Electronic Supplementary Information

Constructing POSS and viologen-linked porous cationic frameworks induced by the Zincke reaction for efficient CO₂ capture and conversion

Guojian Chen,*^a Xiaohui Huang,^a Yadong Zhang,^a Mengyao Sun,^a Jie Shen,^a Rui Huang,^a Minman Tong,^a Zhouyang Long*^a and Xiaochen Wang^b

 ^a School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
 ^b Department of Chemistry and Materials Engineering, Hefei University, Hefei 230022, China
 * Corresponding author:

E-mail: gjchen@jsnu.edu.cn (G. J. Chen); longzhouyangfat@163.com (Z. Y. Long)

Experimental Section

Materials

Octa(aminophenyl)silsesquioxane (NH₂-POSS, HWRK), 4,4 ⁻bipyridine (Adamas), 1-chloro-2,4-dinitrobenzene (Alfa), 1-bromo-2,4-dinitrobenzene (Alfa) and solvents N,N-Dimethylformamide (DMF), Dimethylacetamide (DMAc), N,N-Diethylformamide (DEF), Dimethyl sulfoxide (DMSO) and other common solvents were commercially available and used as received.

Methods

Liquid-state ¹H and ¹³C NMR spectra were measured with a Bruker DPX 500 spectrometer at ambient temperature in the solvent of D₂O using TMS as internal reference. Solid-state ²⁹Si MAS NMR, ¹³C and ¹H spin-echo pulse NMR spectra were carried out a Bruker AVANCE III 600 spectrometer at a resonance frequency of 119.2 MHz using a 4 mm HX double-resonance MAS probe. The CHN elemental analysis was performed on an elemental analyzer Vario EL cube. Fourier transform infrared spectroscopy (FTIR) was recorded on a Bruker Vertex 80V FTIR instrument (KBr discs) in the region 4,000-400 cm⁻¹. The Si-OH groups in samples were identified by *in situ* FTIR spectroscopy (Bruker, EQUINOX55) under vacuum condition at 200 °C. Before testing, the samples were treated at 200 °C for 6 h under vacuum condition to remove the adsorbed water. Thermogravimetric analysis (TGA) was carried out with a TA Q50 instrument in nitrogen or air atmosphere at a heating rate of 10 °C min⁻¹. XRD patterns were collected on the Bruker D8 Advance powder diffractometer using Ni-filtered Cu Ka radiation source at 40 kV and 20 mA, from 5 to 80° with a scan rate of 0.2° s⁻¹. Field emission scanning electron microscope (FESEM, Hitachi SU8010) accompanied by Energy dispersive X-ray spectrometry (EDS) was used to study the morphology and the elements distribution. Transmission Electron Microscopy (TEM) images were obtained by using a JEOL JEM-2100F 200 kV field-emission transmission electron microscope. N₂ adsorption isotherms were measured at 77 K using a Quantachrome autosorb iQ2 analyzer, and the surface area of samples was calculated using the Brunauer-Emmett-Teller (BET) method and the pore size distribution was determined by nonlocal density functional theory (NLDFT) model (N2 77 K on carbon, slit pore) and Barrett-Joyner-Halenda (BJH) method. The CO₂ adsorption isotherms at 273 and 298 K were also measured using the Quantachrome autosorb iQ2 analyzer. All the samples were degassed at 150 $\,$ °C for 10 h in high vacuum before the adsorption experiments for both N₂ and CO₂. The contents of Cl⁻ and Br⁻ anions were measured by a Dionex ICS-2000 ion chromatographic analyser (Dionex, USA). The surface chemical composition was determined by X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250Xi, USA) using an X-ray source of mono-chromatic Al Ka (1486.6 eV) 150 W.

Synthesis of viologen linkers

Scheme S1 Synthesis of viologen linkers (A) VL-Cl and (B) VL-Br.

Synthesis of VL-CI: As shown in Scheme S1A, 1,1'-bis(2,4-dinitrophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride (denoted as VL-Cl) was prepared following previously reported literature procedure with a little modify.^{S1} 4,4'-bipyridine (4.46 g, 30 mmol) and 1-chloro-2,4-dinitrobenzene (18.23 g, 90 mmol) were dissolved in CH₃CN (100 mL). The reaction mixture was stirred under air atmosphere at 90 °C for 72 h. The final suspension was filtered and subsequently washed with CH₃CN (3×20 mL) and then the resulting yellow powder was dried under vacuum at 80 °C for 12 h to give the product VL-Cl (10.10 g, yield of 60 %). VL-Cl: ¹H NMR (400 MHz, D₂O, Fig. S1A): δ 9.45~9.46 (CH, 4H), 9.37 (CH, 2H), 8.90~8.93 (CH, 6H) and 8.28~8.30 ppm (CH, 2H). ¹³C NMR (100 MHz, D₂O, Fig. S1B): δ 152.64, 149.86, 146.86, 142.81, 138.25, 131.16, 130.76, 127.58 and 122.81 ppm. Elemental analysis: Found: C, 46.69; H, 2.89; N, 14.74 wt%. Calcd. For C₂₂H₁₄O₈N₆Cl₂ (M.W. 561.29): C, 47.08; H, 2.51; N, 14.97 wt%.

