaturated aldehyde 2 (0.10 mmol, 1.0 equiv.) in toluene (1.0 mL) was added α -cyanoketones 1 (0.15 mmol, 1.5 equiv.) and

¹ Niu, Z.; He, X.; Shang, Y. Tetrahedron Asymm. 2014, 25, 796

was irradiated for 30 min (300 W) under high-speed magnetic stirring at -20 °C. 2,2,2trifluoroethanol (1.0 mL), the amine (0.15 mmol, 1.5 equiv.) and the isocyanide (0.15 mmol, 1.5 equiv.) were added and the glass tube was sealed. NEt₃ (0.15 mmol, 1.5 equiv.) was added when α -amino acid and peptide methyl ester hydrochlorides were employed as amino components. The flask was irradiated for 20 min (300 W) under high-speed magnetic stirring, while the temperature was raised up to 70 °C. The reaction course was monitored by TLC, and additional cycles of 5 min were applied in cases of poor consumption of the starting material. The volatiles was concentrated under reduced pressure and the resulting crude product was purified by flash column chromatography.

Optimization Studies for the organocatalytic and multicomponent reaction.

 Table 1. Optimization Studies for the One-Pot Organocatalytic Conjugate Addition/4

 Center 3-Component Reaction

Ph	H * Ph CN	Organocatalytic Condition A or B	Ph NC Ph O Not Isola	OH ted	Ph Ph	
Entry ^[c]	Solvent	Temp(°C)	Time (min)	Yield (%) ^[d]	dr ^[e]	ee (%) ^[f]
1 ^a	TFE	70	5	40	20:1	96
2 ^a	TFE	70	10	60	20:1	96
3 ^a	TFE	70	15	65	20:1	96
4 ^a	TFE	70	20	71	20:1	96
5 ^a	TFE	70	40	76	10:1	96
6 ^a	TFE	60	20	65	20:1	96
7 ^a	TFE	85	20	61	9:1	96
8 ^a	EtOH	70	20	35	9:1	96
10 ^a	THF	70	20	23	9:1	96
11 ^a	Toluene	70	20	36	9:1	96
12 ^b	TFE	70	20	69	20:1	96

[a] **Condition A**: Reaction performed with Jørgensen catalyst (10 mol%), 3,5- dinitrobenzoic acid (20 mol%), cinnamaldehyde (0.10 mmol; 1 eq), benzoacetonitrile (0.15 mmol; 1.5 eq) in tolulene at -20° C for 20h. [b] **Condition B**: Reaction performed with Jørgensen catalyst (10 mol%), 3,5- dinitrobenzoic acid (20 mol%), cinnamaldehyde (0.10 mmol; 1 eq), benzoacetonitrile (0.15 mmol; 1.5 eq) in tolulene under microwave irradiated (300 W) at -20° C for 30 min. [c] Reactions performed on 0.15 mmol scale and 2.0 mL total volume of solvent under microwave irradiation [d] Isolated yields after purification. [e] d.r. was determined by ¹H NMR analysis of the crude product. [f] e.e was determined by HPLC analysis on a chiral stationary phase column.

Analytical data of tetrahydropyridine compounds

Compound 5a

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 μ L, 0.10 mmol), *tert*butylamine (15.7 μ L, 0.15 mmol), and cyclohexylisocyanide (18.7 μ L, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*hexane/EtOAc 4:1) afforded compound **5a** (30.5 mg, 69%, isomer *cis*) as a yellow oil. [α]_D²⁰-2.4

(*c* 0.5, acetone, 20°C). $R_f = 0.38$ (*n*-hexane/ EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.74$ -7.42 (m, 6H); 7.39-7.28 (m, 4H); 5.43 (d, J = 8.1 Hz, 1H); 4.00 (d, J = 8.9 Hz, 1H); 3.97-3.90 (m, 1H,); 3.79 (dd, J = 10.1, 7.0 Hz, 1H); 2.36 (dd, J = 12.3, 7.0 Hz, 1H); 2.16-2.10 (m, 2H); 1.96-1.85 (m, 1H); 1.82-1.72 (m, 2H); 1.56-1.45 (m, 2H); 1.35-1.22 (m, 4H); 1.10 (s, 9H).¹³C NMR (100 MHz, CDCl₃): $\delta = 24.3$, 25.7, 30.5, 33.3, 33.8, 44.6, 47.3, 50.7, 51.3, 57.2, 69.7, 115.5, 116.1, 121.1, 123.7, 126.5, 126.9, 127.5, 128.7, 129.1, 129.3, 131.5, 133.3, 144.5, 149.8, 156.5, 160.9. HRMS (ESI-FT-QQTOF) *m/z*: 442.2869 [M+H]⁺; calcd. for C₂₉H₃₆N₃O: 442.2858. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 90:10) at 0.8 mL/min, UV-detection at $\lambda = 254$ nm: t_R (major)= 5.6 min, t_R (minor)= 6.6 min, 96% ee.

Compound 5b

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 μ L, 0.10 mmol), *tert*butylamine (15.7 μ L, 0.15 mmol), and *tert*-butyl isocyanide (16.9 μ L, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*hexane/EtOAc 5:1) afforded compound **5b** (23.0 mg, 55%, isomer *cis*) as a yellow oil. $[\alpha]_D^{20}$ –6.8 (*c* 0.4, acetone, 20°C). R_f = 0.40 (*n*-hexane/ EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.357.28 (m, 6H); 7.24-7.14 (m, 4H); 5.05 (brs, 1H); 4.74 (ddd, J = 7.9, 7.0, 0.8 Hz, 1H); 4.13-4.06 (m, 1H,); 2.69 (dt, J = 12.0, 7.0 Hz, 1H); 1.49 (s, 9H), 1.47 (s, 9H).¹³C NMR (100 MHz, CDCl₃): $\delta = 30.3$, 30.4, 41.8, 43.2, 47.2, 48.3, 52.3, 117.4, 21.7, 126.8, 126.9, 127.2, 127.7, 128.5, 128.8, 129.2, 131.3, 143.7, 147.8, 156.9, 162.9. HRMS (ESI-FT-QQTOF) *m/z*: 416.2711 [M+H]⁺; calcd. for C₂₇H₃₄N₃O: 416.2702. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (*n*-hexane/*i*-PrOH 95:5) at 0.8 mL/min, UV-detection at $\lambda = 254$ nm: t_R (major)= 18.7 min, t_R (minor)= 33.7 min, 98% ee.

Compound 5c

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 μ L, 0.10 mmol), *tert*butylamine (15.7 μ L, 0.15 mmol), and benzyl isocyanide (18.3 μ L, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/ EtOAc 5:1) afforded compound **5c** (35.1 mg, 78%, isomer *cis*) as a dark yellow oil. $[\alpha]_{\rm D}^{20}$ –6.7 (*c*

0.5, acetone, 20°C). R_f = 0.40 (*n*-hexane/CH₂Cl₂ 1:6). ¹H NMR (400 MHz, CDCl₃): δ = 7.37-7.29 (m, 12H); 7.24-7.16 (m, 3H); 5.71 (brs, 1H); 3.99 (d, *J* = 8.8 Hz, 1H); 3.75 (dd, *J* = 12.4, 5.0 Hz, 1H); 3.70 (d, *J* = 5.0 Hz, 1H); 3.63 (d, *J* = 10.9 Hz, 2H); 2.14 (m, 1H); 1.93 (m, 1H); 1.42 (s, 9H).¹³C NMR (100 MHz, CDCl₃): δ = 30.3, 39.4, 48.1, 48.6, 50.9, 51.7, 63.6, 63.9, 71.5, 122.7, 126.6, 126.9, 127.4, 127.5, 127.7, 127.8, 128.1, 128.2, 128.7, 139.9, 143.8, 144.3, 156.7. HRMS (ESI-FT-QQTOF) *m/z*: 450.2551 [M+H]⁺; calcd. for C₃₀H₃₂N₃O: 450.2545. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel AD-H column (*n*-hexane/*i*-PrOH 90:10) at 0.5 mL/min, UV-detection at λ = 254 nm: t_R (major)= 15.6 min, t_R (minor)= 17.3 min, 95% ee.

