Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Expeditious Synthesis of Multisubstituted Indoles via Multiple Hydrogen Transfers

Taira Yoshida, and Keiji Mori[†]*

[†]Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.

<u>k_mori@cc.tuat.ac.jp</u>

Supporting Information

Table of contents	S 1
General experimental procedures	S2
Procedure and spectral data	S 3
Detailed screening of the reaction conditions	S30
Scanned images of ¹ H-, ¹³ C-NMR of new compounds	S 33

General experimental procedures

All reactions utilizing air- and moisture-sensitive reagents were performed in dried glassware under an atmosphere of dry nitrogen. Anhydrous ethereal solvents (THF, Et_2O) were purchased from Kanto Chemical Co., INC., and used directly. Dichloromethane and 1,2-dichloroethane were distilled over CaH₂. Benzene and toluene were distilled over CaH₂, and stored over 4A molecular sieves. *N*,*N*-Dimethylformamide (DMF) was distilled over CaH₂, and stored over 4A molecular sieves.

For thin-layer chromatography (TLC) analysis, Merck pre-coated plates (silica gel 60 F_{254} , Art 5715, 0.25 mm) were used. Column chromatography and preparative TLC (PTLC) were performed on Silica Gel 60N (spherical, neutral), Kanto Chemical Ltd. and Wakogel B-5F, Wako Pure Chemical Industries, respectively.

Melting point (mp) determinations were performed by using a AS ONE ATM-01 instrument and are uncorrected. ¹H NMR, ¹³C NMR were measured on a AL-300 MR (JEOL Ltd., 300 MHz) and ECX-400 (JEOL Ltd., 400 MHz) spectrometers. Chemical shifts are expressed in parts per million (ppm) downfield from internal standard (tetramethylsilane for ¹H, 0.00 ppm), and coupling constants are reported as hertz (Hz). Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; sep, septet; m, multiplet. Infrared (IR) spectra were recorded on a FTIR-8600PC instrument (Shimadzu Co.). Elemental analysis (EA) was carried out on Flash2000 instrument (Amco Inc.).

1. Preparation of starting materials.

Scheme S1. Preparation of starting materials 3. Preparation of 3a was shown as a representative example.

Synthesis of methyl 2-oxo-2-(2-(pyrrolidin-1-yl)phenyl)acetate (3a):

To a solution of 3^{1} (2.45 g, 10.8 mmol) in THF (40.0 mL) was added *n*-BuLi (1.60 M in hexane, 8.10 mL, 13.0 mmol) at -78 °C. After being stirred for 15 min, a solution of dimethyl oxalate (1.93 g, 13.0 mmol) in THF (14.0 mL) was added to the reaction mixture. After the reaction temperature was gradually warmed up to -20 °C for 2 h, the reaction was stopped by adding saturated aqueous NH₄Cl at 0 °C. The crude products were extracted with ether (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 15/1) to give **3a** (1.58 g, 63%) as orange yellow oil.

IR (neat) 3062, 2952, 2871, 1747, 1660, 1652, 1601, 1547, 1480, 1448, 1381, 1353, 1332, 1258, 1197, 1165, 1109, 1050, 997, 959, 908, 873, 835, 818, 790 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 1.94–2.05 (m, 4H), 3.15 (t, 4H, *J* = 6.6 Hz), 3.94 (s, 3H), 6.78 (ddd, 1H, *J* = 1.2, 8.4, 8.4 Hz), 6.90 (d, 1H, *J* = 8.4 Hz), 7.42 (ddd, 1H, *J* = 1.2, 8.4, 8.4 Hz), 7.49 (dd, 1H, *J* = 1.2, 8.4 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 25.6, 52.1, 52.6, 115.0, 116.0, 120.1, 131.5, 134.0, 149.3, 165.1, 184.5.

Anal. Calcd for C₁₃H₁₅NO₃: C, 66.94; H, 6.48; N, 6.00. Found: C, 66.74; H, 6.19; N, 5.89.

Ethyl 2-oxo-2-(2-(pyrrolidin-1-yl)phenyl)acetate (3b).

Pale yellow oil.

Yield: 50%.

IR (neat) 2974, 2875, 1730, 1658, 1600, 1546, 1493, 1480, 1448, 1370, 1184, 1165, 1108, 1017, 971, 772 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.41 (t, 3H, *J* = 6.8 Hz), 1.92–2.07 (m, 4H), 3.11–3.21 (m, 4H), 4.41 (q, 2H, *J* = 6.8 Hz), 6.78 (dd, 1H, *J* = 8.0, 8.0 Hz), 6.90 (d, 1H, *J* = 8.0 Hz), 7.41 (ddd, 1H, *J* = 1.2, 8.0, 8.0 Hz), 7.52 (dd, 1H, *J* = 1.2, 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 14.1, 25.7, 52.1, 62.1, 114.8, 115.9, 120.2, 131.7, 134.0, 149.3, 165.0, 185.0.

Anal. Calcd for C₁₄H₁₇NO₃: C, 68.00; H, 6.93; N, 5.66. Found: C, 68.26; H, 6.74; N, 5.75.

Isopropyl 2-oxo-2-(2-(pyrrolidin-1-yl)phenyl)acetate (3c).

Pale yellow oil.

Yield: 43%.

IR (neat) 2978, 2871, 1725, 1660, 1600, 1546, 1493, 1480, 1448, 1375, 1325, 1262, 1186, 1167, 1099, 1050, 979, 955, 844, 745 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.38 (d, 6H, *J* = 6.4 Hz), 1.90–2.02 (m, 4H), 3.10–3.20 (m, 4H), 5.26 (sept, 1H, *J* = 6.4 Hz), 6.76 (dd, 1H, *J* = 8.0, 8.0 Hz), 6.87 (d, 1H, *J* = 8.0 Hz), 7.39 (ddd, 1H, *J* = 1.2, 8.0, 8.0 Hz), 7.49 (dd, 1H, *J* = 1.2, 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 21.6, 25.6, 52.0, 70.1, 114.7, 115.6, 119.9, 131.5, 119.9, 149.1, 164.6, 185.3.

Anal. Calcd for C₁₅H₁₉NO₃: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.70; H, 7.51; N, 5.14.

CO₂Me

Methyl 2-oxo-2-(2-(piperidin-1-yl)phenyl)acetate (**3d**). Yellow solid. Yield: 46%.

Mp. 76–79 °C.

IR (KBr) 2942, 2856, 2812, 1748, 1734, 1683, 1595, 1484, 1452, 1381, 1299, 1258, 1199, 1161, 1116, 1099, 1064, 1011, 921, 861, 815, 788 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 1.46–1.57 (m, 2H), 1.58–1.75 (m, 4H), 2.84 (t, 3H, J = 5.1 Hz), 3.88 (s, 3H), 7.22 (dd, 1H, J = 8.1, 8.1 Hz), 7.27 (d, 1H, J = 8.1 Hz), 7.57 (ddd, 1H, J = 1.5, 8.1, 8.1 Hz), 7.69 (dd, 1H, J = 1.5, 8.1 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 23.5, 25.4, 52.1, 55.0, 120.7, 124.3, 130.0, 131.3, 134.4, 155.7, 164.7, 189.0.

Anal. Calcd for C₁₃H₁₅NO₃: C, 66.94; H, 6.48; N, 6.00. Found: C, 66.74; H, 6.19; N, 5.89.

Methyl 2-(2-(dibenzylamino)phenyl)-2-oxoacetate (3e).

Yellow solid.

Yield: 64%.

Mp. 59-61 °C.

IR (KBr) 3063, 3029, 2952, 2849, 1735, 1674, 1593, 1484, 1452, 1372, 1267, 1200, 1119, 1081, 1009, 913, 821 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 3.86 (s, 3H), 4.10 (s, 4H), 6.95 (d, 1H, *J* = 7.8 Hz), 7.00– 7.09 (m, 4H), 7.16 (dd, 1H, *J* = 7.8, 7.8 Hz), 7.21–7.30 (m, 6H), 7.46 (ddd, 1H, *J* = 1.8, 7.8, 7.8 Hz), 7.72 (dd, 1H, *J* = 1.5, 7.8 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 52.6, 57.5, 122.4, 122.9, 127.5, 128.2, 129.2, 129.3, 131.4, 133.9, 136.1, 152.8, 165.0, 188.5.

