Electronic Supplementary Information

A Charge-Separated Diamondoid Metal-Organic Framework

Sheela Thapa,^a Eshani Hettiarachchi,^b Diane A. Dickie,^{a†} Gayan Rubasinghege^{*b} and Yang Qin^{*a}

^a Department of Chemistry & Chemical Biology, University of New Mexico, MSC03-2060, 1 UNM, Albuquerque, NM 87131, USA.

^b Department of Chemistry, New Mexico Institute of Mining and Technology, 801, Leroy Place, Socorro, NM 87801, USA.

[†]Current address: Department of Chemistry, P. O. Box 400319, University of Virginia, Charlottesville, VA 22904, USA.

1. Materials and Methods: All reagents and solvents were used as received from Sigma-Aldrich or VWR unless otherwise noted. Ether, acetonitrile (CH₃CN), triethylamine (N(CH₂CH₃)₃) and dichloromethane (CH_2CI_2) were distilled over calcium hydride (CaH_2) followed by degassing through several freeze-pump-thaw cycles before use. NMR experiments, including 300.13 MHz proton, 96.25 boron and 282.23 MHz fluorine spectra, were recorded on a Bruker Advance III 300 MHz solution spectrometer. The 125.76 MHz carbon spectrum was recorded on a Bruker Advance 500 MHz solution spectrometer. Proton and carbon NMR spectra were referenced with respect to internal solvent signals. Boron and fluorine NMR were externally referenced to BF₃•Et₂O ($\delta = 0$ ppm) and C₆F₆ ($\delta = -164.9$ ppm) respectively. Single crystal X-ray data were collected on a Bruker Kappa APEX II CCD system equipped with a graphite monochromator and a Mo K- α fine-focus tube ($\lambda = 0.71073$ Å). Powder XRD was recorded on a Rigaku Smart Lab Diffractometer in Bragg-Brentano mode using Cu K- α radiation (λ = 1.54 Å) at room temperature. All gas adsorption isotherms were measured on a Quantachrome Autosorb AS1 instrument. UHP grade gases were used for the gas adsorption analysis. Before the analysis, about 100 mg of sample was outgassed for 25 hours at 60 °C. Liquid nitrogen was used as a cooling bath to maintain the temperature of 77 K. Other temperatures were maintained by using water bath. To confirm the accuracy of the results, all gas adsorption experiments were repeated 3 times. Thermogravimetric analysis was carried out using a TA SDT Q600 TGA/DSC instrument at a heating rate of 2 °C/minute from room temperature to 600°C under nitrogen.

2. Synthetic procedures

Compounds 1-3 were synthesized according to literature procedures.¹

Compound **1** (Triisopropyl((2,3,5,6-tetrafluorophenyl)ethynyl)silane, $C_{17}H_{22}F_4Si$). 11.45 g (50 mmole) of 3-bromo-1,2,4,5-tetrafluorobenzene, 10.032 g (55 mmole, 1.1 eq.) of TiPS-acetylene, 0.95 g (5 mmole, 10%) of Cul, 2.88 g (2.5 mmole, 5%) of Pd(PPh₃)₄ were dissolved in a 16:1 mixture of toluene and Triethyl amine (80 mL toluene and 5 mL TEA) in a pressure vessel under argon. The reaction mixture was heated at 80°C overnight. Solvent was evaporated and the compound was dissolved in 500 mL of hexane and filtered through silica. After the evaporation of solvent, the compound was further purified by distillation to yield 12 g (72.6 %) of pure compound as a colorless liquid. ¹H NMR: (CDCl₃, 298 K) δ ppm 7.06 (m, 1H), 1.56 (m, 2H), ¹⁹F NMR: (CDCl₃, 298 K) δ ppm, -134.88 (m, 2F), -137.68 (m, 2F).