Compound 5d

Benzoylacetontrile (21.8 mg, 0.15 mmol), *o*-bromo-cinnamaldehyde (19.9 mg, 0.10 mmol), *tert*butylamine (15.7 µL, 0.15 mmol), and cyclohexylisocyanide (18.7 µL, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*hexane/EtOAc 3:1) afforded compound **5d** (28.1 mg, 54%, isomer *cis*) as a pale yellow solid. $[\alpha]_{\rm D}^{20}$ –2.2 (*c* 0.6, acetone, 20°C). $R_{\rm f}$ = 0.36 (*n*-hexane/EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃):

δ = 7.83-7.76 (m, 1H); 7.66-7.52 (m, 2H); 7.50-7.41 (m, 2H); 7.37-7.11 (m, 3H); 7.05-6.96 (m, 1H); 5.42 (d, J = 8.5 Hz, 1H); 4.21 (d, J = 9.0 Hz, 1H); 3.92-3.78 (m, 1H); 3.46 (dd, J = 10.2, 7.1 Hz, 1H); 2.19-2.11 (m, 1H); 2.10-1.97 (m, 2H); 1.84-1.73 (m, 1H); 1.72-1.61 (m, 2H); 1.47-1.32 (m, 2H); 1.27-1.09 (m, 4H); 0.95 (s, 9H).¹³C NMR (100 MHz, CDCl₃): δ = 24.2, 24.4, 25.7, 30.5, 33.2, 33.9, 43.2, 47.0, 50.7, 51.4, 56.5, 67.5, 112.7, 120.9, 125.9, 127.5, 128.1, 128.9, 128.8, 129.2, 132.2, 133.3, 133.5, 133.8, 142.7, 147.3, 155.8. HRMS (ESI-FT-QQTOF) *m/z*: 520.1971 [M+H]⁺; calcd. for C₂₉H₃₅BrN₃O: 520.1964. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel AD-H column (*n*-hexane/*i*-PrOH 90:10) at 0.5 mL/min, UV-detection at λ= 254 nm: t_R (major)= 13.1 min, t_R (minor)= 14.5 min, 96% ee.

Compound 5e

Benzoylacetontrile (21.8 mg, 0.15 mmol), *trans*-4-bromocinnamaldehyde (19.9 mg, 0.10 mmol), *tert*-butylamine (15.7 μ L, 0.15 mmol), and cyclohexylisocyanide (18.7 μ L, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 3:1) afforded compound **5e** (29.1 mg, 56%, isomer *cis*) as a pale yellow solid. [α]_D²⁰ –1.3 (*c* 0.4, acetone, 20°C). $R_{\rm f}$ = 0.38 (*n*-hexane/EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.94-7.85 (m, 1H); 7.65-7.47 (m, 3H); 7.45-7.35 (m, 3H); 7.11-7.05 (m, 2H); 5.42 (d, *J* = 8.6

Hz, 1H); 3.94-3.83 (m, 2H); 3.69 (dd, J = 10.2, 7.1 Hz, 1H); 2.29-2.21 (m, 1H); 1.91-1.79 (m, 1H); 1.77-1.67 (m, 2H); 1.66-1.59 (m, 2H); 1.54-1.38 (m, 2H); 1.32- 1.16 (m, 4H); 1.05 (s, 9H).¹³C NMR (100 MHz, CDCl₃): $\delta = 24.2$, 24.3, 25.7, 30.5, 33.3, 33.8, 44.5, 46.9 , 50.8, 51.4, 57.2, 69.2, 120.3, 120.9, 124.3, 128.7, 128.8, 129.2, 129.9, 131.8, 132.6, 133.5, 143.6, 148.0, 155.9, 161.1. HRMS (ESI-FT-QQTOF) *m/z*: 520.1970 [M+H]⁺; calcd. for C₂₉H₃₅BrN₃O: 520.1964. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel AS-H column (*n*-hexane/*i*-PrOH 90:10) at 0.5 mL/min, UV-detection at $\lambda = 254$ nm: t_R (major)= 6.1 min, t_R (minor)= 6.9 min, 91% ee.

Compound 5f

4-Methoxybenzoylacetontrile (26.4 mg, 0.15 mmol), cinnamaldehyde (12.6 μL, 0.10 mmol), *tert*butylamine (15.7 μL, 0.15 mmol), and cyclohexylisocyanide (18.7 μL, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 3:1) afforded compound **5f** (27.4 mg, 58%) as a yellow solid. $[\alpha]_D^{20}$ –2.6 (*c* 0.6, acetone, 20°C). *R*_f = 0.34 (*n*-hexane/ EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.91-7.84 (m, 1H); 7.38-7.33 (m, 1H); 7.25-7.19 (m, 2H); 7.17-7.10 (m, 4H); 6.94-6.90 (m, 1H); 5.30 (d, *J* = 8.4 Hz, 1H); 3.89 (d, *J* = 8.9 Hz, 1H); 3.82 (s, 3H); 3.67 (dd, *J* = 10.1/ 7.1 Hz, 1H); 2.27-2.21 (m, 1H); 2.07-1.98 (m, 2H); 1.83-1.75 (m, 1H); 1.70-1.61 (m, 2H); 1.44-1.34 (m, 2H); 1.23-1.11 (m, 4H); 0.98 (s, 9H).¹³C NMR (100 MHz, CDCl₃): δ = 24.2, 24.3, 25.8, 30.6, 33.4, 33.8, 44.6, 47.4, 50.8, 51.3, 57.3, 69.8, 114.1, 121.1, 123.8, 123.7, 126.5, 126.9, 128.5, 128.7, 129.3, 131.3, 131.8, 133.3, 144.6, 149.1, 155.9, 160.9. HRMS (ESI-FT-QQTOF) *m/z*: 472.2971 [M+H]⁺; calcd. for C₃₀H₃₈N₃O₂: 472.2964. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel AD-H column (n-hexane/i-PrOH 80:20) at 1.0 mL/min, UV-detection at λ = 254 nm: t_R (minor)= 31.7 min, t_R (major)= 37.1 min, 89% ee.

Compound 5g

4-Bromobenzoyacetontrile (33.6 mg, 0.15 mmol), cinnamaldehyde (12.6 μ L, 0.10 mmol), *tert*butylamine (15.7 μ L, 0.15 mmol), and cyclohexylisocyanide (18.7 μ L, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*hexane/EtOAc 4:1) afforded compound **5g** (29.7 mg, 57%) as a pale yellow solid. [α]²⁰_D -1.6 (*c*

0.5, acetone, 20°C). R_f = 0.35 (*n*-hexane/ EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.52-7.27 (m, 4H); 7.25-6.97 (m, 5H); 5.29 (d, *J* = 8.1 Hz, 1H); 3.77 (d, *J* = 9-0 Hz, 1H); 3.74-3.60 (m, 1H); 3.54 (dd, *J* = 10.1, 7.1 Hz, 1H); 2.31-2.23 (m, 1H); 2.05-1.80 (m, 3H); 1.75-1.62 (m, 5H); 1.60-1.48 (m, 1H); 1.37-1.26 (m, 2H); 1,15 (s, 9H).¹³C NMR (100 MHz, CDCl₃): δ = 23.9, 24.0, 25.5, 30.2, 33.1, 33.5, 44.3, 47.1, 50.5, 51.0, 57.0, 69.5, 120.8, 125.1, 126.2, 126.6, 127.5, 127.9, 128.4, 128.9, 129.2, 129.9, 131.8, 132.4, 144.2, 160.7. HRMS (ESI-FT-QQTOF) *m/z*: 520.1978 [M+H]⁺; calcd. for C₂₉H₃₅BrN₃O: 520.1964. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (n-hexane/i-PrOH 97:3) at 1.0 mL/min, UV-detection at λ= 254 nm: t_R (major)= 12.6 min, t_R (minor)= 16.6 min, 80% ee.