Anal. Calcd for C₂₃H₂₁NO₃: C, 76.86; H, 5.89; N, 3.90. Found: C, 76.98; H, 5.64; N, 3.74.

Methyl 2-(2-(diethylamino)phenyl)-2-oxoacetate (3f).

Yellow oil.

Yield: 41%.

IR (neat) 3068, 2976, 2873, 1734, 1680, 1594, 1485, 1452, 1381, 1318, 1300, 1261, 1236, 1201, 1178, 1100, 1063, 1045, 1011, 918, 896, 818, 787 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 0.94 (t, 6H, *J* = 7.2 Hz), 3.02 (q, 4H, *J* = 7.2 Hz), 3.84 (s, 3H), 7.13–7.21 (m, 2H), 7.54 (dd, 1H, *J* = 7.8, 7.8 Hz), 7.72 (d, 1H, *J* = 7.8 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 10.8, 48.2, 52.0, 122.9, 123.9, 130.3, 131.8, 134.0, 152.9, 165.4, 189.3.

Anal. Calcd for C₁₃H₁₇NO₃: C, 66.36; H, 7.28; N, 5.95. Found: C, 66.51; H, 7.13; N, 6.15.

Methyl 2-(2-(dimethylamino)phenyl)-2-oxoacetate (3g).

Yellow oil.

Yield: 83%.

IR (neat) 3068, 2985, 2951, 2868, 2837, 2794, 1736, 1684, 1595, 1488, 1456, 1433, 1317, 1302, 1252, 1151, 1117, 1100, 1043, 1011, 944, 920, 819, 790 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 2.65 (s, 6H), 3.80 (s, 3H), 7.12 (ddd, 1H, *J* = 0.9, 7.8, 7.8 Hz), 7.19 (d, 1H, *J* = 7.8 Hz), 7.52 (ddd, 1H, *J* = 1.5, 7.8, 7.8 Hz), 7.67 (dd, 1H, *J* = 1.5, 7.8 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 45.4, 51.9, 120.0, 123.4, 129.4, 130.2, 134.7, 155.4, 165.2, 188.4.

Anal. Calcd for C₁₁H₁₃NO₃: C, 63.76; H, 6.32; N, 6.76. Found: C, 63.95; H, 6.14; N, 6.83.

Methyl 2-(5-methyl-2-(pyrrolidin-1-yl)phenyl)-2-oxoacetate (3h).

Yellow oil.

Yield: 55%.

IR (neat) 2952, 2923, 2871, 1736, 1660, 1618, 1572, 1543, 1500, 1483, 1462, 1434, 1415, 1355, 1284, 1262, 1247, 1223, 1184, 1159, 1122, 1033, 1012, 995, 960, 936, 876, 809, 774, cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 1.85–2.10 (m, 4H), 2.29 (s, 3H), 3.12 (t, 3H, *J* = 6.3 Hz), 3.93 (s, 3H), 6.89 (d, 1H, *J* = 8.2 Hz), 7.18–7.38 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 20.0, 25.4, 52.4, 52.4, 115.9, 121.5, 126.4, 130.8, 135.4, 148.0, 165.2, 185.2.

Anal. Calcd for C₁₄H₁₇NO₃: C, 68.00; H, 6.93; N, 5.66. Found: C, 68.15; H, 7.11; N, 5.86.

Methyl 2-(5-methoxy-2-(pyrrolidin-1-yl)phenyl)-2-oxoacetate (3i).

Orange oil.

Yield: 64%.

IR (neat) 2953, 2873, 2837, 1733, 1676, 1606, 1574, 1548, 1496, 1463, 1445, 1420, 1353, 1333, 1286, 1263, 1232, 1194, 1159, 1113, 1022, 960, 876, 830, 802, 773 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 1.85–2.05 (m, 4H), 3.02 (t, 4H, *J* = 6.3 Hz), 3.80 (s, 3H), 3.87 (s, 3H), 7.03–7.20 (m, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 24.9, 52.2, 53.7, 55.7, 112.5, 120.4, 122.9, 127.5, 145.8, 154.2, 164.9, 187.0.

Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.68; H, 6.78; N, 5.08.

Methyl 2-(5-chloro-2-(pyrrolidin-1-yl)phenyl)-2-oxoacetate (**3j**).

Orange oil.

Yield: 64%.

IR (neat) 2953, 2871, 1735, 1667, 1599, 1534, 1494, 1480, 1462, 1435, 1416, 1354, 1331, 1280, 1270, 1247, 1193, 1166, 1115, 1001, 959, 918 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.98 (t, 4H, *J* = 6.4 Hz), 3.12 (t, 4H, *J* = 6.4 Hz), 3.96 (s, 3H), 6.85 (d, 1H, *J* = 8.8 Hz), 7.35 (dd, 1H, *J* = 2.0, 8.8 Hz), 7.49 (d, 1H, *J* = 2.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 52.6, 52.4, 52.8, 116.5, 120.7, 120.8, 130.4, 133.9, 147.9, 164.3, 183.4.

Anal. Calcd for C₁₃H₁₇ClNO₃: C, 58.32; H, 5.27; N, 5.23. Found: C, 58.03; H, 5.48; N, 5.46.

Methyl 2-(4-methyl-2-(pyrrolidin-1-yl)phenyl)-2-oxoacetate (3k).

Yellow solid.

Yield: 48%.

Mp. 81-83 °C.

IR (neat) 2952, 2871, 1735, 1655, 1609, 1539, 1495, 1449, 1349, 1335, 1260, 1207, 1192, 1174, 1122, 999, 909, 880, 834, 801, 746 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 1.88–1.98 (m, 4H), 2.35 (s, 3H), 3.16 (t, 4H, *J* = 6.3 Hz), 3.92 (s, 3H), 6.61 (dd, 1H, *J* = 1.2, 8.1 Hz), 6.70 (s, 1H), 7.42 (d, 1H, *J* = 8.1 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 22.1, 25.6, 52.1, 52.6, 115.2, 117.6, 117.9, 131.9, 145.3, 149.7, 165.5, 183.9.

Anal. Calcd for C₁₄H₁₇NO₃: C, 68.00; H, 6.93; N, 5.66. Found: C, 68.25; H, 6.78; N, 5.46.

Methyl 2-oxo-2-(3-(pyrrolidin-1-yl)naphthalen-2-yl)acetate (31).

Yellow oil.

Yield: 44%.

IR (neat) 3055, 2952, 2872, 2835, 1736, 1684, 1625, 1591, 1497, 1458, 1364, 1342, 1296, 1242, 1162, 1146, 1118, 1043, 1003, 956, 909, 879, 819 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 1.84–1.92 (m, 4H), 3.08 (t, 4H, *J* = 6.3 Hz), 3.84 (s, 3H), 7.13–7.27 (m, 2H), 7.40 (ddd, 1H, *J* = 1.2, 8.1, 8.1 Hz), 7.61 (d, 1H, *J* = 8.1 Hz), 7.71 (d, 1H, *J* = 8.1 Hz), 8.05 (s, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 25.1, 52.7, 52.9, 112.3, 124.0, 126.5, 127.2, 127.3, 128.9, 129.2, 132.4, 136.9, 146.1, 164.7, 187.5.

Anal. Calcd for C₁₇H₁₇NO₃: C, 72.07; H, 6.05; N, 4.94. Found: C, 71.87; H, 6.23; N, 5.21.

Methyl 2-(2-(benzyl(methyl)amino)phenyl)-2-oxoacetate (3m).

Yellow oil.

Yield: 85%.

IR (neat) 3067, 3030, 2951, 2845, 2804, 1733, 1677, 1593, 1485, 1453, 1299, 1260, 1200, 1179, 1100, 1010, 914, 768 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 2.54 (s, 3H), 3.74 (s, 3H), 4.01 (s, 2H), 6.94–7.04 (m, 3H), 7.11 (dd, 1H, *J* = 7.8, 7.8 Hz), 7.16–7.26 (m, 3H), 7.45 (dd, 1H, *J* = 7.8, 7.8 Hz), 7.66 (d, 1H, *J* = 7.8 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 41.7, 52.2, 62.4, 121.6, 123.6, 127.5, 128.1, 129.4, 129.8, 130.7, 134.3, 135.9, 154.2, 165.1, 188.5.

