Supporting Information

A rare three-dimensional POM-based inorganic polymer bonded by

CO₂ with high catalytic performance for CO₂ cycloaddition

Weiwei Cheng,[‡] Yun-shan Xue,[‡] Ximing Luo, and Yan Xu*

1). Materials and Methods

All reagents were purchased from commercial sources and used without further purification.

Element analyses for C, H, and N were performed on a Perkin-Elmer 2400 CHN elemental analyzer.

IR spectra were recorded on KBr pellets with a Nicolet Impact 410 FTIR spectrometer in the range of 4000-400 cm^{-1} .

Single crystal X-ray diffraction data was collected on a Bruker APEX II diffractometer using Mo-K α monochromatized radiation ($\lambda = 0.71073$ Å) at 296K. X-ray powder diffraction data were obtained on Bruker D8X diffractometer using Cu-K α monochromatized radiation ($\lambda = 1.5418$ Å) in the 2 θ range of 5-50° at room temperature.

TG measurement was carried out on a PerkinElmer, Diamond Thermogravimetric/Differential Thermal Analyzer under N_2 atmosphere from room temperature to 800 °C with a heating rate of 10 °C/min.

Gas chromatographic (GC) analysis was conducted by gas chromatography (GC-7920A, CEAU Light, China) with Thermal Conductivity Detector (TCD) and a TDX-01 column (2 m, 3 mm, 2mm). Experimental conditions were as follows: N₂ (99.99%) as Carrier gas; column temperature, 50°C; injector temperature, 100°C; TCD temperature, 100°C; carbon dioxide (99.5%) and air as quantitive analysis standard.

2). Syntheses of the compound 1

The synthesis of (TBA)₂PMo₁₂O₄₀Zn₄(CO₂) (1)

A mixture of zinc chloride (0.28 g, 2 mmol), fumaric acid (0.058 g, 0.5 mmol), 1,2,4-Triazole(0.035 g, 0.5 mmol), Mo powder 99.99% (0.060 g, 0.624 mmol), sodium molybdate dihydrate (0.847 g, 3.5 mmol), Phosphorous acid (0.040 g, 0.50 mmol), 40 wt % tetrabutylammonium hydroxide solution in water (200μ L, 0.30 mmol) and 9 ml H₂O was stirred for 20 min. The pH was adjusted to 4.0 with 2 M HCl. The mixture was heated to 180°C in 1 h, and the temperature was maintained for 72 h. After cooling to room temperature, black rod crystals of compound **1** were collected. The crystals were obtained in a 23% yield based on fumaric acid. Its purity was confirmed by X-ray power diffraction (XRD) (Fig. S1). Anal. Calcd (%) for compound **1**

$C_{33}H_{74}Mo_{12}N_2O_{42}PZn_4$ (<i>M</i> r = 2614.67): C,	15.16; H, 2.8	5; N, 1.07.	Found: C,	15.37;
H, 2.58; N, 1.17.				

Compound	1
Chemical formula	$C_{33}H_{74}Mo_{12}N_2O_{42}PZn_4$
Formula Mass	2614.67
Crystal system	monoclinic
a/(Å)	26.704(8)
b/(Å)	18.529(5)
c/(Å)	17.539(10)
$\alpha/(\text{deg})$	90
$\beta/(\text{deg})$	124.780(2)
γ/(deg)	90
Unit cell volume/(Å ³)	7128(5)
Temperature/K	296(2)
Space group	C2/c
No. of formula units per unit cell, Z	4
No. of reflections measured	24158
No. of independent reflections	6272
R _{int}	0.0923
Final R_I values $(I > 2\sigma(I))$	0.0708
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1877
Final R_I values (all data)	0.1189
$\overline{{}^{a}R1 = \Sigma F_{o} - F_{c} /\Sigma F_{o} }. {}^{b}wR2 = \Sigma [w(F_{o}^{2} - $	
$F_{\rm c}^{2})^{2}]/\Sigma[w(F_{\rm o}^{2})^{2}]^{1/2}.$	

 Table S1. Summary of Crystal Data and Structure Results for compound 1.

Mo(1)-O(15)	1.674(10)	Mo(4)-O(7)	1.993(8)
Mo(1)-O(18)	1.822(9)	Mo(4)-O(2)#2	2.014(8)
Mo(1)-O(17)	1.844(8)	Mo(4)-O(20)	2.014(9)
Mo(1)-O(1)	2.015(9)	Mo(5)-O(11)	1.680(9)
Mo(1)-O(1)#1	2.040(9)	Mo(5)-O(5)	1.940(9)
Mo(1)-Mo(1)#1	3.209(2)	Mo(5)-O(4)	1.982(9)
Mo(2)-O(14)	1.676(9)	Mo(5)-O(17)	1.987(9)
Mo(2)-O(4)	1.956(9)	Mo(5)-O(12)#1	2.082(8)
Mo(2)-O(5)	1.967(8)	Mo(6)-O(19)	1.697(10)
Mo(2)-O(2)#2	1.998(8)	Mo(6)-O(20)	1.808(9)
Mo(2)-O(16)	2.031(10)	Mo(6)-O(16)	1.818(9)
Mo(2)-Mo(5)	2.6178(17)	Mo(6)-O(10)#1	2.006(9)
Mo(3)-O(9)	1.672(9)	Mo(6)-O(10)	2.015(8)