Synthesis of VL-Br: As shown in Scheme S1B, 1,1'-bis(2,4-dinitrophenyl)-[4,4'-bipyridine]-1,1'-diium dibromide (denoted as VL-Br) was prepared by using a similar process with VL-Cl. 4,4'-bipyridine (4.46 g, 30 mmol) and 1-bromo-2,4-dinitrobenzene (22.23 g, 90 mmol) were dissolved in CH₃CN (100 mL). The reaction mixture was stirred under air atmosphere at 90 °C for 72 h. The final suspension was filtered and subsequently washed with CH₃CN (3×20 mL) and then the resulting yellow powder was dried under vacuum at 80 °C for 12 h to give the product VL-Br (16.35 g, yield of 85 %). VL-Br: ¹H NMR (400 MHz, D₂O, Fig. S2A): δ 9.41~9.42 (CH, 4H), 9.33~9.34 (CH, 2H), 8.86~8.89 (CH, 6H) and 8.24~8.26 ppm (CH, 2H). ¹³C NMR (100 MHz, D₂O, Fig. S2B): δ 152.58, 149.81, 146.80, 142.77, 138.19, 131.11, 130.70, 127.54 and 122.77 ppm. Elemental analysis: Found: C, 40.85; H, 2.51; N, 12.83 wt%. Calcd. for C₂₂H₁₄O₈N₆Br₂ (M.W. 650.19): C, 40.64; H, 2.17; N, 12.93 wt%.

Synthesis of POSS-based viologen-linked porous cationic frameworks

POSS-based viologen-linked porous cationic frameworks were synthesized *via* the Zincke reaction between NH₂-POSS and viologen linkers (Scheme S2 and Scheme S3). Typically, NH₂-POSS (0.058 g, 0.05 mmol) was dissolved in 5 mL DMF and VL-Br (0.13 g, 0.2 mmol) was homogeneously dispersed in 5 mL DMF with stirring for 30 min at room temperature. Then, the mixture suspension solution containing NH₂-POSS and VL-Br was moved into a 25 mL Teflon-lined autoclave, which was taken place at 180 °C in a constant temperature oven for 48 h. After reaction, the obtained dark brown gel-like solid with a little brown solution was dispersed and stirred in 10 mL DMSO solution for 1 h in order to dissolve the residual raw materials and probable oligomers. The suspension was filtered, thoroughly washed with DMSO, THF, water and ethanol, respectively. Finally, the dark brown V-PCIF-Br (0.058 g, yield of 50 %) was obtained by drying in a vacuum at 80 °C for 12 h. Elemental analysis: Found: C, 45.59; H, 3.71; N, 8.89 wt%.

The optimized synthetic conditions of V-PCIF-Br were also investigated by using different solvents (DMF, DMAc, DEF, DMSO, ethanol/water, dioxane and acetonitrile), different molar ratios of NH_2 -POSS to VL-Br, and different reaction temperatures (140 °C, 160 °C and 180 °C). Besides, the other product V-PCIF-Cl with Cl⁻ anions was also synthesized by the replace of VL-Br with VL-Cl under the same conditions.

Catalytic conversion of CO₂ into cyclic carbonates

The catalytic CO_2 cycloaddition with epoxides into cyclic carbonates was performed at both low CO_2 pressure (1.0 MPa) and atmospheric conditions (CO_2 balloon).

The pressured reaction was carried out using a stainless steel autoclave (10 mL) equipped with a magnetic stirrer. In a typical run, the mixture of epoxide (5 mmol) and catalyst V-PICF-Br (0.05 g) was placed in the autoclave, which was flushed twice with CO_2 (0.1 MPa) in order to make the air discharge, and then charged with CO_2 to 1.0 MPa. The reactor was heated at 120 °C for 6 h. After reaction, the reactor was cooled down to room temperature to slowly release the residue CO_2 . Then, the internal standard *n*-dodecane was added and the resulting mixture was diluted with ethyl acetate. The conversion and selectivity were determined by a gas chromatography (GC) plus ¹H NMR. The solid catalyst was separated by filtration, washed with ethyl acetate, dried in the vacuum and then was directly reused in the next run.

In a typical process of the reaction under atmospheric CO_2 conditions (0.1 MPa), epoxide (5 mmol) and V-PICF-Br (0.05 g) were placed in a Schlenk tube with CO_2 purged with a balloon and then the mixture was stirred at the targeted temperature. After reaction, the solid was removed by centrifugation, and the product was measured by GC and ¹H NMR.

Scheme S2 The detailed mechanisms of the Zincke reaction for the formation of V-PCIF-Br *via* a succession of nucleophilic attack, electrocyclic ring opening, electrocyclization and elimination of 2,4-dinitroaniline, in accordance with previous descriptions. (J.J. Li, Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications, DOI 10.1007/978-3-319-03979-4_299)

Scheme S3 The formation process of T^n and Q^n units combined POSS and viologen-linked porous cationic framework V-PCIF-Br.