Anal. Calcd for C₁₇H₁₇NO₃: C, 72.07; H, 6.05; N, 4.94. Found: C, 72.01; H, 5.86; N, 5.12.

Methyl 2-(2-(ethyl(methyl)amino)phenyl)-2-oxoacetate (3n).

Yellow oil.

Yield: 61%.

IR (neat) 3068, 2976, 2952, 2874, 2851, 2807, 1746, 1733, 1682, 1594, 1486, 1454, 1435, 1385, 1301, 1267, 1243, 1201, 1180, 1150, 1124, 1100, 1078, 1060, 1042, 1011, 920, 890, 819, 790 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 1.01 (t, 3H, *J* = 7.2 Hz), 2.66 (s, 3H), 2.96 (q, 2H, *J* = 7.2 Hz), 3.85 (s, 3H), 7.15–7.29 (m, 2H), 7.57 (ddd, 1H, *J* = 1.2, 7.8, 7.8 Hz), 7.74 (dd, 1H, *J* = 1.2, 7.8 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 11.4, 42.0, 52.0, 52.2, 121.7, 124.1, 130.1, 131.0, 134.5, 154.5, 165.2, 188.8.

Anal. Calcd for C₁₂H₁₅NO₃: C, 65.14; H, 6.83; N, 6.33. Found: C, 65.38; H, 6.54; N, 6.47.

Methyl 2-(2-(2-methylpyrrolidin-1-yl)phenyl)-2-oxoacetate (30).

Orange oil.

Yield: 54%.

IR (neat) 3032, 2967, 2872, 2842, 1735, 1679, 1595, 1547, 1484, 1453, 1378, 1341, 1291, 1200, 1171, 1110, 1011, 790, 750 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.08 (d, 3H, *J* = 6.4 Hz), 1.52–1.66 (m, 1H), 1.69–1.82 (m, 1H), 1.85–1.98 (m, 1H), 2.13–2.25 (m, 1H), 2.72–2.82 (m, 1H), 3.38–3.48 (m, 1H), 3.60–3.70 (m, 1H), 3.88 (s, 3H), 7.00 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.10 (d, 1H, *J* = 7.6 Hz), 7.49 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.63 (dd, 1H, *J* = 7.6 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 18.4, 23.7, 33.6, 52.3, 55.6, 56.6, 118.4, 120.2, 126.8, 130.0, 134.2, 150.1, 165.4, 187.0.

Anal. Calcd for C₁₄H₁₇NO₃: C, 68.00; H, 6.93; N, 5.66. Found: C, 68.26; H, 6.65; N,

Scheme S2. Preparation of starting materials 6. Preparation of 6a was shown as a representative example.²

Synthesis of methyl 2-(2-(2,5-dimethylpyrrolidin-1-yl)phenyl)-2-oxoacetate (cis-6a): To a solution of commercially available s2 (1.33 g, 7.74 mmol) in MeOH (3.9 mL) were successively added AcOH (0.49 mL, 8.51 mmol) and KOH (24.0 mg, 0.428 mmol) at -10 °C. After being stirred for 5 min, 2,4-hexanedione (0.90 mL, 7.7 mmol) was added to the reaction mixture at -10 °C. After being stirred for 20 h, the reaction temperature was warmed-up to room temperature. After being stirred for 2 h, the reaction was stopped by adding saturated aqueous NaHCO₃ at 0 °C. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc =100/1) to give s3 (455 mg) with inseparable impurities. This material was used to next reaction without further purification.

To a solution of s3 (455 mg, 1.74 mmol) in THF (5.7 mL) was added *n*-BuLi (1.60 M in hexane, 1.30 mL, 2.09 mmol) at -78 °C. After being stirred for 15 min, a solution of dimethyl oxalate (321 mg, 2.71 mmol) in THF (3.0 mL) was added to the reaction mixture. After the reaction temperature was gradually warmed up to -20 °C for 2 h, the reaction was stopped by adding saturated aqueous NH₄Cl at 0 °C. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 20/1) to give **6a** (242 mg, 12% from s2) as yellow solid.

Mp. 60–62 °C (recrystallized from Hexane, which was subjected to the X-ray analysis). IR (KBr) 2965, 2872, 2840, 1735, 1680, 1594, 1483, 1452, 1434, 1377, 1319, 1301, 1273, 1242, 1200, 1180, 1165, 1105, 1048, 1012, 926, 918, 790, 765 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 0.96 (d, 6H, *J* = 6.8 Hz), 1.40–1.53 (m, 2H), 1.93–2.06 (m, 2H), 3.03–3.15 (m, 2H), 3.88 (s, 3H), 7.30 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.35 (d, 1H, *J* = 8.0 Hz), 7.62 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.79 (d, 1H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 17.8, 31.0, 52.0, 62.4, 122.3, 125.3, 129.9, 134.7, 135.2, 150.1, 165.7, 189.9.

Anal. Calcd for C₁₅H₁₉NO₃: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.77; H, 7.16; N, 5.15.

Methyl 2-(2-(2,5-dimethylpyrrolidin-1-yl)phenyl)-2-oxoacetate (trans-6a).

Yellow amorphous.

Yield: 5% (from s2).

IR (neat) 2966, 2931, 2872, 1735, 1679, 1593, 1574, 1481, 1454, 1434, 1377, 1350, 1286, 124, 1199, 1178, 1163, 1142, 1104, 1051, 1009, 789 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 0.54–0.73 (brm, 3H), 1.07–1.15 (brm, 3H), 1.35–1.60 (brm, 2H), 2.10–2.23 (brm, 2H), 3.68–3.86 (brm, 2H), 3.84 (s, 3H), 7.02–7.10 (m, 1H), 7.09 (d, 1H, *J* = 8.0 Hz), 7.51 (ddd, 1H, *J* = 1.6, 8.0, 8.0 Hz), 7.66 (dd, 1H, *J* = 1.6, 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 18.0, 18.6, 31.1, 32.6, 52.0, 52.3, 62.2, 121.8, 122.0, 130.5, 130.6, 133.7, 148.7, 165.7, 188.9.

Anal. Calcd for C₁₅H₁₉NO₃: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.99; H, 7.42; N, 5.26.

Methyl 2-(2-(2,5-dimethylpyrrolidin-1-yl)-5-methylphenyl)-2-oxoacetate (6b).

Orange solid.

Yield: 32%.

Mp. 101-107 °C.

IR (neat) 2963, 2871, 2363, 1735, 1680, 1609, 1495, 1457, 1376, 1316, 1271, 1225, 1154, 1119, 1037, 995 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 0.94 (d, 6H, *J* = 6.4 Hz), 1.38–1.52 (m, 2H), 1.91–2.06 (m, 2H), 2.34 (s, 3H), 2.98–3.10 (m, 2H), 3.87 (s, 3H), 7.24 (d, 1H, *J* = 8.0 Hz), 7.43 (dd, 1H, *J* = 1.6, 8.0 Hz), 7.60 (d, 1H, *J* = 1.6 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 17.8, 20.7, 31.0, 51.9, 62.5, 122.1, 130.0, 135.2, 135.4, 135.7, 147.6, 165.8, 190.3.

Anal. Calcd for C₁₆H₂₁NO₃: C, 69.79; H, 7.69; N, 5.09. Found: C, 69.57; H, 7.83; N, 4.89.

Methyl 2-(2-(2,5-dimethylpyrrolidin-1-yl)-5-methoxyphenyl)-2-oxoacetate (6c).

Yellow amorphous.

Yield: 22%.

IR (neat) 2963, 2871, 2837, 1735, 1675, 1607, 1571, 1494, 1464, 1419, 1378, 1282, 1263, 1231, 1194, 1163, 1142, 1109, 1040, 1021, 946, 875 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 0.63 (d, 1H, *J* = 7.0 Hz), 1.05 (d, 1H, *J* = 7.0 Hz), 1.32– 1.57 (m, 2H), 2.07–2.23 (m, 2H), 3.53–3.74 (m, 2H), 3.82 (s, 3H), 3.85 (s, 3H), 7.07 (d, 1H, *J* = 8.8 Hz), 7.13 (dd, 1H, *J* = 3.2, 8.8 Hz), 7.21 (d, 1H, *J* = 3.2 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 17.8, 18.3, 30.7, 32.6, 52.1, 52.3, 55.6, 62.6, 112.5, 121.8, 123.9, 132.1, 142.6, 155.4, 165.7, 189.1.