Compound 5h

Benzoylacetontrile (21.8 mg, 0.15 mmol), *trans*-2-nitrocinnamaldehyde (17.7 mg, 0.10 mmol), *tert*-butylamine (15.7 μ L, 0.15 mmol), and cyclohexylisocyanide (18.7 μ L, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 5:1) afforded compound **5h** (28.7 mg, 59%) as a yellow solid. [α]_D²⁰ –2.3 (*c* 0.5,

acetone, 20°C). R_f = 0.32 (*n*-hexane/ EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.08-8.04 (m, 2H); 7.91 (dd, J = 8.1, 1.3 Hz, 1H); 7.68-7.59 (m, 2H); 7.53-7.46 (m, 3H); 3.45-7.38 (m, 1H); 5.91 (dd, J = 7.6, 3.2 Hz, 1H); 5.39 (d, J = 8.7 Hz, 1H); 4.84 (dd, J = 7.9, 5.8 Hz, 1H); 3.93-3.79

(m, 1H); 2.84-2.75 (m, 1H); 2.16-2.12 (m, 1H); 1.79-1.58 (m, 4H); 1.50-1.32 (m, 3H); 1,25 (s, 9H).¹³C NMR (100 MHz, CDCl₃): $\delta = 21.2$, 24.2, 25.5, 30.5, 33.4, 33.7, 39.3, 44.9, 52.3, 56.5, 60.5, 78.4, 119.2, 124.9, 128.1, 128.5, 128.75, 129.1, 130.0, 133.8, 133.9, 136.1, 138.2, 144.7, 149.8, 156.8, 167.6. HRMS (ESI-FT-QQTOF) *m/z*: 487.2721 [M+H]⁺; calcd. for C₂₉H₃₅N₄O₃: 487.2709. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (n-hexane/i-PrOH 90:10) at 1.0 mL/min, UV-detection at $\lambda = 254$ nm: t_R (major)= 45.5 min, t_R (minor)= 53.2 min, >99% ee.

Compound 5i

To a solution of Jørgensen catalyst (9.0 mg, 0.015 mmol), benzoic acid (4 mg, 0.03 mmol), and cinnamaldehyde (12.6 μ L, 0.10 mmol) in dichloromethane (1.0 mL) was added ethyl 3-(4-methoxyphenyl)-3-oxopropionate (28.7 μ L, 0.15 mmol) and was irradiated for 30 min (300 W) under high-speed magnetic stirring at -20 °C. 2,2,2-trifluoroethanol (1.0 mL), *tert*-butylamine (15.7 μ L, 0.15 mmol), and cyclohexylisocyanide (18.7 μ L, 0.15 mmol) were added and the glass tube was sealed. The flask was irradiated for 20 min (300 W) under high-speed magnetic stirring, while the temperature was raised up to 70 °C. Flash column chromatography purification (*n*-hexane/EtOAc 3:1) afforded compound **5i** (38.1 mg, 49%, isomer *cis*) as a yellowish oil. [α]²⁰

-17.4 (*c* 0.5, EtOH, 20°C). $R_f = 0.38$ (*n*-hexane/ EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.69-7.60 (m, 2H); 7.53-7.41 (m, 5H); 7.25-7.10 (m, 2H); 6.24 (d, *J* = 6.9 Hz 1H); 4.52-4.48 (m, 1H); 4.18 (q, *J* = 7.8 Hz, 2H); 3.72 (s, 3H); 3.58-3.50 (m, 1H); 3.23-3.15 (m, 1H); 2.60-2.50 (m, 1H); 2.32-2.10 (m, 6H); 1.88-1.76 (m, 2H); 1.73-1.56 (m, 3H);1.47 (t, *J* = 7.5 Hz, 3H); 1.292 (s, 9H).¹³C NMR (100 MHz, CDCl₃): δ = 14.3, 22.8, 27.2, 29.5, 29.8, 31.1, 32.1, 32.9, 37.2, 45.1, 54.3, 56.7, 63.3, 77.5, 85.2, 105.9, 110.1, 115.3, 116.9, 118.6, 120.6, 125.1, 129.2, 129.6, 139.0, 140.3, 148.3, 155.1, 169.4, 174.0. HRMS (ESI-FT-QQTOF) *m/z*: 519.3229 [M+H]⁺; calcd. for C₃₂H₄₃N₂O₄: 519.3223. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 95:5) at 0.8 mL/min, UV-detection at $\lambda = 254$ nm: t_R (major)= 15.5 min, t_R (minor)= 17.2 min, 90% ee.

Compound 5j

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 μ L, 0.10 mmol), 2-iodoaniline (32.8 mg, 0.15 mmol), and *tert*-butyl isocyanide (16.9 μ L, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 4:1) afforded compound **5**j (33.7 mg, 60%, isomer *cis*) as amorphous white solid. $[\alpha]_D^{20}$ –6.2 (*c* 0.5,

acetone, 20°C). R_f = 0.39 (*n*-hexane/ EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.74-7.52(m, 5H); 7.49-7.21 (m, 7H); 7.20-6.98 (m, 2H); 5.57 (s, 1H); 4.68 (dd, J = 6.9, 5.2 Hz, 1H); 4.39-4.25 (m, 1H); 4.10 (dd, J = 7.0, 4.5 Hz, 1H); 2.60 (m, 1H); 1.48 (s, 9H).¹³C NMR (100 MHz, CDCl₃): δ = 30.1, 41.6, 43.0; 47.1, 52.1, 73.7, 121.6, 122.7, 124.1, 126.7, 126.9, 127.1, 127.2, 127.6, 128.7, 129.9, 130.1, 131.4, 134.1, 140.3, 141.7, 143.6, 148.1, 157.0, 157.7, 180.5. HRMS (ESI-FT-QQTOF) *m/z*: 562.1369 [M+H]⁺; calcd. for C₂₉H₂₉IN₃O: 562.1355. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (*n*-hexane/*i*-PrOH 90:10) at 0.8 mL/min, UV-detection at λ = 254 nm: t_R (major)= 28.3 min, t_R (minor)= 41.9 min, 99% ee.