Scheme S3 depicts the detailed formation process of Tⁿ and Qⁿ units combined POSS and viologen-linked porous cationic framework V-PCIF-Br. Q³ units are formed due to the Si-C bonds cleavage of T³ units, which are caused by the cross-linking of rigid viologen linkers and release of basic 2,4-dinitroaniline. One is ascribed to the distortion of cubic POSS cages when they are connected by rigid viologen linkers, the other is own to the basic 2,4-dinitroaniline that will break Si-C bonds. Besides, getting from the mechanism of the Zincke reaction (Scheme S2), the nucleophilic attack between NH2-POSS and VL-Br will aggravate the cleavage of Si-C bonds in the present of the inevitable water.^{\$2,\$3} Successively, the Q⁴-structured POSS units are originated from the self-condensation of Si-OH from the obtained Q^3 units under the weak basic environment. A minor T^2 unit arises from partial Si-O cleavage of POSS cages, due to the spatial distortion of POSS cages cross-linked by rigid viologen moieties. During the Zincke reaction, T^2 , T^3 , Q^3 and Q^4 silicons coexist in the formed POSS-based porous cationic framework, which are confirmed by ²⁹Si NMR and FTIR spectra. In a word, the formation process is initially induced by the Zincke reaction that is the nucleophilic attack between NH₂-POSS and rigid viologen linker, and then involves the successive reaction-triggered cleavage of Si-C bonds and further condensation of Si-OH, which together contribute to the formation of T^n and Q^n combined POSS and viologen-linked V-PCIF-Br. Obviously, the two coexisting viologen ionic linker and Si-O-Si linker in V-PCIF-Br work together to construct the porous skeleton, among which viologen ionic linker affords the ionic sites and T^2 and Q^3 units offer the desired Si-OH groups.

Fig. S1 (A) 1 H NMR and (B) 13 C NMR of VL-Cl in the solvent D₂O.

Fig. S2 (A) 1 H NMR and (B) 13 C NMR of VL-Br in the solvent D₂O.

Fig. S3 XRD patterns of VL-X (X=Cl, Br).

Fig. S4 (A) ¹³C CP/MAS NMR spectrum and (B) ²⁹Si MAS NMR spectrum of the typical sample V-PCIF-Br. (C) FTIR spectra of VL-Br, NH₂-POSS and V-PCIF-Br.

Fig. S5 In situ FTIR spectra of V-PCIF-Br and V-PCIF-Cl measured at 200°C under vacuum condition.

As shown in Fig. S5, the appearance of a broad band centered at 3656 cm⁻¹ is attributed to POSS-derived Si-OH, which represents at similar positions (3632 or 3630 cm⁻¹) measured by the common FTIR (Fig. S4C and Fig. S6). The appearance of stretching bands around 3462 and 3380 cm⁻¹ can be assigned to N-H stretching vibrations from the residual NH₂ groups in the obtained porous materials. The signals at 3058 and 2930 cm⁻¹ are attributed to the C-H stretching vibrations from phenyl and bipyridium rings within the formed cationic frameworks.

Fig. S6 FTIR spectra of VL-Cl, NH₂-POSS and V-PCIF-Cl

Fig. S6 compares the FTIR of VL-Cl, NH₂-POSS and V-PCIF-Cl. For the viologen linker VL-Cl, the signals at 3115 and 2998 cm⁻¹ are attributed to C-H stretching vibrations from phenyl and bipyridium rings. The typical peaks appeared at 1638, 1546 and 1443 cm⁻¹ are assigned to stretching vibrations of C=N and C=C bonds from bipyridium and phenyl rings, while the sharp peaks at 1611 and 1344 cm⁻¹ are attributed to C-N bond and -NO₂ groups tethered phenyl rings. For NH₂-POSS, the cubic silsesquioxane cage is demonstrated by the strong peak at 1119 cm⁻¹ for the typical Si-O-Si asymmetric stretching vibration. The existence of NH₂ groups is confirmed by the N-H stretching vibration at 3358 cm⁻¹ and the N-H in-plane deformation vibration at 1620 cm⁻¹. The peaks appeared at 1596 and 1438 cm⁻¹ are assigned to C=C stretching vibrations from phenyl rings. After bridged with viologen linker, the obtained V-PCIF-Cl still maintains Si-O-Si structure but with the feature bands divided into three peaks 1178, 1101 and 1108 cm⁻¹, which is similar with V-PCIF-Br. The appearance of typical bands 1631, 1598 and 1516 cm⁻¹ is attributed to the C=N and C=C stretching vibrations from viologen linkers and phenyl rings. The bands at 3632 and 965 cm⁻¹ are assigned to the C-H and Si-O stretching vibrations derived from POSS-derived Si-OH, which is also confirmed by the *in situ* FTIR (Fig. S5).

Fig. S7 XPS (A) survey and (B) N1s core-level spectra of V-PCIF-Br and V-PCIF-Cl.

Fig. S8 (A) SEM and (B) Energy-dispersive X-ray spectrometry (EDS) elemental mapping images including C, O, N, Br elements for the sample V-PCIF-Br (scale: 200 nm)

Fig. S9 (A) SEM and (B) Energy-dispersive X-ray spectrometry (EDS) elemental mapping images including C, O, N, Cl elements for the sample V-PCIF-Cl (scale: 200 nm)

Fig. S10 (A) N₂ adsorption-desorption isotherms, (B) NLDFT pore size distributions and (C) BJH pore size distributions of V-PCIF-Br and V-PCIF-Cl.