Anal. Calcd for C₁₆H₂₁NO₄: C, 65.96; H, 7.27; N, 4.81. Found: C, 66.21; H, 7.14; N,

Methyl 2-(5-chloro-2-(-2,5-dimethylpyrrolidin-1-yl)phenyl)-2-oxoacetate (6d).

Yellow amorphous.

Yield: 31%.

IR (neat) 2966, 2931, 2872, 1735, 1684, 1591, 1478, 1435, 1407, 1378, 1349, 1290, 1244, 1194, 1174, 1148, 1117, 1046, 1021, 957, 933 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 0.59–0.73 (brm, 3H), 1.01–1.15 (brm, 3H), 1.41–1.62 (brm, 2H), 2.12–2.25 (brm, 2H), 3.66–3.81 (brm, 2H), 3.85 (s, 3H), 7.04 (d, 1H, *J* = 8.8 Hz), 7.46 (dd, 1H, *J* = 2.4, 8.8 Hz), 7.61 (d, 1H, *J* = 2.4 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 18.0, 18.6, 31.2, 32.6, 52.3, 52.6, 62.3, 123.1, 127.3, 129.9, 131.5, 133.6, 147.2, 165.0, 187.6.

Anal. Calcd for C₁₅H₁₈ClNO₃: C, 60.91; H, 6.13; N, 4.74. Found: C, 60.79; H, 6.25; N, 4.48.

Methyl 2-(2-(2,6-dimethylpiperidin-1-yl)-5-methylphenyl)-2-oxoacetate (6e).

Yellow solid.

Yield: 25%.

IR (neat) 2973, 2935, 2858, 2799, 1736, 1673, 1607, 1574, 1495, 1455, 1435, 1406, 1375, 1318, 1261, 1223, 1156, 1119, 1085, 1037, 996, 851, 822, 801, 750 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 0.74 (d, 6H, *J* = 6.4 Hz), 1.22–1.84 (m, 6H), 2.38 (s, 3H), 2.69–2.85 (m, 2H), 3.93 (s, 3H), 7.25 (d, 1H, *J* = 8.0 Hz), 7.41 (d, 1H, *J* = 8.0 Hz), 7.66 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 20.3, 20.7, 24.7, 34.3, 51.9, 60.1, 124.3, 129.6, 134.8, 135.6, 135.8, 149.9, 165.8, 189.9.

Anal. Calcd for C₁₇H₂₃NO₃: C, 70.56; H, 8.01; N, 4.84. Found: C, 70.78; H, 7.84; N, 4.62.

Methyl 2-(2-(2,5-diethylpyrrolidin-1-yl)-5-methylphenyl)-2-oxoacetate (6f).

Yellow oil.

Yield: 22% (reaction with octane-3,6-dione).

IR (neat) 2962, 2928, 2874, 1724, 1620, 1589, 1477, 1462, 1361, 1283, 1226, 1148, 1064, 860, 782 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 0.74 (t, 6H, *J* = 7.2 Hz), 1.18–1.46 (m, 6H), 1.98–2.12 (m, 2H), 2.38 (s, 3H), 2.75–2.93 (m, 2H), 3.85 (s, 3H), 7.24–7.31 (m, 2H), 7.42 (d, 1H, *J* = 8.0 Hz), 7.58 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 11.3, 20.8, 25.5, 28.6, 52.0, 122.3, 130.0, 135.4, 136.0, 148.0, 165.7, 190.3.

Anal. Calcd for C₁₈H₂₅NO₃: C, 71.26; H, 8.31; N, 4.62. Found: C, 71.48; H, 8.16; N, 4.53.

Methyl 2-(2-(cyclopentyl(methyl)amino)phenyl)-2-oxoacetate (6g).

Yellow oil.

Yield: 60%.

IR (neat) 2956, 2870, 2799, 1733, 1681, 1594, 1484, 1454, 1434, 1358, 1321, 1300, 1200, 1101, 1012, 920, 774, 746 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.29–1.80 (m, 8H), 2.60 (s, 3H), 3.32 (quint, 1H, *J* = 8.0 Hz), 3.87 (s, 3H), 7.22–7.28 (m, 1H), 7.31 (d, 1H, *J* = 8.0 Hz), 7.31 (ddd, 1H, *J* = 1.6, 8.0 Hz), 7.77 (dd, 1H, *J* = 1.6, 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 24.1, 30.5, 42.6, 52.0, 66.5, 123.3, 124.9, 129.8, 132.3, 134.5, 155.2, 165.1, 189.2.

Anal. Calcd for C₁₅H₁₉NO₃: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.73; H, 7.47; N, 5.58.

2. Synthesis of multisubstituted indoles.

General Procedure of the formation of 3-methoxycarbonylindoles.

To a solution of *o*-amino ketoester **3** (0.10 mmol) in $ClCH_2CH_2Cl$ (1.0 mL) were successively added DMC (1 M in CH_2Cl_2 , 100 µl, 0.10 mmol) and $TiCl_4$ (1 M in CH_2Cl_2 , 30 µl, 0.030 mmol)), and the mixture was heated at reflux. After completion of the reaction, the reaction mixture was filtered through a short pad of silica-gel and the resulting filtrate was concentrated in vacuo. The residue was purified by preparative TLC to give 3-alkoxycarbonylindoles **4**.

General Procedure of the formation of 3-alkylindole derivatives.

To a solution of ketoester **6** (0.10 mmol) in ClCH₂CH₂Cl (1.0 mL) was added TiCl₄ (1 M in CH₂Cl₂, 100 μ l, 0.10 mmol)), and the mixture was heated at reflux. After completion of the reaction, the reaction mixture was filtered through a short pad of silica-gel and the resulting filtrate was concentrated in vacuo. The residue was purified by preparative TLC to give 3-alkylindoles **8**.

CO₂Me

Methyl 2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole-9-carboxylate (4a).

White solid.

Yield: 77%.

Mp. 90–92 °C.

IR (KBr) 3052, 2948, 2895, 1693, 1615, 1548, 1478, 1455, 1442, 1421, 1377, 1336, 1301, 1286, 1261, 1206, 1150, 1125, 1108, 1032, 1012, 783, 749 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 2.67 (tt, 2H, J = 7.5, 7.5 Hz), 3.21 (t, 2H, J = 7.5 Hz), 4.12 (t, 2H, J = 7.5 Hz), 3.93 (s, 3H), 7.20–7.30 (m, 3H), 8.10–8.17 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 26.0, 26.5, 44.3, 50.6, 98.9, 109.7, 121.3, 121.5, 121.6, 130.8, 132.6, 152.8, 165.8.

Anal. Calcd for C₁₃H₁₃NO₂: C, 72.54; H, 6.09; N, 6.51. Found: C, 72.37; H, 5.82; N, 6.27.

Ethyl 2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole-9-carboxylate (**4b**).

Yellow solid.

Yield: 64%.

Mp. 96–97 °C.

IR (KBr) 3052, 2948, 2895, 1693, 1615, 1548, 1478, 1455, 1442, 1421, 1377, 1336, 1301, 1286, 1261, 1206, 1150, 1125, 1108, 1032, 1012, 783, 749 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.41 (t, 3H, *J* = 6.8 Hz), 2.61 (tt, 2H, *J* = 7.2, 7.2 Hz), 3.24 (t, 2H, *J* = 7.2 Hz), 4.05 (t, 2H, *J* = 7.2 Hz), 4.35 (q, 2H, *J* = 6.8 Hz), 7.14–7.27 (m, 3H), 8.10 (d, 1H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 14.6, 26.0, 26.5, 44.3, 59.2, 99.2, 109.7, 121.3, 121.5, 121.6, 130.9, 132.6, 152.8, 165.5.

Anal. Calcd for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.11; H, 6.57; N, 6.03.