Compound **2** (Lithium tetrakis(2,3,5,6-tetrafluoro-4-((triisopropylsilyl)ethynyl)phenyl)borate $C_{68}H_{84}BF_{16}LiSi_4$). 5g (15.13 mmole) of **1** was dissolved in 100 mL anhydrous diethyl ether in a Schlenk flask under argon. Then 6 mL (15 mmole, 2.5M in hexane, 1 eq.) of nBuLi was added dropwise to the reaction mixture at -78°C under nitrogen. The reaction was stirred continuously for two hours and then 3.8 mL

(3.8 mmole, 1M in heptane, 0.25 eq.) of BCl₃ was added to the reaction at -78°C. The reaction was stirred for 2 hours at -78°C and then warmed up to the room temperature and stirred overnight forming a white suspension. After evaporating the solvent, the white solid obtained was dissolved in a little amount of methylene chloride and precipitated in hexane to afford 3.59 g (71.23%) of pure compound as a white powder. ¹H NMR: (CDCl₃, 298 K) δ ppm, 1.113 (m, 84 H), ¹¹B NMR: (CDCl₃, 298 K) δ ppm, -16.48, ¹⁹F NMR: (CDCl₃, 298 K) δ ppm, -131.39 (s, 8F), -139.28 (s, 8F).

Compound **3** (Tetrabutylammonium tetrakis(4-ethynyl-2,3,5,6-tetrafluorophenyl)borate $C_{48}H_{40}BF_{16}N$). 2.78 g (2.08 mmole) of **2** was dissolved in 30 mL of THF and mixed with 3.26 g (12.48 mmole, 6 eq.) of tetrabutyl ammonium fluoride (TBAF). The reaction was stirred overnight at room temperature. Solvent was evaporated under vacuum to obtain a white colored solid which was dissolved in 250 mL of methylene chloride. Then the compound was filtered through silica and pumped under vacuum to evaporate the solvent. The residue obtained was dissolved in a little amount of methylene chloride and precipitated in hexane to afford 1.34 g (68.36%) of pure compound as a white colored powder. ¹H NMR: (CDCl₃, 298 K): δ ppm, 3.44 (s, 4H), 2.96 (m, 8H), 1.54 (m, 8H), 1.15 (m, 8 H), 0.95 (t, 12 H). ¹¹B NMR: (CDCl₃, 298 K): δ ppm, -16.45. ¹⁹F NMR: (CDCl₃, 298 K) δ ppm, -130.27 (s, 8F), -139.62(s, 8F).

Compound **4** (Tetrabutylammonium tetrakis(pyridine-4-ethynyl-2,3,5,6-tetrafluorophenyl)borate $C_{68}H_{52}BF_{16}N_5$). Compound **3** (400 mg, 0.42 mmol), 4-bromopyridine hydrochloride (351 mg, 1.806 mmol), Pd(PPh₃)₄ (24 mg, 0.021 mmol), and Cul (7 mg, 0.042 mmol) were dissolved in a mixture of triethylamine (1.5 mL) and CH₃CN (6 mL) into a pressure vessel equipped with a magnetic stir bar under argon. The vessel was sealed and immersed into an oil bath preset at 90 °C with stirring for 24 h. The reaction mixture was then cooled to room temperature, diluted with a large excess of 1:5 dichloromethane:hexane mixture, and stirred for 6 hours. After filtration, the residue obtained was recrystallized from methanol and water to afford borate 4 as a light yellow compound (380 mg, 73% yield). ¹H NMR: (300.13 MHZ, CDCl₃, 298 K): δ (ppm) = 8.62 (d, ³J_{HH} = 6 Hz, 8H), 7.39 (d, ³J_{HH} = 6 Hz, 8H), 3.01(m, 8H), 1.58 (m, 8 H), 1.36 (m, 8H), 0.95 (t, ³J_{HH} = 7.5 Hz, 12 H). ¹³C NMR: (125.76 MHz, CDCl₃, 298 K): δ (ppm) = 13.3, 19.5, 23.6, 58.7, 80.5, 96.0, 98.9 (t, ²J_{CF} = 14 Hz), 125.5, 130.5, 132-134 (br), 145.7 (d, ¹J_{CF} = 255 Hz), 148.2 (d, ¹J_{CF} = 241 Hz), 149.9. ¹¹B NMR: (96.25 MHz, CDCl₃, 298 K): δ (ppm) = -16.32. ¹⁹F NMR (282.40 MHz, CDCl₃, 298 K): δ (ppm) = -129.94 (s, 8F), -139.69(s, 8F).