Fig. S11 (A) N_2 adsorption-desorption isotherms and (B) NLDFT pore size distributions of V-PCIF-Br using different molar ratio of NH₂-POSS to VL-Br (n=2, 4, 8).

Fig. S12 (A) N_2 adsorption-desorption isotherms and (B) NLDFT pore size distributions of V-PCIF-Br using different reaction solvents (DMF, DMAc and DEF).

Fig. S13 (A) N_2 adsorption-desorption isotherms and (B) NLDFT pore size distributions of V-PCIF-Br using different reaction temperatures (140, 160 and 180 °C).

Fig. S14 The optimized molecular structure of 2,4-dinitroaniline using material studio software.

Fig. S15 Thermogravimetric analysis (TGA) of NH₂-POSS, VL-X and V-PCIF-X (Cl and Br) under (A) N_2 and (B) air atmosphere in the range of 30 °C to 800 °C at a heating rate of 10 °C min⁻¹.

Fig. S16 XRD patterns of NH₂-POSS and V-PCIF-X (X=Cl, Br).

Fig. S17 (A, B) SEM image and (C) TEM of V-PCIF-Br.

Fig. S18 (A, B) SEM images of V-PCIF-Cl with two scales (1 μ m and 500 nm).

Fig. S19 (A) CO₂ adsorption isotherms of V-PCIF-X (X=Cl and Br) collected up to 1.0 bar at 273 K and 298 K. (B) The isosteric heat (Q_{st}) plots of CO₂ adsorption for V-PCIF-X calculated using the Clausius-Clapeyron equation. (C) A five-cycling adsorption of CO₂ over the adsorbent V-PCIF-Br at 273 K by a simple regeneration under mild condition after each cycle.

The isosteric heats of adsorption (Q_{st}), defined as $Q_{st} = RT^2 \left(\frac{\partial \ln p}{\partial T}\right)_q$, are calculated from the CO₂ adsorption

isotherms measured at 273 and 298 K by using Clausius-Clapeyron equation and adopting the dual-site Langmuir-Freundlich (DSLF) fits (*Energy Environ. Sci.*, 2011, 4, 3030; *Energy Environ. Sci.*, 2015, 8, 1011; *Nat. Common.*, 2017, 8,1233). Fig. S19B shows the plot of adsorption enthalpies Q_{st} (kJ mol⁻¹) as a function of the adsorbed CO₂ uptakes (mmol g⁻¹), which presents a downward trend. At low coverage, the initial Q_{st} values are high for V-PCIF-Cl (56.6 kJ mol⁻¹) and V-PCIF-Br (60.4 kJ mol⁻¹), indicative of the strong interaction between ionic frameworks and CO₂ molecules. With the increase of CO₂ uptake to 0.25 mmol g⁻¹, the Q_{st} values present sharp decline to ca. 39 kJ mol⁻¹ and the values (28-30 kJ mol⁻¹) tend to be stable for V-PCIF-X when the ionic sites are occupied and then reach a saturation level after a certain amount of CO₂ (ca. 1.0 mmol g⁻¹). The above sharp decrease in isosteric heat of adsorption is an important result that has direct consequences for the regeneration and recycle for CO₂ adsorption (*Energy Environ. Sci.*, 2011, 4, 3030). From the view of practical application, recyclability is an important issue. Thus, recycling adsorption of CO₂ over the adsorbent V-PCIF-Br at 273 K was conducted using the Quantachrome autosorb iQ2 analyzer for five cycles with no loss of adsorption capacity (Fig. S19C), which demonstrates the remarkable regeneration of V-PCIF-Br. After each adsorption cycle, V-PCIF-Br was easily regenerated under very mild conditions (60 °C, 60 min, vacuum) in order to recover the adsorption capacity completely.

Fig. S20 Catalytic reusability of V-PCIF-Br in the cycloaddition of CO_2 with epichlorohydrin. Reaction conditions: epichlorohydrin (5 mmol), CO_2 pressure (0.1 MPa), the fresh catalyst V-PCIF-Br (0.05 g), 100 °C, 48 h.

Fig. S21 FTIR spectra of (a) the fresh catalyst V-PCIF-Br and (b) the reused V-PCIF-Br from the 5th recycling run.

As shown in Fig. S21, FTIR spectrum of the reused V-PCIF-Br reveals basically similar structure only with slight shifts for vibrations over the fresh one except the absorbed cyclic carbonate presented by the C=O stretching vibration at 1790 cm⁻¹. The divided peaks at 1182, 1126 and 1110 cm⁻¹ are assigned to the reserved Si-O-Si POSS cage and the signals at 1638, 1596 and 1509 cm⁻¹ are attributed to the C=N and C=C stretching vibrations from the existed viologen linkers and phenyl rings.

Fig. S22 (A) N₂ sorption isotherms and (B) NLDFT pore size distribution of the reused catalyst V-PCIF-Br.