Isopropyl 2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole-9-carboxylate (**4c**).

Yellow solid.

Yield: 67%.

Mp. 94–96 °C.

IR (KBr) 3053, 2979, 2933, 1687, 1544, 1480, 1451, 1427, 1383, 1340, 1301, 1262, 1206, 1152, 1128, 1094, 1018, 784 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.39 (d, 6H, *J* = 6.4 Hz), 2.64 (tt, 2H, *J* = 7.2, 7.2 Hz), 3.28 (t, 2H, *J* = 7.2 Hz), 4.09 (t, 2H, *J* = 7.2 Hz), 4.35 (sept, 1H, *J* = 6.4 Hz), 7.17–7.29 (m, 3H), 8.10 (dd, 1H, *J* = 1.2, 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 22.4, 26.1, 26.6, 44.4, 66.4, 99.7, 109.7, 121.4, 121.5, 121.6, 130.9, 132.6, 152.7, 165.1.

Anal. Calcd for C₁₅H₁₇NO₂: C, 74.05; H, 7.04; N, 5.76. Found: C, 73.86; H, 7.95; N, 6.02.

CO₂Me

Methyl 6,7,8,9-tetrahydropyrido[1,2-*a*]indole-10-carboxylate (4d).

Yellow solid.

Yield: 71%.

Mp. 106–108 °C.

IR (KBr) 3053, 2947, 2870, 1690, 1531, 1476, 1458, 1419, 1377, 1319, 1271, 1208, 1145, 1114, 1071, 1040, 1015, 783, 752 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 1.89–1.98 (m, 2H), 2.04–2.14 (m, 2H), 3.33 (t, 2H, J = 6.3 Hz), 3.92 (s, 3H), 4.06 (t, 2H, J = 6.3 Hz), 7.18–7.30 (m, 3H), 8.08–8.15 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 20.0, 22.5, 24.5, 42.4, 50.5, 102.3, 108.8, 121.0, 121.6, 121.9, 126.5, 135.9, 145.9, 166.3.

Anal. Calcd for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.08; H, 6.36; N, 5.95.

Methyl 1-benzyl-2-phenyl-1*H*-indole-3-carboxylate (**4e**).

Yellow solid.

Yield: 63%.

Mp. 136–138 °C.

IR (KBr) 3060, 3033, 2947, 1696, 1605, 1541, 1482, 1460, 1403, 1350, 1282, 1233, 1149, 1118, 1083, 1029, 913, 790 cm⁻¹

¹H NMR (300 MHz, CDCl₃) δ 3.81 (s, 3H), 5.23 (s, 2H), 6.91–6.98 (m, 2H), 7.23–7.55 (m, 11H), 8.31 (d, 1H, *J* = 7.8 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 47.5, 50.7, 110.7, 122.0, 122.2, 123.1, 126.0, 126.7, 127.4, 128.0, 128.7, 129.0, 130.1, 131.2, 136.3, 136.8, 147.1, 165.5.

Anal. Calcd for C₂₃H₁₉NO₂: C, 80.92; H, 5.61; N, 4.10. Found: C, 80.75; H, 5.38; N, 3.82.

Methyl 1-ethyl-2-methyl-1*H*-indole-3-carboxylate (**4f**).

Yellow solid.

Yield: 55%.

Mp. 44–46 °C.

IR (KBr) 3051, 2981, 2947, 1693, 1612, 1538, 1463, 1438, 1414, 1372, 1341, 1285, 1256, 1214, 1186, 1156, 1135, 1108, 1053, 1021, 999, 955, 928, 785 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 1.37 (t, 3H, *J* = 7.2 Hz), 2.78 (s, 3H), 3.93 (s, 3H), 4.18 (q, 2H, *J* = 7.2 Hz), 7.19–7.38 (m, 3H), 8.08–8.18 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 11.5, 14.8, 37.8, 50.6, 103.8, 109.0, 121.5, 121.5, 121.9, 126.7, 135.3, 144.5, 166.6.

Anal. Calcd for C₁₃H₁₅NO₂: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.95; H, 7.12; N, 6.27.

CO₂Me

Methyl 1-methyl-1*H*-indole-3-carboxylate (**4g**).

Brown solid.

Yield: 49%.

Mp. 78–80 °C.

IR (KBr) 3118, 3052, 2947, 2850, 1697, 1536, 1468, 1437, 1383, 1336, 1263, 1226, 1190, 1152, 1128, 1104, 1063, 1022, 929, 775 cm⁻¹

¹H NMR (300 MHz, CDCl₃) δ 3.77 (s, 3H), 3.87 (s, 3H), 7.18-7.39 (m, 3H), 7.72 (s, 1H), 8.08-8.20 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 33.4, 50.9, 106.8, 109.7, 121.5, 121.8, 122.7, 126.5, 135.1, 137.1, 165.4.

Anal. Calcd for C₁₁H₁₁NO₂: C, 69.83; H, 5.86; N, 7.40. Found: C, 69.65; H, 6.00; N, 7.69.

Methyl 7-methyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole-9-carboxylate (4h).

Yellow solid.

Yield: 67%.

Mp. 145–147 °C.

IR (KBr) 2945, 2917, 2853, 1690, 1546, 1455, 1423, 1375, 1318, 1279, 1213, 1189, 1153, 1112, 809, 782 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 2.48 (s, 3H), 2.63 (tt, 2H, *J* = 7.5, 7.5 Hz), 3.27 (t, 2H, *J* = 7.5 Hz), 3.89 (s, 3H), 4.07 (t, 2H, *J* = 7.5 Hz), 7.01 (d, 1H, *J* = 8.1 Hz), 7.13 (d, 1H, *J* = 8.1 Hz), 7.90 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 21.6, 26.1, 26.5, 44.4, 50.6, 98.5, 109.4, 121.1, 123.0, 130.9, 131.0, 131.1, 152.8, 166.0.

Anal. Calcd for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.15; H, 6.33; N, 6.23.

Methyl 7-methoxy-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole-9-carboxylate (4i).

White solid.

Yield: 57%.

Mp. 103–105 °C.

IR (KBr) 2984, 2948, 2901, 2834, 1691, 1620, 1575, 1542, 1476, 1454, 1377, 1321, 1298, 1263, 1228, 1195, 1158, 1129, 1106, 1041, 1019, 982, 853, 799, 779 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 2.61 (tt, 2H, *J* = 7.5, 7.5 Hz), 3.24 (t, 2H, *J* = 7.5 Hz), 3.88 (s, 3H), 3.89 (s, 3H), 4.04 (t, 2H, *J* = 7.5 Hz), 6.82 (d, 1H, *J* = 8.7 Hz), 7.10 (d, 1H, *J* = 8.7 Hz), 7.62 (s, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 26.3, 26.5, 44.6, 50.6, 55.8, 98.7, 103.4, 110.5, 111.5, 127.7, 131.8, 152.9, 155.6, 165.9.

Anal. Calcd for C₁₄H₁₅NO₃: C, 68.56; H, 6.16; N, 5.71. Found: C, 68.37; H, 5.96; N, 5.92.

Methyl 7-methoxy-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole-9-carboxylate (**4j**).

White solid.

Yield: 73%.

Mp. 124–127 °C.

IR (KBr) 2982, 2948, 2899, 1694, 1613, 1550, 1487, 1453, 1433, 1423, 1372, 1318, 1245, 1204, 1137, 1112, 1062, 1030, 973, 876 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 2.61 (tt, 2H, *J* = 7.6, 7.6 Hz), 3.23 (t, 2H, *J* = 7.6 Hz), 3.88 (s, 3H), 3.89 (s, 3H), 4.04 (t, 2H, *J* = 7.6 Hz), 7.07 (d, 1H, *J* = 8.8 Hz), 7.09 (d, 1H, *J* = 2.0, 8.8 Hz), 8.03 (d, 1H, *J* = 2.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 26.1, 26.5, 44.6, 50.8, 98.9, 110.7, 120.8, 121.8, 127.4, 130.9, 131.7, 153.9, 165.4.

Anal. Calcd for C₁₃H₁₃ClNO₂: C, 62.53; H, 4.84; N, 5.61. Found: C, 62.76; H, 4.74; N, 5.43.