Figure S1. ¹H NMR spectrum of 4 in CDCl₃.

Figure S3. ¹⁹F NMR spectrum of 4 in CDCl₃.

Figure S4. ¹¹B NMR spectrum of 4 in CDCl₃.

Synthesis of UNM-1. A solution of borate **4** (20 mg, 0.015 mmol) in 1 mL of CH_2Cl_2 was placed in a long 20 mL glass vial and 7 mL of CH_3CN was layered on the top. Then a solution of 15 mg of $(CH_3CN)_4CuBF_4$ (0.045 mmol, 3 eq.) in 1 mL of CH_3CN was added on the top of the two layers. The contents were mixed slowly under argon. After 3 days orange colored needle shaped crystals were obtained. The crystals were washed several times with acetonitrile, dichloromethane and air dried to obtain 12 mg (74.4%) of **UNM-1** for single crystal X-ray diffraction and gas adsorption analysis.

3. Single crystal X-ray Diffraction.

A single crystal of **UNM-1** was coated with Paratone oil and mounted on a MiTeGen Micro Loop that had been previously attached to a metallic pin using epoxy for the X-ray crystallographic analysis. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The structure was solved and refined using the Bruker SHELXTL Software Package. Non-hydrogen atoms were refined anisotropically. Solvent accessible voids were accounted for by SQUEEZE. Crystal data, structure refinements and crystal structure are given below.

Chemical formula	$C_{52}H_{16}BCuF_{16}N_4$		
Formula weight	1075.04 g/mol		
Temperature	100(2) K	100(2) К	
Wavelength	0.71073 Å		
Crystal size	0.380 x 0.428 x 0.488 m	ım	
Crystal system	tetragonal		
Space group	I -4		
Unit cell dimensions	a = 23.5586(7) Å	α = 90°	
	b = 23.5586(7) Å	β = 90°	
	c = 24.6516(9) Å	γ = 90°	
Volume	13681.8(10) Å ³		
Z	8		
Density (calculated)	1.044 g/cm ³		
Absorption coefficient	0.392 mm ⁻¹		
F(000)	4272		
Theta range for data collection	2.10 to 25.71°		
Index ranges	-24<=h<=28, -28<=k<=24, -30<=l<=24		
Reflections collected	31438		
Independent reflections	12964 [R(int) = 0.0408]		
Coverage of independent reflections	99.8%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.8650 and 0.8320		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints/ parameters	12964 / 0 / 668		
Goodness-of-fit on F ²	0.937		
R ₁ (I>2σ(I)	0.0314		
wR ₂ (all data)	0.0697		

Table S1.

adsurption experiments (green).

10 (nacy blue) and pH 13 (purple) and, after all

Figure S7. Thermogravimetric analysis (TGA) histogram of UNM-1 under N₂ environment.

4. Surface area and pore size measurement

A. Surface Area Determination: The surface area of UNM-1 is determined by 7 points N_2 - BET isotherm and Langmuir isotherms using gaseous nitrogen as an adsorbate at 77 K.

Figure S8. N₂ adsorption/desorption isotherm of UNM-1 at 77 K.

Brunauer-Emmett-Teller (BET) method: The BET equation used for the surface area determination is given as:

$$\frac{1}{W(P_0/P) - 1} = \frac{1}{W_m C} + \frac{C - 1}{W_m C} \left(\frac{P}{P_0}\right)$$
(Eq. 1)

W = weight of gas adsorbed, P/P_0 = relative pressure, W_m = weight of adsorbate forming a monolayer and C is the BET constant, which is related to the magnitude of the adsorbent/adsorbate interactions. Using nitrogen as the adsorbate, the linear plot of $1/[W(P_0/P)-1]$ vs P/P_0 gave the surface area of 621 m²/g for **UNM-1** (Figure S9, top)

Langmuir method: Langmuir equation used for the surface area calculation is given below:

$$\frac{W}{W_m} = \frac{C(P/P_0)}{1 + C(P/P_0)}$$
(Eq. 2)