Fig. S23 (A) SEM image and (B) TEM image of the the reused catalyst V-PCIF-Br.

Samples		a		D _p (nm) ^[d]	N content $(\text{mmol g}^{-1})^{[e]}$ -	CO ₂ uptake	
	Ionic linkers	S_{BET}	V_{total}			$(\text{mmol g}^{-1})^{[f]}$	
		(mg)	(cm g)			273 K	298K
V-PCIF-Br	VL-Br	383	0.70	1.48, 9.31	6.35	2.33	1.66
V-PCIF-Cl	VL-Cl	174	0.28	1.48, 3.96	7.25	1.97	1.41

Table S1 Textural properties of V-PCIFs series using two viologen linkers with different halogen anions.^[a]

^[a] Reaction conditions: NH₂-POSS (0.05 mmol), VL-Br or VL-Cl (0.2 mmol), solvent DMF (10 mL), 180 °C, 48 h. ^[b] BET surface area calculated over the range P/P₀=0.05~0.20. ^[c] Total pore volume calculated at P/P₀=0.99. ^[d] The peak pore diameter calculated by the NLDFT theory. ^[e] The N content calculated by CHN elemental analysis. ^[f] CO₂ uptakes were measured at 273 and 298 K, 1.0 bar.

Samples	<i>n</i> (NH ₂ -POSS): <i>n</i> (VL-Br)	$S_{BET} (m^2 g^{-1})^{[b]}$	$V_{total} (cm^3 g^{-1})^{[c]}$	$D_{p}(nm)^{[d]}$
V-PCIF-Br (2)	1:2	221	0.46	1.48, 9.31
V-PCIF-Br (4)	1:4	383	0.70	1.48, 9.31
V-PCIF-Br (8)	1:8	182	0.38	1.48, 10.6

Table S2 Textural properties of V-PCIF-Br series using different molar ratio of NH₂-POSS to VL-Br.^[a]

^[a] Reaction conditions: NH₂-POSS (0.05 mmol), VL-Br (0.1~0.4 mmol), solvent DMF (10 mL), 180 °C, 48 h. ^[b] BET surface area calculated over the range $P/P_0=0.05\sim0.20$. ^[c] Total pore volume calculated at $P/P_0=0.99$. ^[d] The peak pore diameter calculated by the NLDFT theory.

By varying the molar ratios of NH₂-POSS to VL-Br from 1:2 to 1:8 (see Fig. S11 and Table S2), the obtained V-PCIF-Br (n=2, 4, 8) samples possess distinct S_{BET} values of 221, 383 and 182 m² g⁻¹, indicating the optimal proportion is based on stoichiometric ratio (1:4). We found that high-boilling amides solvents (i.e. DMF, DMAc and DEF) are more suitable for affording high-surface-area V-PCIF-Br series (Fig. S12 and Table S3), offering S_{BET} values of 383, 270 and 120 m² g⁻¹ in DMF, DMAc and DEF, respectively, while the low-boilling solvents ethanol/water, dioxane and acetonitrile only give low-surface-area solids (< 20 m² g⁻¹). No solid was obtained in high-boilling solvent DMSO. Besides, S_{BET} values of V-PCIF-Br (Fig. S13 and Table S4) are determined by different temperatures in DMF: V-PCIF-Br has a low surface area of 19 m² g⁻¹; V-PCIF-Br has a moderate surface area of 176 m² g⁻¹ at a higher temperature 160 °C ; at a high temperature 180 °C dramatically affords the highest surface area of 383 m² g⁻¹ for V-PCIF-Br.

					_
Samples	Solvent	$S_{BET} (m^2 g^{-1})^{[b]}$	$V_{total} (cm^3 g^{-1})^{[c]}$	$D_{p}\left(nm ight) ^{\left[d ight] }$	
V-PCIF-Br (DMF)	DMF	383	0.70	1.48, 9.31	
V-PCIF-Br (DMAc)	DMAc	270	0.30	1.48, 3.99	
V-PCIF-Br (DEF)	DEF	120	0.38	1.48	

Table S3 Textural properties of V-PCIF-Br influenced by different reaction solvents.^[a]

^[a] Reaction conditions: NH₂-POSS (0.05 mmol), VL-Br (0.2 mmol), solvent (10 mL), 180 °C, 48 h. ^[b] BET surface area calculated over the range $P/P_0=0.05\sim0.20$. ^[c] Total pore volume calculated at $P/P_0=0.99$. ^[d] The peak pore diameter calculated by the NLDFT theory.

Table S4 Textural properties of V-PCIF-Br influenced by different reaction temperature.^[a]

$D_{p}(nm)^{[d]}$
4.75
48, 3.83, 7.82
1.48, 9.31

^[a] Reaction conditions: NH₂-POSS (0.05 mmol), VL-Br (0.2 mmol), solvent (10 mL), 140~180 °C, 48 h. ^[b] BET surface area calculated over the range $P/P_0=0.05\sim0.20$. ^[c] Total pore volume calculated at $P/P_0=0.99$. ^[d] The peak pore diameter calculated by the NLDFT theory.

