Supporting Information

Selective aerobic oxidation of alkyl aromatics on Bi₂MoO₆ nanoplates decorated with Pt nanoparticles under visible light irradiation

Bao Zhang ^a[‡], Xiaojing Yang^b[‡], Jun Li^c, Gang Cheng^{a*}

^a Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; Email: chenggang@henu.edu.cn

^b The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China;

^c State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China

*To whom correspondence should be addressed. ‡These authors contributed equally

to this work.

Table of Contents

1.	Experimental Details
2.	Fig. S1 UV-Vis DRS spectra of Bi ₂ MoO ₆ nanoplates
3.	Fig. S2 (a) HRTEM image and (b) XPS of Pt/Bi ₂ MoO ₆ nanoplates7
4.	Table S1 Black experiments
5.	Table S2 Photocatalytic aerobic oxidation of ethylbenzene on M/MOx-Bi2MoO6 nanoplates
6.	Fig. S3 The effect of Pt amount10
7.	Fig. S4 UV-Vis DRS spectra of Pt/Bi ₂ MoO ₆ nanobelts11
8.	Table S3 BET surface areas of Pt/Bi ₂ MoO ₆ samples12
9.	Fig. S5 Cycling experiments of Pt/Bi ₂ MoO ₆ nanoplates for photocatalytic aerobic oxidation of ethylbenzene
10.	Fig. S6 XRD patterns of Pt/Bi ₂ MoO ₆ nanoplates before the reaction and after 6 runs
11.	Fig. S7 TEM images of Pt/Bi ₂ MoO ₆ nanopaltes before the reaction and after 6 runs
12.	Fig. S8 TEM images of Pt/Bi ₂ MoO ₆ nanobelts16
13.	Note

1. Experimental Details

1.1 Materials

Ammonium hydroxide (NH₃·H₂O), glycerol, and ammonium molybdate ((NH₄)₆Mo₇O₂₄·4H₂O) were supplied from Tianjin Kermel Chemical Reagent Co., Ltd. (Tianjin, China). Bismuth nitrate (Bi(NO₃)₃·5H₂O) was obtained from Tianjin Bodi Chemical Co., Ltd. (Tianjin, China). 4-bromoacetophenone, 1-chloro-4ethylbenzene, 4-methoxyacetophenone, propiophenone, 4-chloroacetophenone, ethylbenzene, 1-ethyl-4-fluorobenzene, 1-bromo-4-ethylbenzene, 1-indanone, 4ethylanisole, and 4-fluoroacetophenone were purchased from Alfa Aesar. 1,3dichlorobenzene was supplied from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Indan, 1,2,3,4-tetrahydronaphthalene, acetophenone, and α -tetralone were supplied from TCI. Diphenylmethane, and benzophenone were obtained from J&K Scientific. Propylbenzene was purchased from Acros Organics. All chemicals were used without further purification. Deionized water used in the synthesis was from local sources.

1.2 Preparation of photocatalysts

 Bi_2MoO_6 samples were synthesized by a sample solvothermal method. $Bi(NO_3)_3 \cdot 5H_2O$ (5.0 mmol) and $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ (0.36 mmol) were dissolved in 60 ml different solvents including water and glycerol (at 50 °C), respectively and ultrasonicated for 30 min. With continuous stirring, 5% NH₃ (aq.) was added into the mixture by a drop-by-drop process until pH value was 9.0. Then, stirring for 0.5 h, it was added into 100 ml Teflon-lined stainless steel autoclave and maintained at 140 °C (240 °C for water) for 24 h. Thereafter, the samples were cooled to room temperature and recovered by centrifugation at 10000 rpm, washed with deionized water and absolute ethanol, and dried at 80 °C in an oven. Finally, the samples synthesized in glycerol were calcined at 400 °C for 2 h to remove the adsorbed organic compounds.

Metal nanoparticles supported on Bi₂MoO₆ samples were prepared by photodeposition method. Bi₂MoO₆ samples were suspended in methanol aqueous solution (50 vol%) containing chloroplatinic acid under vacuum conditions. The solution was irradiated by a 300 W Xe lamp (PLS-SXE 300, Beijing Perfectlight Co., Ltd.) for 1 h with magnetic stirring, continuously kept at 283 K in a water bath, and then formed Pt-loaded Bi₂MoO₆ samples. Other metals were loaded on Bi₂MoO₆ samples using the same method.