Where W is the weight of adsorbate, W_m = weight in a monolayer at P/P₀ respectively. C is the constant associated with the energy of adsorption. Equation (2), in the form of a straight line can be written as:

$$\frac{P/P_0}{W} = \frac{1}{CW_m} + \frac{P/P_0}{W_m}$$
(Eq. 3)

For surface area determination $(P/P_0)/W$ is linearly plotted as a function of P/P_0 . The Langmuir surface area of **UNM-1** was found to be 915 m²/g (Figure S9, bottom).

Figure S9. BET (top) and Langmuir (bottom) plots of N₂ adsoprtion of UNM-1 at 77K.

5. Pore size measurement

Pore size of **UNM-1** was estimated by fitting N_2 adsorption isotherm at 77 K using non-local density functional theory (NLDFT). Here, N_2 adsorption at 77K on carbon for slit pore was used as the calculation model with QSDFT (Quenched Solid Density Functional Theory) equilibrium model as the kernel in the Quantachrome AS1Win software. QSDFT has the advantage on the contrary to regular NLDFT, as it

considers surface roughness and heterogeneity. This model is applicable to micro/meso porous materials with 0.35 nm to 40 nm.

Figure S10. Pore size distribution of **UNM-1** obtained by fitting the N₂ adsorption isotherm at 77 K using non-local density functional theory (NLDFT).

6. CO₂/N₂ adsorption selectivity calculation by using Binary Mixture selectivity calculation (Ideal adsorbed solution theory, IAST)

IAST is a thermodynamic model developed by Myer and Prausnitz which predicts the multicomponent adsorption isotherm from pure component adsorption isotherm at same temperature.² This method is widely used for the adsorption selectivity calculation of metal organic framework and covalent organic framework. By using IAST, adsorption selectivity is calculated as:

$$S_{a/b} = \frac{x_a/y_a}{x_b/y_b} \qquad (Eq.4)$$

Where, x_a and y_a are the mole fraction of component 'a' in adsorbed and gas phase. Similarly, x_b and y_b are the mole fraction of component 'b' in adsorbed and gas phase.

Based on previous work,³⁻⁵ the ideal flue gas mixture containing 15% CO_2 and 85% N_2 is assumed for calculation by using the pyIAST code developed by Cory M. Simon ⁶ at 273 K, 298 K, 303 K, 313K and 323 K. Below are the results obtained by pyIAST calculations at different temperatures. The plots shown here are generated by fitting the experimental data to the parameters obtained from pyIAST in Origin software. Note, the CO_2 data is best fitted by using Langmuir model and the N_2 data is best fitted by using the quadratic model.

ers

M (mmol/g)	K _A (bar⁻¹)	K _B (bar⁻²)	R ²
0.139144	0.545797	0.624341	0.99973

$$n(P) = M \frac{(K_A + 2K_B P)P}{1 + K_A P + K_B P^2}$$
(Eq. 5)

Where, n is the amount adsorbed (mmol/g), P is the pressure (bar) M is the saturation loading and K_A (bar⁻¹) and K_B (bar⁻²) are constants.

Table S3. CO₂ - Langmuir Parameters

M (mmol/g)	K (bar ⁻¹)	R ²
2.703687	0.765012	0.99718

$$n(P) = M \frac{KP}{1 + KP} \qquad (Eq. 6)$$

Where n is the amount adsorbed (mmol/g), P is the pressure (bar^{-1}) M is the saturation loading and K is a constant.