Mo(3)-O(3)	1.960 (8)	Zn(1)-O(1)	1.943(9)
Mo(3)-O(7)	1.972(8)	Zn(1)-O(2)	1.965(8)
Mo(3)-O(18)#1	1.998(9)	Zn(1)-O(4)	1.971(9)
Mo(3)-O(12)	2.091(9)	Zn(1)-O(3)	1.986(8)
Mo(3)-Mo(4)	2.6233(18)	Zn(2)-O(21)	1.929(7)
Mo(4)-O(13)	1.666(9)	Zn(2)-O(10)	1.935(9)
Mo(4)-O(3)	1.970(8)	Zn(2)-O(7)	1.947(9)
Zn(2)-O(5)#1	1.974(9)	O(5)-Zn(2)#1	1.981(9)
O(1)-Mo(1)#1	2.036(9)	O(10)-Mo(6)#1	2.004(9)
O(2)-Mo(2)#2	2.002(8)	O(12)-Mo(5)#1	2.090(8)
O(2)-Mo(4)#2	2.016(8)	O(18)-Mo(3)#1	1.998(9)
O(15)-Mo(1)-O(18)	103.7(4)	O(15)-Mo(1)-Mo(1)#1	99.8(3)
O(15)-Mo(1)-O(17)	104.1(4)	O(18)-Mo(1)-Mo(1)#1	124.9(3)
O(18)-Mo(1)-O(17)	96.9(4)	O(17)-Mo(1)-Mo(1)#1	124.3(3)
O(15)-Mo(1)-O(1)	103.4(4)	O(1)-Mo(1)-Mo(1)#1	37.8(2)
O(18)-Mo(1)-O(1)	150.5(4)	O(1)#1-Mo(1)-Mo(1)#1	37.3(2)
O(17)-Mo(1)-O(1)	87.6(4)	O(14)-Mo(2)-O(4)	106.1(4)
O(15)-Mo(1)-O(1)#1	102.9(4)	O(14)-Mo(2)-O(5)	105.2(4)
O(18)-Mo(1)-O(1)#1	88.7(4)	O(4)-Mo(2)-O(5)	93.2(4)
O(17)-Mo(1)-O(1)#1	150.2(4)	O(14)-Mo(2)-O(2)#2	97.9(4)
O(1)-Mo(1)-O(1)#1	74.1(4)	O(4)-Mo(2)-O(2)#2	86.2(4)
O(5)-Mo(2)-O(2)#2	156.0(3)	O(4)-Mo(2)-Mo(5)	48.8(3)
O(14)-Mo(2)-O(16)	99.4(4)	O(5)-Mo(2)-Mo(5)	47.6(3)
O(4)-Mo(2)-O(16)	154.2(4)	O(2)#2-Mo(2)-Mo(5)	134.6(3)
O(5)-Mo(2)-O(16)	83.5(4)	O(16)-Mo(2)-Mo(5)	130.7(3)
O(2)#2-Mo(2)-O(16)	86.7(4)	O(9)-Mo(3)-O(3)	107.5(4)
O(14)-Mo(2)-Mo(5)	99.3(3)	O(9)-Mo(3)-O(7)	105.1(4)
O(3)-Mo(3)-O(7)	94.0(3)	O(5)-Mo(5)-O(17)	151.9(3)
O(9)-Mo(3)-O(18)#1	101.7(4)	O(4)-Mo(5)-O(17)	85.0(4)
O(3)-Mo(3)-O(18)#1	84.6(3)	O(11)-Mo(5)-O(12)#1	97.3(4)
O(7)-Mo(3)-O(18)#1	152.2(4)	O(5)-Mo(5)-O(12)#1	84.0(4)
O(9)-Mo(3)-O(12)	96.8(4)	O(4)-Mo(5)-O(12)#1	155.2(3)
O(3)-Mo(3)-O(12)	155.2(3)	O(17)-Mo(5)-O(12)#1	86.0(4)
O(7)-Mo(3)-O(12)	84.1(4)	O(11)-Mo(5)-Mo(2)	100.6(4)
O(18)#1-Mo(3)-O(12)	85.8(4)	O(5)-Mo(5)-Mo(2)	48.6(2)
O(9)-Mo(3)-Mo(4)	100.5(3)	O(4)-Mo(5)-Mo(2)	47.8(3)
O(3)-Mo(3)-Mo(4)	48.2(2)	O(17)-Mo(5)-Mo(2)	132.0(3)
O(7)-Mo(3)-Mo(4)	48.9(2)	O(12)#1-Mo(5)-Mo(2)	132.2(3)
O(18)#1-Mo(3)-Mo(4)	132.0(2)	O(19)-Mo(6)-O(20)	104.8(4)
O(12)-Mo(3)-Mo(4)	132.6(3)	O(19)-Mo(6)-O(16)	104.7(4)
O(13)-Mo(4)-O(3)	106.8(4)	O(20)-Mo(6)-O(16)	97.2(4)
O(13)-Mo(4)-O(7)	105.3(4)	O(19)-Mo(6)-O(10)#1	102.8(4)
O(3)-Mo(4)-O(7)	92.9(3)	O(20)-Mo(6)-O(10)#1	149.6(4)
O(13)-Mo(4)-O(2)#2	99.4(4)	O(16)-Mo(6)-O(10)#1	87.8(4)