Metal oxide-supported Bi_2MoO_6 samples were prepared by impregnation method. Bi_2MoO_6 samples were suspended in aqueous solution containing corresponding salt. The mixture was evaporated at 353 K with vigorous stirring. The samples were dried at 80 °C for 12 h in an oven. The samples were calcined at 400 °C for 1 h and obtained MO_x -loaded Bi_2MoO_6 samples.

1.3 Characterization

Crystal structures were measured on a powder X-ray diffraction (XRD) instrument Rigaku D/Max-2500/PC using Cu-K α radiation. Optical properties were performed on an UV-Vis spectrophotometer (JASCO-V550) with BaSO₄ as a reference. Morphologies of the samples were recorded with a (Tecnai G² Spirit (FEI)) transmission electron microscopy (TEM), a (FEI Quanta 200F) scanning electron microscopy (SEM), and a (Tecnai G² F30 S-Twin) high revolution transmission electron microscopy (HRTEM).

1.4. Evaluation of photocatalytic activity

20 mg catalyst and 0.1 mmol ethylbenzene were mixed in 1.5 mL benzotrifluoride (BTF) solvent. BTF solvent was chosen because it could not be oxidized under such conditions and has high oxygen solubility. The catalyst was dispersed evenly in BTF solution with continuous magnetic stirring for 20 min before light irradiation. Reaction temperature was kept at 17 °C with a water bath. The solution was irradiated by a 300 W Xe lamp with visible light region from 420 to 800 nm. The reaction solution was analyzed with an Aglient Gas Chromatograph (GC7890) equipped with a flame ionization detector and a β -DEX 225 capillary column using 1,3-dichlorobenzene as the internal standard. The chemical structures of products were confirmed by GC-mass spectrometry (MS) (Agilent Technologies, GC6890N-MS5975).

Conversion of ethylbenzene and selectivity of acetophenone were defined as follows:

Conversion (%) = $[(C_0 - C_{\text{ethylbenzene}})/C_0] \times 100$

Selectivity (%) =
$$[C_{acetophenone}/(C_0-C_{ethylbenzene})] \times 100$$

Where C_0 was the initial concentration of ethylbenzene and $C_{ethylbenzene}$ and $C_{acetophenone}$ were the concentration of the ethylbenzene and the acetophenone, respectively.

The cycling experiments were carried out as following. The oxidation of ethylbenzene was performed as above. After each run of cycling test, the reaction solution was centrifuged, washed with water, ethanol, BTF, dried (80 °C for 12 h), and used for the next run under the same conditions.

2. Fig. S1

Fig. S1 UV-Vis DRS spectra of Bi₂MoO₆ nanoplates.

3. Fig S2

Fig. S2 (a) HRTEM image and (B) XPS of Pt/Bi_2MoO_6 nanoplates.

Light	Photocatalyst	O ₂	Conv. (%)	Sel. (%)
+	+	+	<1	-
-	+	+	<1	-
+	-	+	<1	-
+	+	-	<1	-

4. Table S1 Controlled experiments

Reaction conditions: catalyst 20 mg, ethylbenzene 0.025 mmol, $C_6H_5CF_3$ 1.5 mL, reaction temperature 17 °C, reaction time 6 h, O_2 0.1 MPa.

nanopiates				
Photocatalyst	Conv. (%)	α-PEA ^a (%)	ACP ^b (%)	Total Sel. ^c (%)
-	<1	-	-	-
Au	22	12	86	98
Pd	30	15	81	96
Pt	90	3	92	95
Ir	12	16	81	97
Rh	14	7	90	97
Ru	14	22	77	99
CuO _x	5	-	96	96
FeO _x	2	-	99	99
VO _x	3	2	92	94
MnO _x	2	2	98	>99
NiO _x	<1	-	-	-
CoO _x	<1	-	-	-

5. Table S2 Photocatalytic aerobic oxidation of ethylbenzene on M/MO_x-Bi₂MoO₆ nanoplates

Reaction conditions: catalyst 20 mg, ethylbenzene 0.025 mmol, $C_6H_5CF_3$ 1.5 mL, reaction temperature 17 °C, reaction time 6 h, O_2 0.1 MPa, metal loading 0.6 wt%. ^a α -PEA is phenylethyl alcohol. ^b ACP is acetophenone. ^c Total selectivity of products is the selectivity of α -PEA and that of ACP.

6. Fig. S3

Fig. S3 The effect of Pt amount Reaction conditions: catalyst 20 mg, ethylbenzene 0.025 mmol, $C_6H_5CF_3$ 1.5 mL, reaction temperature 17 °C, reaction time 6 h, O_2 0.1 MPa.

7. Fig. S4

Fig. S4 UV-Vis DRS spectra of Pt/Bi_2MoO_6 nanobelts.