Total Pressure	IAST CO ₂ molar fraction	IAST N $_2$ molar fraction	Selectivity
0.06	0.80103	0.19896	22.8144853
0.11	0.78786	0.21214	21.0452531
0.16	0.77904	0.22096	19.9790007
0.21	0.77308	0.22692	19.3054234
0.26	0.76916	0.23084	18.8813608
0.31	0.76679	0.23321	18.6318911
0.36	0.76559	0.2344	18.5082907
0.41	0.76533	0.23467	18.4807176
0.46	0.76581	0.23419	18.5302105
0.51	0.7669	0.2331	18.6433576
0.56	0.76847	0.23153	18.8082034
0.61	0.77044	0.22956	19.0182378
0.67	0.77323	0.22676	19.3227936
0.72	0.77584	0.22416	19.6128956
0.77	0.77866	0.22134	19.9349718
0.82	0.78165	0.21835	20.2855507
0.87	0.78477	0.21523	20.6617572
0.92	0.78799	0.21201	21.0616323
0.97	0.79131	0.20869	21.4868465
1	0.79332	0.20667	21.7519717

Table S4. IAST adsorption selectivity calculated for mixed gas (15% CO_2 : 85% N_2) at 273 K

Figure S12. Fitting of CO_2 and N_2 adsorption isotherm at 298 K. Dots represents experimental data, lines are fitting curves.

M (mmol/g)	K _A (bar⁻¹)	K _B (bar⁻²)	R ²
0.110403	0.363959	0.421614	0.99967

Table S5. N ₂ - Quadratic Parameter	er
--	----

Table S6. CO₂ - Langmuir Parameters

M (mmol/g)	K (bar ⁻¹)	R ²
8.600484	0.113949	0.99963

Total Pressure	IAST CO₂ molar fraction	IAST N ₂ molar fraction	Selectivity
0.06	0.78101	0.21899	20.2097052
0.11	0.76445	0.23555	18.3905045
0.16	0.75219	0.24781	17.2003148
0.21	0.74283	0.25717	16.3680445
0.26	0.73559	0.26441	15.7646962
0.31	0.72998	0.27002	15.3194331
0.36	0.72566	0.27424	14.9944331
0.41	0.7224	0.27776	14.7379032
0.46	0.72001	0.27999	14.5721514
0.51	0.71835	0.28165	14.452867
0.56	0.71732	0.28268	14.3795576
0.61	0.71683	0.28327	14.3398054
0.67	0.71683	0.28317	14.3448694
0.72	0.71726	0.28274	14.3753036
0.77	0.71803	0.28197	14.4300339
0.82	0.71908	0.28092	14.5051497
0.87	0.7204	0.2796	14.6003815
0.92	0.72193	0.27807	14.7118951
0.97	0.72366	0.27634	14.8394731
1	0.72479	0.27521	14.9236704

Table S7. IAST adsorption selectivity calculated for mixed gas $(15\% CO_2 : 85\% N_2)$ at 298 K.

<u>С. 303 К</u>

Figure S13. Fitting of CO_2 and N_2 adsorption isotherm at 303 K. Dots represents experimental data, lines are fitting curves.

M (mmol/g)	K _A (bar⁻¹)	K _B (bar⁻²)	R ²
0.066380	0.224045	0.580506	0.99948

Table S9. CO₂ - Langmuir Parameters

M (mmol/g)	K (bar ⁻¹)	R ²
4.738390	0.151683	0.99992

Total Pressure	IAST CO ₂ molar fraction	IAST N ₂ molar fraction	Selectivity
0.06	0.83417	0.16583	28.5048745
0.11	0.80811	0.19189	23.8641409
0.16	0.78997	0.21003	21.313606
0.21	0.77655	0.22345	19.69322
0.26	0.76636	0.23364	18.5871711
0.31	0.75858	0.24142	17.8055671
0.36	0.75264	0.24736	17.2419146
0.41	0.74818	0.25182	16.8361793
0.46	0.74491	0.25509	16.5477152
0.51	0.74264	0.25736	16.3518431
0.56	0.7412	0.2588	16.2292633
0.61	0.74046	0.25953	16.1674566
0.67	0.74035	0.25965	16.1575839
0.72	0.7408	0.25201	16.65754
0.77	0.74167	0.25833	16.2692262
0.82	0.74291	0.25709	16.3749011
0.87	0.74445	0.25555	16.5077284
0.92	0.74626	0.25374	16.6659047
0.97	0.74831	0.2517	16.8471328
1	0.74963	0.25037	16.9665029

Table S10. IAST adsorption selectivity calculated for mixed gas (15% CO₂: 85% N₂) at 303K.