Compound 5k

Benzoylacetontrile (1, 21.8 mg, 0.15 mmol), cinnamaldehyde (2, 12.6 μ L, 0.10 mmol), 2iodoaniline (32.8 mg, 0.15 mmol), and N-allyl-2-isocyanoacetamide² (18.6 mg, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*hexane/EtOAc 5:1) afforded compound **5k** (31.9 mg, 53%, isomer *cis*) as amorphous yellow

² Dömling, A.; Beck, B.; Fuchs, T.; Yazbak, A. J. Comb. Chem. 2006, 8, 872.

solid. $[\alpha]_D^{20}$ -10.6 (*c* 0.5, acetone, 20°C). *R*_f = 0.41 (*n*-hexane/ EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.61 (ddd, *J* = 7.6, 3.6, 1.3 Hz, 1H); 7.42-7.38 (m, 1H); 7.35-7.31 (m, 4H); 7.20-7.07 (m, 6H); 6.54 (dd, *J* = 6.9, 5.5 Hz, 1H); 6.47-6.42 (m, 1H); 6.28 (t, *J* = 6.3 Hz, 1H); 5.81-5.77 (m, 1H); 5.76-5.68 (m, 1H); 5.15-5.03 (m, 2H); 4.69 (t, *J* = 7.6 Hz, 1H); 4.21 (dd, *J* = 5.2, 2.4 Hz, 2H); 4.03 (t, *J* = 5.8 Hz, 1H); 3.87-3.80 (m, 2H); 2.21 (dd, *J* = 7.7, 5.9 Hz, 2H).¹³C NMR (100 MHz, CDCl₃): δ = 39.5, 42.2, 46.3, 47.7, 59.6, 78.3, 87.2, 112.3, 117.0, 120.5, 126.8, 127.0, 127.2, 127.4, 128.4, 128.6, 128.8, 129.2, 129.5, 129.9, 130.1, 133.4, 139.5, 143.2, 145.5, 156.5, 159.3, 167.7, 170.6. HRMS (ESI-FT-QQTOF) *m/z*: 603.1268 [M+H]⁺; calcd. for C₃₀H₂₈IN₄O₂: 603.1257. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 90:10) at 0.7 mL/min, UV-detection at λ = 254 nm: t_R (major)= 19.2 min, t_R (minor)= 24.4 min, 95% ee.

Compound 51

Benzoaylcetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 μ L, 0.10 mmol), (*S*)- α -methylbenzylamine (19.4 μ L, 0.15 mmol), and methyl isocyanoacetate (13.6 μ L, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 3:1) afforded compound **5I** (32.6 mg, 68%, isomer *cis*) as a pale yellow oil. [α]_D²⁰

-2.9 (*c* 0.6, acetone, 20°C). $R_f = 0.35$ (*n*-hexane/ EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.25-7.23 (m, 5H); 7.21-7.13 (m, 6H); 7.12-6.98 (m, 4H); 5.68 (t, *J* = 6.1 Hz, 1H); 4.32 (m, 1H); 4.22 (m, 2H); 3.95 (d, *J* = 8.8 Hz, 1H); 3.76 (s, 3H); 3.57 (t, *J* = 8.0 Hz, 1H); 2.25 (m, 1H); 1.94 (m, 1H); 1.28 (d, *J* = 6.5 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ = 25.6, 40.9, 45.1, 47.8, 52.8, 53.6, 56.1, 60.3, 74.9, 119.7, 124.3, 125.4, 126.5, 126.7, 126.8, 126.9, 127.6, 128.7, 128.8, 143.8, 144.5, 145.9, 160.6, 170.5. HRMS (ESI-FT-QQTOF) *m/z*: 480.2288 [M+H]⁺; calcd. for C₃₀H₃₀N₃O₃: 480.2282. The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 90:10) at 1.0 mL/min, UV-detection at λ = 254 nm: t_R (major)= 20.7 min, t_R (minor)= 44.5 min, 91:9 *dr*.

Compound 5m

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 µL, 0.10 mmol), (*R*)- α -methylbenzylamine (37.3 µL, 0.15 mmol), and methyl isocyanoacetate (13.6 µL, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 3:1) afforded compound **5m** (28.8 mg, 60%, isomer *cis*) as a pale yellow oil. $[\alpha]_{\rm D}^{20}$ –2.1 (*c* 0.6, acetone, 20°C). $R_{\rm f}$ = 0.40 (*n*-hexane/EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃):

δ = 7.42-7.21 (m, 12H); 7.18-7.04 (m, 3H); 5.93 (brs, 1H); 4.36 (m, 2H); 3.97 (m, 2H); 3.84 (brs, 4H); 2.04 (m, 1H); 1.83 (m, 1H); 1.39 (d, *J* = 6.5 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ = 23.4, 41.4, 44.9, 47.6, 48.6, 52.8, 56.8, 61.1, 74.6, 119.8, 126.4, 126.6, 126.8, 127.4, 127.9, 128.7, 129.1, 143.6, 144.3, 145.7, 160.6, 170.4. HRMS (ESI-FT-QQTOF) *m/z*: 480.2290 [M+H]⁺; calcd. for C₃₀H₃₀N₃O₃: 480.2287. The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 90:10) at 0.8 mL/min, UV-detection at λ = 254 nm: t_R (minor)= 22.8 min, t_R (major)= 30.8 min, 87:13 *dr*.

Compound 5n

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 μ L, 0.10 mmol), alanine methyl ester hydrochloride (20.9 mg, 0.15 mmol), Et₃N (21 μ L, 0.15 mmol) and cyclohexylisocyanide (18.7 μ L, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 2:1) afforded compound **5n** (28.8 mg, 61%, isomer *cis*) as a pale yellow oil. $[\alpha]_{D}^{20}$ –14.4 (*c* 5.0, acetone, 20°C). R_{f} = 0.32 (*n*-hexane/EtOAc 2:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.56-7.24 (m, 6H); 7.21-7.13 (m, 3H); 5.59 (d, *J*= 8.2 Hz, 1H); 4.01 (dd, *J*= 8.6, 1.4 Hz, 1H); 3.86 (m, 1H); 3.72 (s, 3H); 3.37 (q, *J* = 7.0 Hz, 1H); 2.18-2.03

(m, 2H); 2.01-1.90 (m, 1H); 1.81-1.71 (m, 2H); 1.68-1.55 (m, 2H); 1.46 (d, J = 12.0 Hz 1H); 1.30 (d, J = 7.0 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): $\delta = 20.0$, 24.2, 25.6, 25.9, 33.5, 33.6, 40.4, 47.6, 51.5, 52.2, 54.2, 61.7, 71.2, 102.5, 113.7, 120.6, 125.0, 126.6, 126.9, 127.9, 128.6, 129.8, 130.5, 132.5, 134.6, 144.0, 159.1, 176.4. HRMS (ESI-FT-QQTOF) *m/z*: 472.2618 [M+H]⁺; calcd. for C₂₉H₃₄N₃O₃: 472.2601. The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 90:10) at 0.8 mL/min, UV-detection at $\lambda = 254 \text{ nm}$: t_R (major)= 8.8 min, >99:1 *dr*.

Compound 5o

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 µL, 0.10 mmol), HCl Phe-OMe (32.3 mg, 0.15 mmol), Et₃N (21.0 µL, 0.15 mmol) and cyclohexylisocyanide (18.7 µL, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 4:1) afforded compound **50** (28.5 mg, 52%, isomer *cis*) as a pale yellow solid. $[\alpha]_D^{20}$ –5.3 (*c* 0.5, acetone, 20°C). R_f = 0.33 (*n*-hexane/ EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.60-7.35 (m, 7H); 7.29-7.12 (m, 8H); 4.81 (d, *J* = 7.9 Hz, 1H); 4.47 (t, *J* = 7.1 Hz, 1H); 4.15 (d, *J* = 4.9 Hz, 1H); 3.70 (s, 3H); 3.60 (m, 1H); 3.48 (t, *J* = 7.6 Hz, 1H); 3.12 (dd, *J* = 13.9, 6.8 Hz, 1H); 2.58 (dd, *J* = 14.0, 6.8 Hz, 1H); 2.35-2.27 (m, 2H); 2.22-2.12 (m, 2H); 1.82-1.60 (m, 6H); 1.56-1.50 (m, 2H).¹³C NMR (100 MHz, CDCl₃): δ = 24.4, 24.5, 25.7, 33.4, 36.1, 39.7, 39.9, 45.6, 47.4, 51.6, 52.4, 60.1, 61.5; 67.5, 111.4, 116.2, 123.8, 126.9, 127.3, 128.6, 128.7, 128.8, 128.9, 129.2, 129.3; 131.5, 133.4, 144.4, 149.8, 149.7, 156.5, 158.9, 175.6. HRMS (ESI-FT-QQTOF) *m/z*: 548.2910 [M+H]⁺; calcd. for C₃₅H₃₈N₃O₃: 548.2913. The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 90:10) at 0.8 mL/min, UV-detection at λ = 254 nm: t_R (major)= 19.2 min, t_R (minor)= 23.4 min, 99:1 *dr*.