Methyl 6-methyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole-9-carboxylate (4k).

Pale green solid.

Yield: 64%.

Mp. 150–152 °C.

IR (KBr) 2947, 2921, 2849, 1692, 1547, 1441, 1420, 1381, 1335, 1300, 1279, 1262, 1207, 1129, 1104, 1027, 810, 743 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 2.47 (s, 3H), 2.60 (tt, 2H, *J* = 7.5, 7.5 Hz), 3.23 (t, 2H, *J* = 7.5 Hz), 3.89 (s, 3H), 4.01 (t, 2H, *J* = 7.5 Hz), 7.02 (s, 1H), 7.05 (d, 1H, *J* = 8.1 Hz), 7.96 (d, 1H, *J* = 8.1 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 21.6, 26.0, 26.5, 44.2, 50.6, 98.8, 109.8, 120.9, 123.1, 128.6, 131.4, 132.9, 152.3, 165.9.

Anal. Calcd for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.08; H, 6.47; N,

6.26.

Methyl 2,3-dihydro-1*H*-benzo[*f*]pyrrolo[1,2-*a*]indole-11-carboxylate (**4l**).

Brown solid.

Yield: 61%.

Mp. 152–154 °C.

IR (KBr) 3050, 2947, 2898, 2849, 1691, 1558, 1450, 1420, 1381, 1365, 1320, 1301, 1262, 1217, 1193, 1161, 1102, 1013, 983, 908, 885, 856, 829, 780 cm⁻¹

¹H NMR (300 MHz, CDCl₃) δ 2.68 (tt, 2H, *J* = 7.2 Hz), 3.33 (t, 2H, *J* = 7.2 Hz), 3.95 (s, 3H), 4.13 (t, 2H, *J* = 7.2 Hz), 7.34-7.44 (m, 2H), 7.60 (s, 1H), 7.82-7.94 (m, 1H), 7.95-8.05 (m, 1H), 8.57 (s, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 26.3, 26.4, 44.3, 50.7, 97.7, 105.4, 118.8, 123.3, 123.9, 127.3, 128.4, 129.6, 129.8, 131.7, 133.3, 157.7, 165.7.

Anal. Calcd for C₁₇H₁₅NO₂: C, 76.96; H, 5.70; N, 5.28. Found: C, 77.25; H, 5.46; N, 5.07.

Methyl 1-methyl-2-phenyl-1*H*-indole-3-carboxylate (**4m**).

Orange oil.

Yield: 63%.

IR (neat) 3053, 2947, 1703, 1539, 1468, 1439, 1394, 1274, 1232, 1196, 1102, 1022, 820, 790 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 3.57 (s, 3H), 3.76 (s, 3H), 7.22–7.55 (m, 8H), 8.20–8.30 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 30.8, 50.7, 104.9, 109.7, 121.9, 122.1, 122.8, 126.5, 128.0, 128.9, 130.2, 131.4, 136.7, 146.9, 165.5.

Anal. Calcd for C₁₇H₁₅NO₂: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.80; H, 5.46; N, 5.18.

CO₂Me

Methyl 1-ethyl-2-methyl-1*H*-indole-3-carboxylate (4n).

Red solid.

Yield: 52%.

Mp. 96–98 °C.

IR (KBr) 3072, 2941, 1691, 1533, 1439, 1407, 1274, 1211, 1160, 1105, 783 cm⁻¹.

¹H NMR (300 MHz, CDCl₃) δ 2.78 (s, 3H), 3.70 (s, 3H), 3.95 (s, 3H), 7.20–7.35 (m, 3H), 8.09–8.16 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 11.7, 29.4, 50.6, 103.6, 109.0, 121.3, 121.5, 121.9, 126.4, 136.4, 145.3, 166.5.

Anal. Calcd for C₁₂H₁₃NO₂: C, 70.92; H, 6.45; N, 6.89. Found: C, 71.24; H, 6.39; N, 7.08.

CO₂Me

Methyl 3-methyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole-9-carboxylate (**4o**).

Pale yellow solid.

Yield: 75%.

Mp. 88–90 °C.

IR (KBr) 3049, 2970, 2948, 2927, 1694, 1612, 1554, 1482, 1458, 1441, 1420, 1374, 1290, 1205, 1152, 1129, 1108, 1084, 1051, 784, 750 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.54 (d, 3H, *J* = 6.4 Hz), 2.19–2.30 (m, 1H), 2.75–2.89 (m, 1H), 3.18–3.38 (m, 2H), 3.89 (s, 3H), 4.58–4.70 (m, 1H), 7.15–7.26 (m, 2H), 7.32 (d, 1H, *J* = 8.4 Hz), 8.11 (d, 1H, *J* = 8.4 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 20.2, 25.1, 35.1, 50.7, 53.7, 98.8, 109.9, 121.5, 121.5, 121.5, 131.1, 132.0, 152.4, 166.0.

Anal. Calcd for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.51; H, 6.79; N, 6.38.

3,9-Dimethyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (**8a**).

Yellow solid.

Yield: 31% from *cis*-6a; 27% from *trans*-6a.

IR (KBr) 2963, 2924, 2855, 1734, 1684, 1653, 1617, 1559, 1540, 1507, 1458, 1355, 1325, 1301, 1230 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.50 (d, 1H, *J* = 6.4 Hz), 2.12–2.23 (m, 1H), 2.24 (s, 3H), 2.67–3.04 (m, 3H), 4.46–4.57 (m, 1H), 7.01–7.12 (m, 1H), 7.27 (d, 1H, *J* = 7.6 Hz), 7.47 (d, 1H, *J* = 7.6 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 8.9, 20.4, 21.9, 36.2, 52.4, 100.3, 109.1, 118.2, 118.4, 119.8, 131.9, 133.3, 141.0.

Anal. Calcd for C₁₃H₁₅N: C, 84.28; H, 8.16; N, 7.56. Found: C, 84.11; H, 8.03; N, 7.73.

3,7,9-Trimethyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (**8b**).

Yellow amorphous.

Yield: 35%.

IR (neat) 2965, 2919, 2856, 1700, 1593, 1456, 1406, 1371, 1354, 1309, 1281, 1233, 1149, 1083, 1040, 863, 786 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.48 (d, 3H, *J* = 6.4 Hz), 2.09–2.20 (m, 1H), 2.20 (s, 3H), 2.44 (s, 3H), 2.65–3.04 (m, 3H), 4.42–4.53 (m, 1H), 6.90 (d, 1H, *J* = 8.0 Hz), 7.16 (d, 1H, *J* = 8.0 Hz), 7.25 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 8.8, 20.4, 21.5, 22.0, 36.2, 52.4, 99.8, 108.8, 118.2, 121.3, 127.3, 130.2, 133.6, 141.1.

Anal. Calcd for C₁₄H₁₇N: C, 84.37; H, 8.60; N, 7.03. Found: C, 84.56; H, 8.38; N, 7.25.

7-Methoxy-3,9-dimethyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (8c).

Colorless amorphous.

Yield: 30%.

IR (neat) 2965, 2926, 2857, 2828, 1592, 1568, 1480, 1454, 1412, 1374, 1352, 1308, 1226, 1179, 1146, 1048, 1030, 889 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.48 (d, 3H, *J* = 6.4 Hz), 2.09–2.20 (m, 1H), 2.21 (s, 3H), 2.66–3.04 (m, 3H), 3.86 (s, 3H), 4.42–4.53 (m, 1H), 6.74 (dd, 1H, *J* = 2.4, 8.8 Hz), 6.94 (d, 1H, *J* = 2.4 Hz), 7.17 (d, 1H, *J* = 8.8 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 8.9, 20.4, 22.1, 36.2, 52.6, 56.0, 100.0, 100.9, 109.6, 109.8, 127.3, 133.6, 141.9, 153.4.

Anal. Calcd for C₁₄H₁₇NO: C, 78.10; H, 7.96; N, 6.51. Found: C, 78.25; H, 8.27; N, 6.75.

7-Chloro-3,9-dimethyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (8d).

Colorless amorphous.

Yield: 38%.