T.,	Comela	$\mathbf{C} = (-2 - 1)$	CO ₂ uptake	CO_2 uptake (mmol g ⁻¹)		
Туре	Sample	S_{BET} (m g)	273 K, 1.0 bar	298 K, 1.0 bar	ĸeī.	
	HPP-3	805	1.38	0.68	S4	
Neutral	HPP-1c	650	1.56	0.86	S5	
POSS-based	THPP	915	1.16	-	S 6	
porous polymer	HLPP-3	841	0.75	-	S 7	
	FHPP-1	602	0.74	-	S 8	
	PCIF-1(M4)	942	0.96	0.68	S9	
	PCP-C1	755	CO_2 uptake (mmol g ⁻¹) Ref. 273 K, 1.0 bar 298 K, 1.0 bar Ref. 1.38 0.68 S4 1.56 0.86 S5 1.16 - S6 0.75 - S7 0.74 - S8 0.96 0.68 S9 2.31 1.40 S10 - 1.09 S11 3.02 1.82 S12 - 1.94 S13 2.23 1.52 S14 3.3 - S16 1.7 1.2 S17 2.05 1.2 S18 1.02 - S19 1.03 - S20 3.60 - S21 2.9 1.9 S22 2.85 - S23 1.97 1.41 This work 2.9 1.9 S24 - 4.98 S24 - 6.44 </td			
	red-POP-V2	591	-	1.09	S 11	
	cCTF-500	1247	3.02	1.82	S12	
	CCTF-500	1353	-	1.94	S13	
	PIP-Bn-Cl	758	2.23	1.52	S14	
	POM2-IM	653	3.3	-	S15	
	Polymer-4	852	2.9 1.7 \$16 1.7 1.2 \$17			
Porous ionic	HCP-IL-8	450	1.7	1.2	S17	
polymers	CB-PCP-1	419	2.05	1.2	S18	
	PDMBr	205	1.02	-	S19	
	PDBA-Cl-SCD	211	1.03	-	S20	
	PVIm-6-SCD	797.7	3.60	-	S21	
	HIP-Br-2	534	2.9	1.9	S22	
	CPN-1-Cl	1504	2.85	-	S23	
	V-PCIF-Cl	174	1.97	1.41	This work	
	V-PCIF-Br	383	2.33	1.66	This work	
	NaX Zeolite	600	-	4.98	S24	
	13X Zeolite	800	-	4.7	S25, S26	
Other tyrical	FJI-H14	904	-	6.44	S27	
Other typical	MAF-X25ox	1286 ^[b]	-	7.1	S28	
	MAF-X27ox	1167 ^[b]	-	6.7	S28	
(zeomes, MOFs and carbons) $[a]$	Co ₂ (dobdc)	1080	-	6.9	S29	
and cardons)	Mg-MOF-74	1495	-	8.0	S29	
	PCN-14	918	5.33	3.68	S 30	
	CEM750	3360	6.92	4.38	S 31	

Table S5 CO_2 adsorption performance of POSS-based porous polymers and various porous ionic polymers and other typical porous adsorbents.

^[a] Other typical adsorbents relates to zeolites (NaX and 13X zeolite), MOFs (FJI-H14, MAF-X25ox, MAF-X27ox,

Co₂(dobdc) and Mg-MOF-74) and porous carbons (PCN-14 and CEM750). ^[b] Langmuir surface areas.

Catalant	CO ₂ pressure	Temperature	Time	Yield	Def
Catalyst	(MPa)	(°C)	(h)	(%)	Kel.
PCP-Cl	3	100	12	98	S10
IT-POP-1	1	120	10	99	S 32
poly-imidazoliums	1	110	2	94	S 33
POM3-IM	1	120	8	90	S15
cCTF-500	1	90	12	95	S12
FIP-Im	1	80	10	99	S34
CCTF-350	0.1	120	24	93.1	S 13
PIP-Bn-Cl	0.1	100	3	99	S14
PDMBr	0.1	120	12	91.3	S19
IP3	0.1	100	24	99	S35
PDBA-Cl-SCD	0.1	90	6	99.3	S20
PGDBr-5-2OH	0.1	70	24	91	S 36
HIP-Br-2	0.1	120 (70)	48 (96)	90	S22
V-PCIF-Br	1	100 (80)	6 (12)	98 (94)	This work
V-PCIF-Br	0.1	100 (80)	48 (72)	99 (97)	This work

Table S6 Catalytic activities of different ionic sites-containing organic polymers heterogeneous catalysts formetal-free cycloaddition of CO_2 with epichlorohydrin without adding any co-catalysts.

T			CO ₂ pressure	Temperature	Time	Yield	Def	
Туре	Catalyst	Co-catalyst	(MPa)	(°C)	(h)	(%)	KeI.	
Matal based	Co/POP-TPP	TBAB ^[a]	0.1	29	24	94.6	S37	
Metal-based POPs	Cu/POP-Bpy	TBAB	0.1	29	48	99	S38	
	HUST-1-Co	TBAB	0.1	25	48	94.7	S39	
MOFs	Zn-MOF 1 ^[b]	TBAB	0.1	80	2	89	S40	
	Ba-MOF 1a ^[c]	TBAB	0.1	25	48	90	S41	
	Cu-MOF ^[d]	TBAB	0.1	25	48	88	S42	

Table S7 Catalytic activities of some typical efficient catalysts for cycloaddition of CO_2 with epichlorohydrin by adding the co-catalyst TBAB.