Compound 5p

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 μL, 0.10 mmol), 2-iodoaniline (32.8 mg, 0.15 mmol), and 2-Isocyano-*N*-(prop-2-yn-1-yl)acetamide² (18.3 mg, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 4:1) afforded compound **5p** (34.8 mg, 58%, isomer *cis*) as yellow solid. $[\alpha]_D^{20}$ -10.1 (*c* 0.5, acetone, 20°C). $R_f = 0.32$ (*n*-hexane/ EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.76$ -7.67 (m, 3H); 7.63-7.24 (m, 9H); 7.10-6.94 (m, 2H); 6.12-5.80 (m, 1H); 5.30-5.13 (m, 1H); 4.46 (d, *J* = 5.8 Hz, 2H); 4.24 (dd, *J* = 5.4, 2.6 Hz, 2H); 4.00 (dd, *J* = 7.1, 2.9 Hz, 1H); 3.65-3.59 (m, 1H); 3.52-3.48 (m, 1H); 2.65-2.54 (m, 1H); 2.31 (t, *J* = 2.6 Hz, 1H).¹³C NMR (100 MHz, CDCl₃): $\delta = 29.4$, 39.4, 46.2, 47.6, 59.6, 68.4, 71.9, 78.9, 79.0, 87.1, 112.3, 118.5, 120.5, 126.2, 126.9, 127.0, 128.8, 128.9, 128.2, 129.6, 130.1, 139.5, 143.2, 145.6, 159.6, 167.9, 170.7. HRMS (ESI-FT-QQTOF) *m/z*: 601.1128 [M+H]⁺; calcd. for C₃₀H₂₆IN₄O₂: 601.1100. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (n-hexane/i-PrOH 90:10) at 1.0 mL/min, UV-detection at λ = 300 nm: t_R (minor)= 20.4 min, t_R (major)= 21.7 min, 92% ee.

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 μ L, 0.10 mmol), 3,5dimethoxy aniline (22.7 mg, 0.15 mmol), and cholesterol isocyanide³ (59.3 mg, 0.15 mmol) were reacted according to the general procedure B. The reaction was concentrated *in vacuo*. The resulting residue was dissolved in CH₂Cl₂ (3 mL). The product was recrystallized by addition of MeOH and collected by vacuum filtration to afforded compound **6** (49.3 mg, 61%, isomer *cis*) as a yellow solid. $[\alpha]_{\rm D}^{20}$ –2.9 (*c* 0.5, acetone, 20°C). $R_{\rm f}$ = 0.40 (*n*-hexane/ EtOAc 3:1). ¹H NMR (400

MHz, CDCl₃): δ = 7.49-7.32 (m, 2H); 7.31-7.21 (m, 5H); 7.19-7.06 (m, 6H); 5.87 (s, 1H); 5.75 (d, J = 2.7 Hz, 1H); 5.33 (s, 1H); 4.77 (d, J = 8.2 Hz, 1H); 4.49 (t, J = 7.2 Hz, 1H); 4.02-3.95 (m, 1H); 3.84-3.75 (m, 3H); 3.66 (s, 6H); 2.43-2.30 (m, 1H); 2.18-2.10 (m, 1H); 2.09-1.98 (m, 3H); 1.96-1.84 (m, 3H), 1.82-1.71 (m, 3H), 0.84 (d, J = 6.4 Hz, 6H), 0.80 (s, 3H), 0.78 (s, 3H), 0.6 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 10.8, 17.6, 18.4, 19.9, 21.5, 21.8, 22.8, 23.3, 27.0, 27.2, 28.5, 28.7, 29.0, 30.8, 34.8, 35.2, 35.6, 36.0, 38.3, 38.5, 38.7, 38.9, 41.3, 46.6, 48.8, 52.3 54.2, 55.0, 55.6, 58.2, 59.7, 60.1, 89.9, 92.1, 118.9, 121.6, 124.7, 125.8, 126.1, 126.4, 127.6, 127.7, 128.9, 129.0, 132.9, 138.5 142.7, 147.2, 157.5, 160.8. HRMS (ESI-FT-QQTOF) *m/z*: 808.5429 [M+H]⁺; calcd. for C₅₄H₇₀N₃O₃: 808.5417. The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 90:10) at 0.8 mL/min, UV-detection at λ = 254 nm: t_R (minor)= 9.7 min, t_R (major)= 12.0 min, 96:4 *dr*.

³ Rivera, D. G.; Pérez-Labrada, K.; Lambert, L.; Dörner, S.; Westermann, B.; Wessjohann, L. A. Carbohydr. Res. **2012**, 359, 102-110.

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 µL, 0.10 mmol), 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosylamine⁴ (52.1 mg, 0.15 mmol), and *tert*-butyl isocyanide (16.9 μ L, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (n-hexane/EtOAc 2:1) afforded compound 7 (21.8 mg, 63%, isomer cis) as a yellow solid. $[\alpha]_{\rm D}^{20}$ -3.9 (c 0.4, acetone, 20°C). $R_{\rm f} = 0.37$ (*n*-hexane/ EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.68-7.57$ (m, 1H); 7.51-7.35 (m, 6H); 7.30- 7.12 (m, 3H); 5.90 (s, 1H); 5.45 (t, J =7.5 Hz, 1H); 5.30 (t, J = 7.5 Hz, 1H); 5.15 (dd, J = 10.0, 9.5 Hz, 1H); 4.98 (dd, J = 9.4, 9.5 Hz, 1H); 4.60 (dd, J = 9.0, 9.5 Hz, 1H); 4.28 (d, J = 9.0 Hz, 1H); 4.24 (dd, J = 12.0, 4.9 Hz, 1H); 4.10 (dd, 1H); 3.80-3.60 (m, 1H); 3.48 (t, J = 7.0 Hz, 1H); 2.78-2.46 (m, 1H), 2.14, 2.12, 2.01, 1.97 $(4 \cdot s, 12H); 1.48 (s, 9H).^{13}C NMR (100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 22.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 20.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 20.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 20.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 20.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, CDCl_3): \delta = 19.9, 20.7, 26.2, 27.3, 30.2, 35.4, 41.6, 100 MHz, 20.7,$ 43.0, 47.0, 48.1, 52.2, 62.0, 69.4, 71.2, 72.5, 73.6, 82.8, 84.8, 121.7, 126.1, 126.8, 126.9, 127.1, 127.6, 128.1, 128.7, 129.9, 143.7, 156.9, 167.9, 168.5, 169.3, 170.3, 171.1. HRMS (ESI-FT-QQTOF) m/z: 690.3039 [M+H]⁺; calcd. for C₃₇H₄₄N₃O₁₀: 690.3026. The diastereometric ratio was determined by chiral stationary phase HPLC using a Chiralcel AS-H column (n-hexane/i-PrOH 90:10) at 1.0 mL/min, UV-detection at λ = 290 nm: t_R (major)= 13.5 min, t_R (minor)= 18.3 min, 98:2 dr.