O(3)-Mo(4)-O(2)#2	86.5(4)	O(19)-Mo(6)-O(10)	102.6(4)
O(7)-Mo(4)-O(2)#2	154.4(3)	O(20)-Mo(6)-O(10)	89.5(4)
O(13)-Mo(4)-O(20)	100.8(4)	O(16)-Mo(6)-O(10)	149.2(4)
O(3)-Mo(4)-O(20)	152.2(4)	O(10)#1-Mo(6)-O(10)	72.2(4)
O(7)-Mo(4)-O(20)	83.2(3)	O(1)-Zn(1)-O(2)	124.2(4)
O(2)#2-Mo(4)-O(20)	85.5(4)	O(1)-Zn(1)-O(4)	108.5(4)
O(13)-Mo(4)-Mo(3)	100.1(3)	O(2)-Zn(1)-O(4)	105.8(4)
O(3)-Mo(4)-Mo(3)	47.9(2)	O(1)-Zn(1)-O(3)	109.3(4)
O(7)-Mo(4)-Mo(3)	47.9(2)	O(2)-Zn(1)-O(3)	109.4(4)
O(2)#2-Mo(4)-Mo(3)	134.0(3)	O(4)-Zn(1)-O(3)	95.9(4)
O(20)-Mo(4)-Mo(3)	130.4(2)	O(21)-Zn(2)-O(10)	119.4(7)
O(11)-Mo(5)-O(5)	105.9(4)	O(21)-Zn(2)-O(7)	107.7(7)
O(11)-Mo(5)-O(4)	107.1(4)	O(10)-Zn(2)-O(7)	115.0(3)
O(5)-Mo(5)-O(4)	93.2(4)	O(21)-Zn(2)-O(5)#1	98.7(6)
O(11)-Mo(5)-O(17)	101.4(4)	O(10)-Zn(2)-O(5)#1	113.2(4)
O(3)-Mo(3)-O(7)	94.0(3)	O(7)-Zn(2)-O(5)#1	100.1(4)

Fig. S1 Simulated and measured XRD powder pattern for compound 1

Fig. S2 The IR spectra of compound 1

Fig. S3 The TGA diagram of compound 1

The TGA analysis of compound **1** was carried out, shown in Fig. S3. The TGA diagram shows two main weight losses in the curves. The first step (25-221°C) corresponds to the release of CO_2 ligand. The observed weight loss of 1.4% is very close to the calculated values (1.7%). From 221 °C to 445°C, the weight lost 20.22% immediately due to the splitting of TBA⁺ ions with the calculated 19.6% at 445 °C. With the further increasing of temperature, the final residuals contained ZnO and MoO_3 .

Fig. S4 The samples of compound 1 immersed in water with concentrated H₂SO₄ (40μ L).

Fig. S5 The PXRD pattern of recycled samples before the catalyst and after catalyst.

¹ H NMR characterization data:

4-Methyl-1.3-dioxolan-2-one:

¹H NMR (CDCl₃, 400 MHz) δ 1.48 (d, 3H), 3.99-4.03 (m, 1H), 4.53-4.57 (m, 1H), 4.81-4.90 (m, 1H).

4-Chloromethyl-1,3-dioxolan-2-one:

¹H NMR (CDCl₃, 400 MHz) δ 3.70-3.80 (m, 2H), 4.42 (q, 1H), 4.59 (t, 1H), 4.93-4.99 (m, 1H).

4-Phenyl-1,3-dioxolan-2-one:

¹H NMR (CDCl₃, 400 MHz) δ 4.33 (t, 1H), 4.82 (t, 1H), 5.69 (t, 1H), 7.26-7.29 (m,

2H), 7.31-7.37 (m, 3H).

4-Ethyl-1,3-dioxolan-2-one:

¹H NMR (CDCl₃, 400 MHz) δ 1.02 (t, 3H), 1.80 (m, 2H), 4.08 (dd, 1H), 4.52 (t, 1H), 4.62-4.69 (m, 1H).

Hexahydrobenzo[d][1,3]dioxol-2-one:

¹H NMR (CDCl₃, 400 MHz) δ 1.37-1.49 (m, 4H), 1.87-1.97 (m, 4H), 5.29 (m, 2H).