	Pt/Bi2MoO6 nanobelts	Pt/Bi2MoO6 nanoplates
BET surface areas (m^2/g)	7.3	23.7
The activity of catalyst	18.8	41.2
$(\mu mol \cdot h^{-1} \cdot m^{-2})$		

8. Table S3 BET surface areas of Pt/Bi₂MoO₆ samples

9. Fig. S5

Fig. S5 Cycling experiments of Pt/Bi_2MoO_6 nanoplates for photocatalytic aerobic oxidation of ethylbenzene.

Reaction conditions: catalyst 20 mg, ethylbenzene 0.025 mmol, $C_6H_5CF_3$ 1.5 mL, reaction temperature 17 °C, reaction time 6 h, O_2 0.1 MPa, metal loading 0.6 wt%.

10. Fig. S6

Fig. S6 XRD patterns of Pt/Bi_2MoO_6 nanoplates before the reaction and after 6 runs.

Fig. S7 TEM images of Pt/Bi_2MoO_6 nanopaltes before the reaction (a) and after 6 runs (b).

12. Fig. S8

Fig. S8 TEM images of Pt/Bi_2MoO_6 nanobelts.

Substrate	Product	Time (h)	Conv. (%)	Sel. (%)
	O C	6	90	92
ci Ci	CI	10	98	96
F	F	17	92	92
Br	Br	16	95	95
H ₃ CO	H ₃ CO	2	97	80 ^a
	° C	2.5	96	57 ^b
	€ ↓	2.5	94	61°
\bigcirc	€	6	92	53 ^d
		13	95	88 ^e

13. NoteTable 2 Photocatalytic oxidation of alkyl aromatics on Pt/Bi₂MoO₆ nanoplates.

Reaction conditions: catalyst 20 mg, ethylbenzene 0.025 mmol, $C_6H_5CF_3$ 1.5 mL, reaction temperature 17 °C, $\lambda > 420$ nm, O_2 0.1 MPa, metal loading 0.6 wt%. ^a Other products are 4-methoxybenzyl alcohol, anisic aldehyde, p-anisic acid, 4-methoxyphenylethyl alcohol. ^b Other products are 2-propylbenzyl alcohol, 2-propylbenzaldehyde, 2-propylbenzoic acid. ^c Other products are 2-ethylbenzyl alcohol, 2-ethylbenzaldehyde, 2-ethylbenzoic acid. ^d Other products are benzyl alcohol or benzaldehyde and benzoic acid. ^e Other product is benzopinacole.

Note 1: Pt/Bi_2MoO_6 nanoplates could convert most of alkyl aromatics to corresponding ketone and alcohol with high selectivity. For some special substrates, the desirable products are low due to the ketone and alcohol decomposition forming benzyl alcohol, benzaldehyde and benzoic acid.

Note 2: The more reaction mechanism details were provided in below.

With visible light irradiation, the Bi₂MoO₆ nanopaltes are stimulated, and then produce photogenerated holes and electrons. The holes oxidize the ethylbenzene adsorbed on the surface of Bi₂MoO₆ photocatalyst, and forms ethylbenzene cationic radicals. This step is usually regarded as the ratedetermining step for the oxidation of alkyl aromatics. Simultaneously, the photogenerated electrons transfer to Pt nanoparticles. Pt nanoparticles as cocatalyst, no only dramatically promote oxygen reduction and suppress the recombination of photogenerated charge, but also activate the C-H bonds of ethylbenzene. The ethylbenzene cationic radicals are recombined by interacting with superoxide radicals. 1-phenylethyl peroxyl radical (PEPR) are generated from the reaction ethylbenzene (EB) cationic radicals and the superoxide radicals. After forming PEPR, there are two pathways for the decomposition of PEPR. The minor reaction pathway is that PEPR abstracts hydrogen from EB, forming 1-phenylethyl hydroperoxide (PEHO), subsequently through β -scission mechanism, and generate benzaldehyde, benzyl alcohol and benzoic acid. The major reaction pathway is that the di-PEPR couple with each other, through Rueesll mechanism, forming acetophenone and phenylethyl alcohol. In these pathways the intermediate (di-PEPR) is more stable in thermodynamically. So, the main products of the ethylbenzene oxidation are acetophenone and phenylethyl alcohol.

 $\label{eq:scheme1} Scheme \ 1 \ The \ reaction \ pathway \ of \ photocatalytic \ oxidation \ of \ ethylbenzene \ on \ Pt/Bi_2MoO_6 \\ catalyst$