IR (neat) 2967, 2924, 2858, 1464, 1406, 1368, 1354, 1297, 1262, 1230, 1066, 843 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.48 (d, 3H, J = 6.4 Hz), 2.12–2.24 (m, 1H), 2.19 (s, 3H), 2.68–3.04 (m, 3H), 4.43–4.55 (m, 1H), 7.02 (dd, 1H, J = 2.4, 8.0 Hz), 7.16 (d, 1H, J = 8.0 Hz), 7.42 (d, 1H, J = 2.4 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 8.7, 20.3, 22.0, 36.1, 52.6, 100.3, 110.0, 117.9, 119.9, 124.0, 130.2, 134.3, 142.6.

Anal. Calcd for C₁₃H₁₄ClN: C, 71.07; H, 6.42; N, 6.38. Found: C, 70.94; H, 6.49; N, 6.54.

Me

2,6,10-Trimethyl-6,7,8,9-tetrahydropyrido[1,2-*a*]indole (**8e**). Yellow amorphous. Yield: 34%.

IR (neat) 3013, 2966, 2938, 2858, 1734, 1582, 1466, 1419, 1375, 1354, 1343, 1327, 1314, 1293, 1261, 1243, 1215, 1185, 1172, 1161, 1097, 1065, 1024, 863, 789 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.41 (d, 3H, J = 6.4 Hz), 1.81–2.22 (m, 4H), 2.16 (s, 3H), 2.45 (s, 3H), 2.65–2.78 (m, 1H), 2.91–3.03 (m, 1H), 4.51–4.65 (m, 1H), 6.93 (d, 1H, J = 8.4 Hz), 7.15 (d, 1H, J = 8.0 Hz), 7.27 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 8.1, 16.7, 19.9, 21.5, 22.4, 30.2, 47.0, 103.9, 108.8, 117.6, 121.3, 127.7, 129.1, 132.3, 133.2.

Anal. Calcd for C₁₅H₁₉N: C, 84.46; H, 8.98; N, 6.57. Found: C, 84.65; H, 9.16; N, 6.73.

3,9-Diethyl-7-methyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indole (8f).

Yellow amorphous.

Yield: 42%.

IR (neat) 2962, 2928, 2874, 1724, 1620, 1589, 1477, 1463, 1361, 1283, 1225, 1148, 1064, 861, 782 cm⁻¹

¹H NMR (400 MHz, CDCl₃) δ 0.92 (t, 3H, *J* = 7.2 Hz), 1.26 (t, 3H, *J* = 7.6 Hz), 1.68– 1.80 (m, 1H), 1.96–2.13 (m, 1H), 2.21–2.33 (m, 1H), 2.45 (s, 3H), 2.60–2.76 (m, 3H), 2.82–3.01 (m, 2H), 4.29–4.40 (m, 1H), 6.89 (d, 1H, *J* = 8.4 Hz), 7.15 (d, 1H, *J* = 8.4 Hz), 7.29 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 9.7, 14.9, 17.9, 21.6, 22.6, 27.3, 33.2, 57.7, 106.6, 109.2, 118.3, 121.2, 127.3, 130.5, 132.7, 140.7.

Anal. Calcd for C₁₆H₂₁N: C, 84.53; H, 9.31; N, 6.16. Found: C, 84.28; H, 9.26; N, 6.41.

9-Methyl-2,3,4,9-tetrahydro-1*H*-carbazole (**8g**).

Yellow oil.

Yield: 25%.

I IR (neat) 3024, 2934, 2912, 2846, 1734, 1614, 1565, 1475, 1441, 1417, 1379, 1336, 1313, 1254, 1244, 1185, 1127, 914, 748, 734 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.80–2.00 (m, 4H), 2.67–2.78 (m, 4H), 3.61 (s, 3H), 7.06 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.14 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.24 (d, 1H, *J* = 7.6 Hz), 7.46 (d, 1H, *J* = 7.6 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 21.1, 22.1, 23.2, 23.2, 28.9, 108.4, 109.2, 117.7, 118.5, 120.4, 127.1, 135.7, 136.7.

Anal. Calcd for C₁₃H₁₅N: C, 84.28; H, 8.16; N, 7.56. Found: C, 84.03; H, 8.39; N, 7.41.

Synthesis of 3,9-dimethyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole (11):

To a solution of **4d** (64.6 mg, 0.282 mol) in EtOH (1.76 mL) and H_2O (0.80 mL) was added NaOH (113 mg, 2.82 mmol) at 0 °C, and then heated at 80 °C. After being stirred for 16 h at 80 °C, the reaction was stopped by adding 1 M HCl at 0 °C. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo to afford crude acid. This material was used next reaction without further purification.

To a solution of acid in CH_2Cl_2 (2.82 mL) were successively added oxalyl chloride (1 M in CH_2Cl_2 , 366 µl, 0.366 mmol) and one drop of DMF at 0 °C. After being stirred for 2 h at room temperature, the reaction mixture was concentrated in vacuo to afford acid chloride **9**. This material was used next reaction without further purification.

To a solution of **9** in CH₂Cl₂ (1.40 mL) were successively added a solution of **10** (48.3 mg, 2.82 mmol) in CH₂Cl₂ (1.4 mL) and Et₃N (80 μ L, 0.574 mmol) at 0 °C. After being stirred for 12 h at room temperature, the reaction was stopped by adding H₂O at

0 °C. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, $CH_2Cl_2/MeOH = 20/1$) to give **11** (77.0 mg, 74%) as yellow solid.

Mp. 45–47 °C.

IR (neat) 2934, 2871, 2804, 2766, 1689, 1532, 1476, 1457, 1423, 1362, 1321, 1270, 1215, 1205, 1170, 1155, 1144, 1112, 1036 cm⁻¹.

¹H NMR (400 MHz, CDCl₃,) δ 0.92 (t, 3H, *J* = 7.6 Hz), 1.21–1.55 (m, 6H), 1.78–2.15 (m, 9H), 2.28–2.39 (m, 2H), 2.92–3.04 (m, 2H), 3.32 (t, 2H, *J* = 6.0 Hz), 4.07 (t, 2H, *J* = 6.0Hz), 4.20 (d, 2H, *J* = 6.0 Hz), 7.16–7.32 (m, 3H), 8.10 (d, 1H, *J* = 7.6 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 14.0, 20.0, 20.9, 22.5, 24.6, 29.1, 29.2, 35.7, 42.4, 53.4, 58.8, 67.8, 102.4, 108.8, 121.0, 121.6, 122.0, 126.6, 135.9, 145.9, 165.9.

Anal. Calcd for C₂₃H₃₂N₂O₂: C, 74.96; H, 8.75; N, 7.60. Found: C, 74.74; H, 8.93; N, 7.39.

2. Detailed screening of the reaction conditions

Table S1 illustrates the screening of the catalysts with *N*,*O*-acetal **5a** as a substrate, which suggested that TiCl₄ was the catalyst of choice as in the case of ketoester **3a**. Although good chemical yield was achieved (62%) when TiCl₄ was employed as a catalyst (entry 1), most of the catalysts such as some common Lewis acids (TMSOTf, BF₃•OEt₂, AlCl₃), lanthanoid triflates (Yb(OTf)₃, Gd(OTf)₃), and strong Brønsted acids (TfOH, Tf₂NH) resulted in only recovery of **5a** (Entries 3-10). Except for TiCl₄, only SnCl₄ promoted the reaction, however, the chemical yield of **4a** was low (11%, Entry 2). The selection of solvent was also important, and chemical of **4a** was decreased to 26% even with TiCl₄ when toluene was used instead of ClCH₂CH₂Cl.

 Table S1. Examination of the reaction conditions from 5a.^a

	CO ₂ Me	CO ₂ Me
	Catalyst (1.0 ec Solvent reflux, 24 h	
	Ja	4a
Entry	catalyst	Yield (%) ^b
1	TiCl ₄	62
2	SnCl ₄	11 (60)
3	$BF_3 \bullet OEt_2$	0 (98)
4	TMSOTf	0 (56)
5	AlCl ₃	0 (95)
6	Yb(OTf) ₃	0 (69)
7	$Gd(OTf)_3$	0 (95)
8	Hf(OTf) ₄	0 (93)
9	TfOH	0 (95)
10	Tf_2NH	0 (73)
11 ^c	TiCl ₄	26 (55)

^a Unless otherwise noted, all reactions were conducted with 0.10 mmol of **5a** in the presence of 1.0 equiv. of catalyst in solvent (1.0 mL) at refluxing temperature for 24 h. ^b Recovery of **5a** is shown in parenthesis. ^c In toluene.