⁴ Badia, C.; Souard, F.; Vicent, C. J. Org. Chem. 2012, 77, 10870-10881.

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 μ L, 0.10 mmol), HCl Val-OMe (25.1 mg, 0.15 mmol), Et₃N (21 μ L, 0.15 mmol), and CN-Gly-Phe-OMe (36.9 mg, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 1:1) afforded compound **8** (33.1 mg, 52%, isomer *cis*) as a pale brown oil. [α]²⁰_D

-1.3 (*c* 0.5, acetone, 20°C). $R_f = 0.33$ (*n*-hexane/ EtOAc 1:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.35-7.27 (m, 6H, Ph); 7.25-7.19 (m, 3H, Ph); 7.18-7.08 (m, 6H, Ph); 6.37 (d, *J* = 7.7 Hz, 1H); 6.17 (t, *J* = 5.8 Hz, 1H); 4.95 (dd, *J* = 13.7, 6.0 Hz, 1H); 4.28 (d, *J* = 5.8 Hz, 2H); 4.12 (m, 1H); 4.02 (dd, *J* = 7.8, 4.0 Hz, 1H) 3.77 (m, 1H); 3.73 (s, 3H); 3.72 (s, 3H); 3.16 (m, 2H); 3.07 (d, *J* = 5.2 Hz, 1H); 2.04 (m, 3H); 1.99 (m, 2H); 1.26 (t, *J* = 7.1 Hz, 1H); 0.95 (d, *J* = 6.8 Hz, 3H); 0.90 (d, *J* = 6.9 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ = 18.2, 19.4, 31.6, 37.9, 39.9, 46.3, 47.8, 52.0, 52.4, 53.4, 61.8, 64.4, 75.4, 119.9, 120.1, 126.7, 126.9, 127.2, 127.5, 128.1, 128.3, 128.7, 128.9, 129.0, 129.1, 129.2, 135.6, 142.2, 143.3, 160.3, 167.8, 171.6, 175.8. HRMS (ESI-FT-QQTOF) *m/z*: 637.3031 [M+H]⁺; calcd. for C₃₇H₄₁N₄O₆: 637.3026. The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 90:10) at 1.0 mL/min, UV-detection at $\lambda = 254$ nm: t_R (major)= 22.6 min, 99:1 *dr*.

Compound 9

Benzoylacetontrile (21.8 mg, 0.15 mmol), cinnamaldehyde (12.6 μ L, 0.10 mmol), HCl Ala-OMe (20.9 mg, 0.15 mmol), Et₃N (21.0 μ L, 0.15 mmol), and CN-Gly-Ile-Val-OMe (46.7 mg, 0.15 mmol) were reacted according to the general procedure B. Flash column chromatography purification (*n*-hexane/EtOAc 1:3) afforded compound **9** (39.1 mg, 58%, isomer *cis*) as a pale

yellow solid. $[\alpha]_D^{20}$ –5.2 (*c* 0.5, acetone, 20°C). *R*_f = 0.29 (*n*-hexane/ EtOAc 1:3). ¹H NMR (400 MHz, CDCl₃): δ = 7.76-7.60 (m, 2H); 7.55-7.46 (m, 5H); 7.23-7.02 (m, 3H); 6.33 (d, *J* = 6.8 Hz, 1H); 6.16 (t, *J* = 5.7 Hz, 1H); 6.12 (t, *J* = 5.8 Hz, 1H); 5.76 (t *J* = 5.8 Hz, 1H); 4.70-4.62 (m, 1H); 4.55-4.60 (m, 2H); 4.52-4.47 (m, 1H); 4.28 (d, *J* = 7.1 Hz, 1H); 4.12 (d, *J* = 8.2 Hz, 1H); 3.74 (2xs, 6H); 3.49 (q, *J* = 7.0 Hz, 1H); 2.51 (m, 1H); 2.26-2.12 (m, 2H); 2.09-1.97 (m, 1H); 1.60-1.55 (m, 1H); 1.51(d, *J* = 7.0 Hz, 3H); 1.46-1.30 (m, 1H); 1.09 (d, *J* = 7.0 Hz, 6H); 0.90 (d, *J* = 6.8 Hz, 6H); 0.80 (t, *J* = 2.5 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ = 11.3, 15.3, 17.9, 18.9, 19.8, 37.5, 46.4, 47.1, 52.1, 52.2 54.1, 56.2, 57.3, 57.9, 58.0, 61.7, 62.3, 75.2, 119.7, 120.1, 126.7, 126.8, 126.9, 127.5, 128.3, 128.6, 128.7, 130.1, 143.0, 143.5, 161.0, 168.6, 170.9, 172.2, 176.1. HRMS (ESI-FT-QQTOF) *m/z*: 674.3565 [M+H]⁺; calcd. for C₃₇H₄₈N₅O₇: 674.3554. The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 90:10) at 0.7 mL/min, UV-detection at λ = 254 nm: t_R (major)= 13.8 min, t_R (minor)= 21.8 min, 96:4 *dr*.

Methyl ester removal procedure for compound 9

Compound 9a

The THP-peptide chimeric **9** (30.0 mg, 0.04 mmol) was dissolved in THF/H₂O (2:1, 5 mL) and LiOH (5.7 mg, 0.24 mmol) was added at 0 °C. The mixture was stirred at 0 °C for 2 h and then acidified with aquouse 10% NaHSO₄ to pH 3. The resulting phases were separated and the aqueous phase was additionally extracted with EtOAc (2·10 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to yield the *C*-**deprotected THP-peptide 9a** (22.7 mg, 88%) as a white solid. ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.82-7.75 (m, 1H); 7.70-7.57 (m, 1H); 7.49-7.21 (m, 8H); 5.58 (d, *J* = 6.8 Hz, 1H); 4.64 (d, *J* = 6.0 Hz, 1H); 4.56 (t, *J* = 5.9 Hz, 1H); 4.51-4.47 (m, 2H); 4.43-4.39 (m, 1H); 4.33-4.29 (m, 1H); 2.15-2.06 (m, 4H); 1.35 (d, *J* = 7.0 Hz, 3H); 1.25 (d, *J* = 7.0 Hz, 3H); 1.18 (t, *J* = 7.1 Hz, 1H); 0.96 (d, *J* = 6.8 Hz, 6H); 0.85 (t, *J* = 2.5 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): $\delta =$ 11.4, 15.6, 17.9, 18.4, 19.4, 25.9, 30.2, 38.0, 41.4, 42.3, 46.4, 47.8, 56.6, 57.3, 57.8, 62.1, 75.2, 119.7, 120.1,

126.7, 126.8, 126.9, 127.5, 128.4, 128.6, 128.7, 130.4, 143.0, 143.8, 161.0, 168.6, 171.9, 172.2, 176.1. HRMS (ESI-FT-QQTOF) *m/z*: 646.3235 [M+H]⁺; calcd. for C₃₅H₄₄N₅O₇: 646.3240.