D. 313 K

Figure S14. Fitting of CO_2 and N_2 adsorption isotherm at 313 K. Dots represents experimental data, lines are fitting and interpolating curves. N_2 (313 K) adsorption data was linearly interpolated because none of the other available model of pyIAST produced the good fit.

M ₁ (mmol/g)	M ₂ (mmol/g)	K ₁ (bar ⁻¹)	K ₂ (bar ⁻¹)	R ²
-2.802783	6.146601	-0.047517	0.063223	0.9992

Table S11. CO₂ – Dual-Site Langmuir Parameters

$$n(P) = M_1 \frac{K_1 P}{1 + K_1 P} + M_2 \frac{K_2 P}{1 + K_2 P}$$
(Eq.7)

Where M_1 and M_2 (mmol/g) are the number of adsorption sites of type 1 and type 2. K_1 and K_2 are the constants.

Total Pressure	IAST CO ₂ molar fraction	IAST N_2 molar fraction	Selectivity
0.06	0.85075	0.14925	32.3009492
0.11	0.8265	0.1735	26.9942363
0.16	0.81487	0.18513	24.9424549
0.21	0.80942	0.19058	24.0671284
0.26	0.81033	0.18967	24.2097854
0.31	0.81633	0.18367	25.185768
0.36	0.82528	0.17472	26.7661783
0.41	0.83576	0.16424	28.8356876
0.46	0.84694	0.15306	31.3558517
0.51	0.85829	0.14171	34.3211018
0.56	0.86945	0.13051	37.7510025
0.61	0.88035	0.11965	41.6936899
0.67	0.89273	0.10727	47.1595351
0.72	0.90244	0.09756	52.4172475
0.77	0.91156	0.08844	58.4069049
0.82	0.92006	0.07994	65.2198315
0.87	0.92795	0.07205	72.9824196
0.92	0.93524	0.06476	81.8359069
0.97	0.94195	0.05805	91.9503302
1	0.9457	0.0543	98.6918355

 Table S 12. IAST adsorption selectivity calculated for mixed gas (15% CO2: 85% N2) at 313K.

<u>E. 323 K</u>

Figure S15. Fitting of CO_2 and N_2 adsorption isotherm at 323 K. Dots represents experimental data, lines are interpolating curves. Both N_2 (323 K) and CO_2 (323 K) adsorption data were linearly interpolated because good fit was not obtained by any other model available in pyIAST.

Total Pressure	IAST CO₂ molar fraction	IAST N ₂ molar fraction	Selectivity
0.06	0.86208	0.13792	35.4199536
0.11	0.8248	0.1752	26.6773212
0.16	0.80018	0.19982	22.6921896
0.21	0.78123	0.21877	20.235727
0.26	0.76688	0.23311	18.6420717
0.31	0.75576	0.24424	17.5345562
0.36	0.74975	0.25025	16.977356
0.41	0.74797	0.25203	16.8174291
0.46	0.7492	0.2508	16.927698
0.51	0.75259	0.24741	17.2372849
0.56	0.75749	0.24251	17.7000674
0.61	0.76345	0.23655	18.2888043
0.67	0.77154	0.22846	19.1370918
0.72	0.7788	0.22121	19.9502735
0.77	0.78634	0.21366	20.8552217
0.82	0.79404	0.20596	21.8467664
0.87	0.80182	0.19818	22.9268678
0.92	0.80959	0.19041	24.0936751
0.97	0.81729	0.18271	25.3478737
1	0.82186	0.17813	26.1449877

Table S 13. IAST adsorption selectivity calculated for mixed gas (15% CO₂: 85% N₂) at 323K.

7. Calculation of isosteric heat of gas adsorption

Isosteric heat of CO_2 adsorption of **UNM-1** is calculated by the following two methods. The adsorption isotherms measured at 273 K, 298 K and 313 K in the pressure range from 0 to 760 torr are used for the calculation.