The importance of solvent selection is also observed when the reaction starts from ketoester **3a** (Table S2). Entry 1 shows the result with $ClCH_2CH_2Cl$. Various solvents such as benzene, toluene, *o*-xylene, *p*-xylene, and CH_3CN were examined under the optimized reaction conditions. The desired indole **4a** was obtained in all cases, however, the chemical yield of **4a** remained low to moderate (24–41%, Entries 2–6), and substantial amount of **3a** was recovered.

	O CO ₂ Me	TiCl ₄ (30 mol%) DMC (1.0 equiv.) solvent reflux, 24 h	→ CO ₂ Me N 4a
Entry	sol	vent	Yield (%) ^b
1	ClCH ₂ CH ₂ Cl		77
2	to	luene	27 (63)
3	benzene		35 (39)
4	o-xylene		26 (43)
5	<i>p</i> -xylene		41 (32)
6	ĊĿ	Ĥ₃CN	24 (20)

Table S2. Examination of the solvent effect with ketoester 3a.^a

^a Unless otherwise noted, all reactions were conducted with 0.10 mmol of **3a** in the presence of 30 mol% of catalyst and 1.0 equiv. of DMC in solvent (1.0 mL) at refluxing temperature for 24 h. ^b Recovery of **3a** is shown in parenthesis.

References

- 1) Polonka-Báliant, A.; Saraceno, C.; Ludányi, K.; Bényei, A. Mátyus, P. Synlett. 2018, 18, 2846.
- 2) Boga, C.; Manescalchi, F.; Savoia, D. Tetrahedron. 1994, 50, 4709.

¹H NMR spectrum of **3a**.

S33

¹³C NMR spectrum of **3a**.

S34

¹H NMR spectrum of **3b**.

¹³C NMR spectrum of **3b**.

¹H NMR spectrum of **3c**.

¹³C NMR spectrum of **3c**.

¹H NMR spectrum of **3d**.

¹³C NMR spectrum of **3d**.

¹H NMR spectrum of **3e**.

¹³C NMR spectrum of **3e**.

¹H NMR spectrum of **3f**.

¹³C NMR spectrum of **3f**.

¹H NMR spectrum of **3g**.

¹³C NMR spectrum of **3g**.

¹H NMR spectrum of **3h**.

¹³C NMR spectrum of **3h**.

¹H NMR spectrum of **3i**.

¹³C NMR spectrum of **3i**.

¹H NMR spectrum of **3**j.

¹H NMR spectrum of **3k**.

¹³C NMR spectrum of **3k**.

¹H NMR spectrum of **3**l.

¹³C NMR spectrum of **3**l.

¹H NMR spectrum of **3m**.

¹³C NMR spectrum of **3m**.

¹H NMR spectrum of **3n**.

¹³C NMR spectrum of **3n**.

auto Thu Feb 23 09:54:2 13C BCM yt_Indole_methylet sec usec MHz KHz sec ppm Hz Ηz Hz υ 75.45 M 124.00 H 1840.00 H 32768 20356.23 H 20356.23 H 256 1.6097 f 1.3900 f 5.50 u auto C:¥Users¥mori_lab¥Desktop¥NMR¥300MHz¥yoshida¥インドールデータ¥yt_Indole_methylethylamine_SM_13C.ALS 18.1 77.00 0.10 25 CDCL3 H DFILE COMNT DATIM DATIM DBTIM OBBRIC OBFRQ OBFRQ OBFRIN FREQU FREQU SCANS FREQU FREQU FREQU FREQU FRUNC CTEMP FWI FRUNC FREF FWI SLVNT FREAU ğ \circ 11.399 45' 051 91' 960 92' 506 50 24. 573 24. 500 27. 419 27. 41 100 134.454 130.089 124.080 124.080 50 164. 513 - 165. 167 248.881 — 200

¹H NMR spectrum of **30**.

¹³C NMR spectrum of **30**.

¹H NMR spectrum of *cis*-**6a**.

¹³C NMR spectrum of *cis*-6a.

¹H NMR spectrum of *trans*-**6a**.

¹³C NMR spectrum of *trans*-6a.

¹H NMR spectrum of **6b**.

¹³C NMR spectrum of **6b**.

¹H NMR spectrum of **6c**.

¹³C NMR spectrum of **6c**.

¹H NMR spectrum of **6d**.

¹H NMR spectrum of **6e**.

¹³C NMR spectrum of **6e**.

¹H NMR spectrum of **6f**.

¹H NMR spectrum of **6g**

¹H NMR spectrum of **4a**.

¹³C NMR spectrum of **4a**.

¹H NMR spectrum of **4b**.

¹³C NMR spectrum of **4b**.

¹H NMR spectrum of **4c**.

¹³C NMR spectrum of **4c**.

¹H NMR spectrum of **4d**.

¹³C NMR spectrum of **4d**.

yt_indole_dibenzyl auto Thu Oct 12 12:25:2 1H NON sec usec sec MHz KHz Hz ppm Hz Ηz c 300.40 | 1150.00 | 1150.00 | 132768 | 22768 | 22768 | 5.4559 ; 5.4559 ; 1.5440 ; 1.5440 ; 6.00 u 0. 00 0. 10 13 4 22. È CDCL3 Η DFILE COMNT DATIM DATIM DBATIM DBATIM DBNUC EXMOD DBFRQ DBFR PPM auto C:¥Users¥mori_lab¥Desktop¥NMR¥300MHz¥yoshida¥yt_indole_dibenzyl_pro_1H (3).ALS 2 2. 422 2. 126 2. 126 2. 126 2. 226 2. 236 2. 336 3.04 2, 03 9 1. 92 ø 1' 00 8. 251 8. 251 7. 438 10

¹H NMR spectrum of **4e**.

¹³C NMR spectrum of **4f**.

yt_indole_dimethyl auto Tue Sep 26 11:31:0 1H NON sec usec sec MHz KHz Hz ppm Hz Hz υ 300.40 1 130.00 1 1150.00 1 32768 6006.01 1 8 5. 4559 1. 5440 6. 00 CO₂Me 21.8 $\begin{array}{c} 0. \ 00 \\ 0. \ 10 \\ 14 \end{array}$ CDCL3 H DFILE COMNT DATIM DATIM DBATIM DBATIM DBNUC EXMOD DBFRQ DFFR PPM 0 auto C:¥Users¥mori_lab¥Desktop¥NMR¥300MHz¥yoshida¥yt_indole_dimethyl_pro_1H.als 2 3. 901 3. 901 18.5 g 3. 42 96 °0 œ 1.00 10

¹H NMR spectrum of **4g**.

¹H NMR spectrum of **4h**.

¹³C NMR spectrum of **4h**.

¹H NMR spectrum of **4i**.

¹³C NMR spectrum of **4i**.

¹H NMR spectrum of **4**j.

¹H NMR spectrum of **4k**.

¹³C NMR spectrum of **4k**.

¹H NMR spectrum of **4**I.

¹³C NMR spectrum of **41**.

¹H NMR spectrum of **4m**.

¹³C NMR spectrum of **4m**.

,

¹H NMR spectrum of **4n**.

¹³C NMR spectrum of **4n**.

¹H NMR spectrum of **40**.

¹³C NMR spectrum of **40**.

¹H NMR spectrum of **8a**.

¹³C NMR spectrum of **8a**.

¹H NMR spectrum of **8b**.

¹³C NMR spectrum of **8b**.

¹H NMR spectrum of **8c**.

¹³C NMR spectrum of 8c.

¹H NMR spectrum of 8d.

¹³C NMR spectrum of 8d.

¹H NMR spectrum of **8e**.

¹³C NMR spectrum of 8e.

1

¹H NMR spectrum of **8f**.

¹H NMR spectrum of **8g**.

¹³C NMR spectrum of **8g**.

¹H NMR spectrum of **11**.

¹³C NMR spectrum of **11**.