Synthesis of cyclic compound 10

The C-deprotected THP-peptide 9a (22.6 mg, 0.035 mmol), PyBOP (41.6 mg, 0.070 mmol) and DIEA (41.8 µL, 0.210 mmol) are suspended in CH₂Cl₂/DMF (100 mL). 1,3-Diaminopropane (3.4 µL, 0.035 mmol) is syringed in portion wise and the resulting solution is stirred at room temperature for 12h. The reaction mixture is concentrated and then diluted with 20 mL EtOAc, transferred to a separatory funnel and sequentially washed with 5% aqueous solution of KHSO₄ (2.10 mL) and 5% aqueous suspension NaHCO₃ (2.10 mL) and brine (3x10 mL). The organic phase is dried over Na₂SO₄, filtered and concentrated under reduced pressure. Flash column chromatography purification (CH₂Cl₂/MeOH 15:1) furnished the chimeric THP-peptide macrocycle **10** (11.2 mg, 41%). ¹H NMR (400 MHz, CD₃OD): δ = 7.78-7.61 (m, 1H); 7.57-7.33 (m, 9H); 6.21 (m, 1H); 5.86 (d, J = 6.8 Hz, 1H); 5.42 (d, J = 6.0 Hz, 1H); 4.64 (t, J = 5.9 Hz, 1H); 4.57 (m, 1H); 4.47-4.42 (m, 2H); 4.39-4.26 (m, 1H); 4.20-4.00 (m, 1H); 4.02 (dd, J = 6.9, 5.7 Hz,1H) 3.53(m, 2H); 3.25(m, 2H); 3.18(m, 1H); 2.85-2.80(m, 1H); 2.59-2.43(m, 4H); 1.82(t, J = 1)7.0 Hz, 3H); 1.20 (d, J = 7.0 Hz, 3H); 0.96 (d, J = 6.8 Hz, 6H); 0.85 (t, J = 3.0 Hz, 3H).¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 11.5, 15.8, 17.6, 18.6, 19.9, 25.9, 27.3, 30.7, 32.4, 37.7, 40.2, 41.2, 42.6, 19.9, 25.9, 27.3, 30.7, 32.4, 37.7, 40.2, 41.2, 42.6, 19.9, 25.9, 27.3, 30.7, 32.4, 37.7, 40.2, 41.2, 42.6, 19.9, 25.9, 27.3, 30.7, 32.4, 37.7, 40.2, 41.2, 42.6, 19.9, 25.9, 27.3, 30.7, 32.4, 37.7, 40.2, 41.2, 42.6, 19.9, 25.9, 27.3, 30.7, 32.4, 37.7, 40.2, 41.2, 42.6, 19.9, 25.9, 27.3, 30.7, 32.4, 37.7, 40.2, 41.2, 42.6, 19.9, 25.9, 27.3, 30.7, 32.4, 37.7, 40.2, 41.2, 42.6, 19.9, 25.9, 27.3, 30.7, 32.4, 37.7, 40.2, 41.2, 42.6, 19.9, 25.9, 27.3, 30.7, 32.4, 37.7, 40.2, 41.2, 42.6, 19.9, 19$ 43.3, 44.1, 56.7, 58.3, 59.8, 62.2, 74.2, 111.6, 118.6, 126.7, 127.1, 127.5, 127.8, 128.1, 128.9, 129.8, 131.7, 144.5, 146.8, 165.9, 168.4, 171.7, 173.8, 177.4. HRMS (ESI-FT-QQTOF) m/z: $684.3869 [M+H]^+$; calcd. for C₃₈H₅₀N₇O₅: 684.3873.

A mixture of **5g** (60.2 mg, 0.100 mmol), palladium(II) acetate (1.1 mg, 0.005 mmol), triphenyl phosphine (2.6 mg, 0.010 mmol) and triethylamine (34.7 µL, 0.250 mmol) in acetonitrile (2mL) was heated to 120 °C for 45 min (300W). Flash column chromatography purification (*n*-hexane/EtOAc 6:1) afforded compound **11** (21.4 mg, 45%) as amorphous white solid. $R_f = 0.50$ (*n*-hexane/ EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.68$ (dd, J = 7.2, 4.6 Hz, 1H); 7.48-7.39 (m, 1H); 7.38-7.29 (m, 4H); 7.28-7.15 (m, 6H); 6.82 (dd, J = 6.7, 5.1 Hz,1H); 6.77-6.72 (m, 1H); 6.62 (d, J = 15.1 Hz, 1H); 6.36 (brs, 1H); 5.93-5.70 (m, 2H); 4.76 (t, J = 7.7 Hz,1H); 4.28 (dd, J = 5.4, 2.5 Hz, 2H); 4.11 (t, J = 6.0 Hz, 1H); 3.95-3.86 (m, 2H); 2.31-2.25 (m, 2H).¹³C NMR (100 MHz, CDCl₃): $\delta = 42.3$, 46.4, 47.1, 47.8, 59.7, 87.3, 112.4, 117.1,120.0, 120.6, 126.9, 127.1, 127.3, 127.5, 128.5, 128.7, 128.9, 129.0, 129.3, 129.7, 130.1, 133.2, 133.5, 139.6, 143.3, 145.6, 156.6, 159.4, 167.8, 170.7. HRMS (ESI-FT-QQTOF) *m/z*: 475.2139 [M+H]⁺; calcd. for C₃₀H₂₇N₄O₂: 475.2134. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (*n*-hexane/*i*-PrOH 90:10) at 1.0 mL/min, UV-detection at $\lambda = 254$ nm: t_R (major)= 8.8 min, t_R (minor)= 17.0 min, 94% ee.

Compound 12

A solution of **51** (121 mg, 0.20 mmol), Pd(PPh₃)₂Cl₂ (1.4 mg, 0.002 mmol) and CuI (1.0 mg, 0.004 mmol) in Et₃N/CH₃CN (1:1, 4.0 mL) was heated at 100 °C for 3h under N₂ atmosphere. The reaction mixture was poured into water and extracted with DCM, then the combined organic phases were concentrated *in vacuo* and purified by column chromatography (*n*-hexane/EtOAc 5:1) to afford compound **12** (49.1 mg, 52%) as brown oil. R_f = 0.37 (*n*-hexane/ EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.91-7.52 (m, 4H); 7.49 -7.21 (m, 7H); 7.169-6.69 (m, 3H); 6.13 (t, *J* = 7.0 Hz, 1H); 5.62 (m, 1H); 5.03 (d, *J* = 5.8 Hz, 2H); 4.70 (d, *J* = 6.1 Hz, 2H), 4.17(d, *J* = 6.9

Hz, 1H); 3.85 (t, J = 7.0 Hz, 1H); 3.78 (d, J = 6.9 Hz, 1H); 2.65-2.50 (m, 1H).¹³C NMR (100 MHz, CDCl₃): $\delta = 29.5$, 37.5, 39.5, 46.3, 47.7, 59.6, 72.0, 87.1, 90.1, 91.0, 112.4, 118.6, 119.9, 120.6 126.3, 126.9, 127.1, 128.5, 128.9, 129.1, 129.3, 129.6, 133.5, 139.6, 143.3, 145.6, 159.6, 167.9, 169.9. HRMS (ESI-FT-QQTOF) *m/z*: 473.1989 [M+H]⁺; calcd. for C₃₀H₂₅N₄O₂: 473.1978. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel IA column (*i*-PrOH) at 1.0 mL/min, UV-detection at $\lambda = 254$ nm: t_R (minor)= 3.6 min, t_R (major)= 3.7 min, 87% ee.