^[a] tetra-*n*-butyl-ammonium bromide (TBAB).

^[b] Zn-MOF 1 'is the desolvated sample of $[Zn_2(L)(2,6-NDC)_2(H_2O)]$ 1.5DMF $2H_2O(1)$.

^[c] Ba-MOF 1a is the guest-free phase of $\{[Ba_2(BDPO)(H_2O)] DMA\}_n (1)$.

^[d] Cu-MOF is $\{Cu_2[(C_{20}H_{12}N_2O_2)(COO)_4]\}_n$.

Entry	Substrate	Product	T	P (MPa)	<i>t</i> (h)	<i>Yield</i> (%) ^[b]	Selectivity
			(0)	(1011 d)	(11)	(70)	(70)
	0	0	100	1	6	99	99
1	Br $\overset{O}{\rightarrowtail}$		100	0.1	48	98	99
		Br	80	0.1	72	98	99
	0	0	100	1	6	98	99
2	Ă		100	0.1	48	96	99
			80	0.1	72	92	99
			100	1	6	96	99
3			100	0.1	48	94	99
			80	0.1	72	93	99
		0	100	1	6	95	99
4			120	0.1	48	96	99
			80	0.1	72	90	99
5	0	o	100	1	6	96	99
			120	0.1	48	99	99
	U ₄ H ₉	C ₄ H ₉	80	0.1	72	92	99

Table S8 Cycloaddition of CO₂ with various epoxides catalyzed by V-PCIF-Br.^[a]

^[a] Reaction conditions: epoxide (5 mmol), catalyst V-PCIF-Br (0.05 g, 3 mol% based on VL), CO₂ pressure (P=1 MPa or 0.1 MPa), temperature ($T=80\sim120$ °C), time ($t=6\sim72$ h).^[b] Yield and selectivity of the cyclic carbonate determined by GC and ¹HNMR.

The scope of epoxide substrates is explored over V-PCIF-Br for the cycloaddition of CO₂ under both 1 MPa and 0.1 MPa CO₂ pressure. As summarized in Table S8, high yields (96-99%) for all of the target cyclic carbonates are obtained at 100 °C for 6 h under 1 MPa CO₂ pressure over various substrates including the terminal epoxides (epibromohydrin, styrene oxide, glycidyl phenyl ether, allyl glycidyl ether and 2-butyloxirane) with both electron withdrawing and electron-donating substituents. These substrates can be converted into the corresponding cyclic carbonates with high yields (94-99%) under atmospheric pressure, at temperatures of 100-120 °C for 48 h. With a prolonged reaction time to 72 h, the desired yields (90-98%) are obtained at a low temperature of 80 °C over the above epoxides including inert epoxides containing phenyl groups (entries 2 and 3) and the less reactive aliphatic long carbon-chain alkyl epoxide (entry 5). Obviously, V-PCIF-Br exhibits remarkable catalytic activities toward various epoxides under mild conditions, indicative of good substrate compatibility.

Scheme S4 The proposed catalytic reaction process for the fixation of CO_2 with epichlorohydrin into the targeted cyclic carbonate catalyzed by V-PCIF-Br.