A. Direct Method. Clausius-Clayperon equation for the determination of isosteric heat of adsorption (Q_{st}) given as:

$$Q_{st} = -\left[\frac{dlnP}{d(1/T)}\right]n \qquad (Eq.8)$$

Integration of equation 8 gives:

$$\ln (P)_n = -\frac{(Q_{st}/R)}{(1/T)} + C \quad (Eq.9)$$

Where P is the Pressure in torr at temperature T in K, n is the amount of gas adsorbed in mmol/g, R is universal gas constant and C is a constant. The corresponding value of 'P' at each given 'n' is determined from the fitted isotherm at 273 K, 298 K and 313 K. The slope obtained from the linear regression of ln P versus 1/T at a given 'n' is used to calculate Q_{st} according to equation 9.^{7, 8}

Figure S16. The Vant' Hoff isochores for CO₂ adsorption on UNM-1 (n=0.15 mmol/g).

Figure S17. The Vant' Hoff isochores for CO₂ adsorption on UNM-1 (n=0.2 mmol/g).

Figure S18. The Vant' Hoff isochores for CO₂ adsorption on UNM-1 (n=0.25 mmol/g).

Figure S19. The Vant' Hoff isochores for CO₂ adsorption on UNM-1 (n=0.3 mmol/g).

Figure S20. The Vant' Hoff isochores for CO₂ adsorption on UNM-1 (n=0.35 mmol/g).

Figure S21. The Vant' Hoff isochores for CO₂ adsorption on UNM-1 (n=0.4 mmol/g).

Figure S22. The Vant' Hoff isochores for CO₂ adsorption on UNM-1 (n=0.45 mmol/g).

Figure S23. The Vant' Hoff isochores for CO₂ adsorption on UNM-1 (n=0.5 mmol/g).

Figure S24. Isosteric heat of CO_2 adsorption for UNM-1 at different loading calculated by direct method.

B. Virial Method

The coverage dependent Q_{st} is determined by fitting the isotherms data to the following 'virial equation':

$$\ln P = \ln n + \frac{1}{T} \sum_{i=0}^{m} a_i n^i \qquad (Eq. 10)$$

Where, n is the amount adsorbed in mmol/g at pressure P (torr) and temperature T (K). a_i is the virial coefficient and m represent the number of coefficients required to adequately describe the isotherms (m is increased until the best fit is obtained and the average value of the squared deviations is minimized). The values of these virial coefficients are then used to calculate the isosteric heat of adsorption according to the following expression:

$$Q_{st} = -R \sum_{i=0}^{m} a_i n^i \qquad (Eq.11)$$

 $'Q_{st}$ at zero coverage is calculated according to equation 12.

$$Q_{st} = -R \sum_{i=0}^{m} a_0$$
 (Eq. 12)

The fitted isotherm and fitting parameters for CO_2 are given in fig. S25.

Figure S25. Virial fitting of CO₂ adsorption isotherm for **UNM-1**. Experimental data are the dots, lines are fitting and the parameters are given in the table within the plot.

References:

- 1. D. Turp, M. Wagner, V. Enkelmann and K. Mullen, *Angew Chem Int Ed Engl*, 2011, **50**, 4962-4965.
- 2. A. L. P. Myers, J. M. AIChE J., 1965, **11**, 121-127.
- 3. W. Lu, W. M. Verdegaal, J. Yu, P. B. Balbuena, H.-K. Jeong and H.-C. Zhou, *Energy & Environmental Science*, 2013, **6**, 3559-3564.
- 4. X. Zhang, W. Chen, W. Shi and P. Cheng, *Journal of Materials Chemistry A*, 2016, **4**, 16198-16204.
- 5. J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna and J. R. Long, *Energy & Environmental Science*, 2011, **4**, 3030-3040.
- 6. C. M. Simon, B. Smit and M. Haranczyk, *Comput Phys Commun*, 2016, **200**, 364-380.
- 7. X. Lv, L. Li, S. Tang, C. Wang and X. Zhao, *Chemical Communications*, 2014, **50**, 6886-6889.
- 8. R.-J. Li, M. Li, X.-P. Zhou, D. Li and M. O'Keeffe, *Chemical Communications*, 2014, **50**, 4047-4049.