Compound 13

To a solution of **5f** (56.1 mg, 0.1 mmol), in toluene/acetonitrile ($\nu/\nu = 3/1$ c= 50 mM, ca 2mL), was added K₂CO₃ (27.7 mg, 0.2 mmol), Pd(dba)₂ (2.7 mg, 0.005 mmol) and XantPhos (2.9, 0.005 mmol) in a teflon-capped vial. The sealed vial is then subjected to micro-wave heating (150W, 100°C) for 1 h. After cooling to room temperature, the catalyst and salt were removed by filtration through a short pad of Celite. The filtrate was concentrated to dryness and purified by flash column chromatography (*n*-hexane/EtOAc 4:1) to afford compound **13** (26.4 mg, 61%) as an amorphous white solid. $R_f = 0.35$ (*n*-hexane/ EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.48-7.07$ (m, 11H); 6.97-6.68 (m, 3H); 4.15 (t, J = 7.3 Hz, 1H); 3.90 (t, J = 7.0 Hz, 1H); 2.89 (dd, J = 7.5, 2.8 Hz, 1H); 2.16 (dd, J = 7.0, 2.9 Hz, 1H); 1.39 (s, 9H).¹³C NMR (100 MHz, CDCl₃): $\delta = 29.9$, 42.0, 43.4, 49.7, 51.8, 94.5, 116.6, 119.8, 121.5, 125.4, 126.9, 127.6, 128.4, 129.0, 129.1, 130.5, 134.8, 139.4, 141.7, 143.4, 145.3, 147.9, 151.3, 152.9, 157.6, 158.5, 169.1. HRMS (ESI-FT-QQTOF) *m/z*: 456.2069 [M+Na]⁺; calcd. for C₂₉H₂₇N₃NaO: 456.2052. The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (*n*-hexane/*i*-PrOH 80:20) at 0.7 mL/min, UV-detection at $\lambda = 254$ nm: t_R (minor)= 10.6 min, t_R (major)= 14.6 min, 97% ee.

¹H and ¹³C NMR Spectra of Tetrahydropyridines and Chimeric Derivatives

¹H and ¹³C NMR spectra in CDCl₃ of compound **5a**

 1 H and 13 C NMR spectra in CDCl₃ of compound **5b**

Expanded region of NOESY spectra for compound 5c

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl3 of compound $\mathbf{5d}$

 ^1H and ^{13}C NMR spectra in CDCl3 of compound $\mathbf{5f}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl3 of compound $\mathbf{5g}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl3 of compound $\mathbf{5h}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl3 of compound **5**j

S34

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl3 of compound 5l

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl3 of compound 5m

 1 H and 13 C NMR spectra in CDCl₃ of compound **5n**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl3 of compound $\mathbf{5o}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl3 of compound $\mathbf{5p}$

¹H and ¹³C NMR spectra in CDCl₃ of compound 6

S40

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CD₃OD of compound 10

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl3 of compound 11

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl3 of compound 12

¹H and ¹³C NMR spectra in CDCl₃ of compound **13**

Chiral Stationary Phase HPLC Chromatograms

Chromatogram of Compound 5a

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*PrOH 90:10) at 0.8 mL/min, UV-detection at $\lambda = 254$ nm:

PDA Ch1 254nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	5.621	9945319	700393	98.041	98.049		
2	6.622	198761	13933	1.959	1.951		
Total		10144081	714326	100.000	100.000		

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (*n*-hexane/*i*PrOH 95:5) at 0.8 mL/min, UV-detection at $\lambda = 254$ nm:

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel AD-H column (*n*-hexane/*i*PrOH 90:10) at 0.5 mL/min, UV-detection at $\lambda = 254$ nm:

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel AD-H column (*n*-hexane/*i*PrOH 90:10) at 0.5 mL/min, UV-detection at $\lambda = 254$ nm:

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.084	5222760	221151	98.087	98.032
2	14.487	101867	4440	1.913	1.968
Total		5324626	225591	100.000	100.000

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel AS-H column (*n*-hexane/*i*PrOH 90:10) at 0.5 mL/min, UV-detection at $\lambda = 254$ nm:

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel AD-H column (*n*-hexane/*i*PrOH 90:10) at 1.0 mL/min, UV-detection at $\lambda = 254$ nm:

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel AD-H column (*n*-hexane/*i*PrOH 97:3) at 0.5 mL/min, UV-detection at $\lambda = 254$ nm:

PDA	Chl	23	54nm	4nm	
					_

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.568	12742098	360860	89.915	89.516
2	16.570	1751576	51474	10.085	10.484
Total		14493674	412333	100.000	100.000

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (n-hexane/i-PrOH 90:10) at 1.0 mL/min, UV-detection at λ = 254 nm:

PDA Ch1 254nm 4nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	45.205	4523143	23535	100.000	100.000
Total		4523143	23535	100.000	100.000

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 95:5) at 0.8 mL/min, UV-detection at λ = 254 nm:

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.546	693555	22127	95.180	96.264
2	17.203	35120	859	4.820	3.736
Total		728674	22985	100.000	100.000

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*-PrOH 90:10) at 0.7 mL/min, UV-detection at λ = 254 nm:

PDA Ch1 254nm 4nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	28.372	12279505	169664	99.348	99.358
2	41.969	80583	1096	0.652	0.642
Total		12360088	170760	100.000	100.000

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*PrOH 90:10) at 0.7 mL/min, UV-detection at $\lambda = 254$ nm:

PDA Ch1 254nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	19.160	5628372	156805	97.370	97.682		
2	24.395	152004	3720	2.630	2.318		
Total		5780376	160525	100.000	100.000		

The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*PrOH 90:10) at 1.0 mL/min, UV-detection at $\lambda = 254$ nm:

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.700	32092726	588171	90.659	95.027
2	44.529	3306840	30778	9.341	4.973
Total		35399566	618949	100.000	100.000

The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*PrOH 90:10) at 0.8 mL/min, UV-detection at $\lambda = 254$ nm:

197065

100.000

100.000

17256948

Total

The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*PrOH 90:10) at 0.8 mL/min, UV-detection at $\lambda = 254$ nm:

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.766	3539778	175302	100.000	100.000
Total		3539778	175302	100.000	100.000

The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (*n*-hexane/*i*PrOH 90:10) at 0.8 mL/min, UV-detection at $\lambda = 254$ nm:

Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.159	1959481	36161	99.137	98.974
2	23.352	17058	375	0.863	1.026
Total		1976539	36536	100.000	100.000

PDA Ch1 254nm 4nm

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (*n*-hexane/*i*PrOH 90:10) at 1.0 mL/min, UV-detection at $\lambda = 254$ nm:

PDA C	Ch1 254r	nm 4nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.414	438930	14104	4.075	5.292
2	21.761	10332978	252395	95.925	94.708
Total		10771909	266499	100.000	100.000

The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*PrOH 90:10) at 0.8 mL/min, UV-detection at $\lambda = 254$ nm:

The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel AS-H column (*n*-hexane/*i*PrOH 90:10) at 1.0 mL/min, UV-detection at $\lambda = 290$ nm:

The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*PrOH 90:10) at 1.0 mL/min, UV-detection at $\lambda = 254$ nm:

PDA Ch1	254nm 4nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.633	3562657	40413	100.000	100.000
Total		3562657	40413	100.000	100.000

The diastereomeric ratio was determined by chiral stationary phase HPLC using a Chiralcel OD-H column (*n*-hexane/*i*PrOH 90:10) at 0.7 mL/min, UV-detection at $\lambda = 254$ nm:

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (*n*-hexane/*i*PrOH 90:10) at 1.0 mL/min, UV-detection at $\lambda = 254$ nm:

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel IA column (*i*PrOH) at 1.0 mL/min, UV-detection at $\lambda = 254$ nm:

The enantiomeric excess was determined by chiral stationary phase HPLC using a Chiralcel OJ-H column (*n*-hexane/*i*-PrOH 80:20) at 0.7 mL/min, UV-detection at λ = 254 nm: t_R (minor)= 10.6 min, t_R (major)= 14.6 min, ee=97%.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.871	95227	2196	1.347	2.220
2	14.561	6972468	96704	98.653	97.780
Total		7067695	98900	100.000	100.000