References

- S1 F. Biedermann and O. A. Scherman, J. Phys. Chem. B, 2012, 116, 2842.
- S2 C. Eaborn, Pure Appl. Chem., 1969, 19, 375.
- S3 R. H. Krieble and J. R Elliott, J. Am. Chem. Soc., 1946, 68, 2291.
- S4 D. Wang, W. Yang, S. Feng and H. Liu, Polym. Chem., 2014, 5, 3634.
- S5 D. Wang, S. Feng and H. Liu, Chem. Eur. J., 2016, 22, 14319.
- S6 M. Ge and H. Liu, J. Mater. Chem. A, 2016, 4, 16714.
- S7 R. Shen, Y. Liu, W. Yang, Y. Hou, X. Zhao and H. Liu, Chem. Eur. J., 2017, 23, 13465.
- S8 M. Ge and H. Liu, Chem. Eur. J., 2018, 24, 2224.
- S9 G. Chen, Y. Zhou, X. Wang, J. Li, S. Xue, Y. Liu, Q. Wang and J. Wang, Sci. Rep., 2015, 5, 11236.
- S10 O. Buyukcakir, S. H. Je, D. S. Choi, S.N. Talapaneni, Y. Seo, Y. Jung, K. Polychronopoulouc and A. Coskun, *Chem. Commun.*, 2016, **52**, 934.
- S11 C. Hua, B. Chan, A. Rawal, F. Tuna, D. Collison, J. M. Hook and D. M. D'Alessandro, J. Mater. Chem. C, 2016, 4, 2535.
- S12 O. Buyukcakir, S. H. Je, S. N. Talapaneni, D. Kim and A. Coskun, *ACS Appl. Mater. Interfaces*, 2017, **9**, 7209.
- S13 T.-T. Liu, R. Xu, J.-D. Yi, J. Liang, X.-S. Wang, P.-C. Shi, Y.-B. Huang and R. Cao, *ChemCatChem*, 2018, **10**, 2036.
- S14 Q. Sun, Y. Jin, B. Aguila, X. Meng, S. Ma and F.-S. Xiao, ChemSusChem, 2017, 10, 1160.
- S15 J. Wang, W. Sng, G. Yi and Y. Zhang, Chem. Commun., 2015, 51, 12076.
- S16 J. Wang, J. G. W. Yang, G. Yi and Y. Zhang, Chem. Commun., 2015, 51, 15708.
- S17 L. Hu, H. Ni, X. Chen, L. Wang, Y. Wei, T. Jiang, Y. Lu, X. Lu and P. Ye, Polym. Eng. Sci., 2016, 56, 573.
- S18 A. Dani, V. Crocell à, C. Magistris, V. Santoro, J. Yuan and S. Bordiga, J. Mater. Chem. A, 2017, 5, 372.
- S19 X. Wang, Y. Zhou, Z. Guo, G. Chen, J. Li, Y. Shi, Y. Liu and J. Wang, Chem. Sci., 2015, 6, 6916.
- S20 Y. Xie, Q. Sun, Y. Fu, L. Song, J. Liang, X. Xu, H. Wang, J. Li, S. Tu, X. Lu and J. Li, *J. Mater. Chem. A*, 2017, 5, 25594.
- S21 Y. Xie, J. Liang, Y. Fu, M. Huang, X. Xu, H. Wang, S. Tu and J. Li, J. Mater. Chem. A, 2018, 6, 6660.
- S22 J. Li, D. Jia, Z. Guo, Y. Liu, Y. Lyu, Y. Zhou and J. Wang, Green Chem., 2017, 19, 2675.
- S23 S. Fischer, A. Schimanowitz, R. Dawson, I. Senkovska, S. Kaskel and A. Thomas, *J. Mater. Chem. A*, 2014, **2**, 11825.

- S24 K. S. Walton, M. B. Abney, M. D. LeVan, Micropor. Mesopor. Mater., 2006, 91, 78.
- S25 S. Cavenati, C. A. Grande and A. E. Rodrigues, J. Chem. Eng. Data, 2004, 49, 1095.
- S26 R. S. Franchi, P. J. E. Harlick and A. Sayari, Ind. Eng. Chem. Res., 2005, 44, 8007.
- S27 L. Liang, C. Liu, F. Jiang, Q. Chen, L. Zhang, Hui Xue, H.-L. Jiang, J. Qian, D. Yuan and M. Hong, *Nat. Common.*, 2017, **8**,1233.
- S28 P.-Q. Liao, H. Chen, D.-D. Zhou, S.-Y. Liu, C.-T. He, Z. Rui, H. J, J.-P. Zhang and X.-M. Chen, *Energy Environ. Sci.*, 2015, **8**, 1011.
- S29 S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 2008, 130, 10870.
- S30 G. Chen, X. Wang, J. Li, W. Hou, Y. Zhou and J. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 18508.
- S31 Y. Xia, R.Mokaya, G. S. Walker and Y. Zhu, Adv. Energy Mater., 2011, 1, 678.
- S32 H. Zhong, Y. Su, X. Chen, X. Li, R. Wang, ChemSusChem, 2017, 10, 4855.
- S33 J. Wang, J. Leong and Y. Zhang, Green Chem., 2014, 16, 4515.
- S34 Y. Chen, R. Luo, J. Bao, Q. Xu, J. Jiang, X. Zhou and H. Ji, J. Mater. Chem. A, 2018, 6, 9172.
- S35 W. Zhong, F. D. Bobbink, Z. Fei and P. J. Dyson, ChemSusChem, 2017, 10, 2728.
- S36 Z. Guo, Q. Jiang, Y. Shi, J. Li, X. Yang, W. Hou, Y. Zhou and J. Wang, ACS Catal., 2017, 7, 6770.
- S37 Z. Dai, Q. Sun, X. Liu, C. Bian, Q. Wu, S. Pan, L. Wang, X. Meng, F. Deng, F.-S. Xiao, J. Catal., 2016, 338, 202.
- S38 Z. Dai, Q. Sun, X. Liu, L. Guo, J. Li, S. Pan, C. Bian, X. Hu, X. Meng, L. Zhao, F. Deng, F.-S. Xiao, *ChemSusChem*, 2017, **10**, 1186.
- S39 S. Wang, K. Song, C. Zhang, Y. Shu, T. Li and B. Tan, J. Mater. Chem. A, 2017, 5, 509.
- S40 D. Zhao, X.-H. Liu, J.-H. Guo, H.-J. Xu, Y. Zhao, Y. Lu and W.-Y. Sun, Inorg. Chem., 2018, 57, 2695.
- S41 X.-Y. Li, L.-N.Ma, Y. Liu, L. Hou, Y.-Y. Wang and Z. Zhu, ACS Appl. Mater. Interfaces, 2018, 10, 10965.
- S42 P.-Z. Li, X.-J. Wang, J.Liu, H. S. Phang, Y. Li and Y. Zhao, Chem. Mater., 2017, 29, 9256.