Chemical Communications

ELECTRONIC SUPPORTINGINFORMATION

Alkynylbis(alkylidynyl)phosphines: \{LnMC\}2PCCR

Benjamin J. Frogley and Anthony F. Hilla ${ }^{\text {a }}$

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x
www.rsc.org/

Experimental section

General Considerations

Unless otherwise stated, experimental work was carried out at room temperature under a dry and oxygen-free nitrogen atmosphere using standard Schlenk techniques with dried and degassed solvents.

NMR spectra were obtained at $25^{\circ} \mathrm{C}$ on a Bruker Avance 400 (${ }^{1} \mathrm{H}$ at $400.1 \mathrm{MHz},{ }^{13} \mathrm{C}$ at $100.6 \mathrm{MHz},{ }^{31} \mathrm{P}$ at 162.0 MHz), aBruker Avance 600 (${ }^{1} \mathrm{H}$ at $600.0 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 150.9 MHz) or a Bruker Avance 700 (${ }^{1} \mathrm{H}$ at $700.0 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 176.1 MHz) spectrometers. Chemical shifts (δ) are reported in ppm and referenced to the residual solvent peak (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$) or external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ with coupling constants given in Hz . The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. Where applicable, the stated multiplicity refers to that of the primary resonance exclusive of ${ }^{183} \mathrm{~W}$ satellites. In some cases, distinct peaks were observed in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal places for ${ }^{1} \mathrm{H}$ NMR, 1 decimal place for ${ }^{13} \mathrm{C}$ NMR) they are reported as having the same chemical shift. The abbreviation 'pz' is used to refer to the pyrazolyl rings on the hydrotris (3,5 -dimethylpyrazol- 1 -yl)borate ($T p^{*}$) ligand.

Infrared spectra were obtained using a Perkin-Elmer Spectrum One FT-IR spectrometer. The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s (strong), m (medium), w (weak), sh (shoulder) and br (broad). Elemental microanalytical data were provided the London Metropolitan University. High-resolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the

[^0]ANU Research School of Chemistry mass spectrometry service with acetonitrile or methanol as the matrix. Data for X-ray crystallography were collected with an Agilent Xcalibur CCD diffractomer using Mo-K α radiation ($\lambda=0.71073 \dot{A}$) or an Agilent SuperNova CCD diffractometer using Cu-K α radiation (λ
$=1.54184 \dot{A}$) using the CrysAlis PRO software. ${ }^{1}$ The structures were solved by direct or Patterson methods and refined by full- matrix leastsquares on F^{2} using the SHELXL programs ${ }^{2}$ and the WinGX³ or Olex2 software. ${ }^{4}$ Hydrogen atoms were located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisationprogramMercury. ${ }^{5}$

The complexes $\left[\mathrm{Mo}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right] \quad$ (1a) and $\left[\mathrm{W}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right]$ (1b) have been described previously. ${ }^{6}$ Chloro(tetrahydrothiophene)gold(I), AuCl(THT), was prepared by the literature method. ${ }^{7}$ Bromodiphenylarsine was prepared by the literature method. 8

Synthesis of (Tp*)(CO) ${ }_{2} \mathrm{Mo}_{1} \equiv \mathrm{CP}(\mathrm{Ph}) \mathrm{C} \equiv \mathrm{CSiMe}_{3}$ (2a). A solution of $\mathbf{1 a}(1.00 \mathrm{~g}, 1.85 \mathrm{mmol})$ in $\mathrm{THF}(20 \mathrm{~mL})$ at- $78^{\circ} \mathrm{C}$ was treated with n-BuLi ($1.2 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 1.9 mmol). The resulting orange solution was stirred for 30 min then treated with $\mathrm{PCl}_{2} \mathrm{Ph}$ $(0.30 \mathrm{~mL}, 2.2 \mathrm{mmol})$, causing the solution to immediately turn dark orange-red. Stirring was continued for 30 min , after which time the solution was warmed to RT and the volatiles were removed in vacuo. The residue was dissolved in THF (20 mL) and a solution of $\mathrm{LiC}_{\mathrm{C}}=\mathrm{CSiMe}_{3}$ (prepared by treating $\mathrm{HC} \equiv \mathrm{CSiMe}_{3}(0.52 \mathrm{~mL}, 3.7 \mathrm{mmol})$ in THF (5 mL) with n-BuLi ($1.2 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 1.9 mmol) at - 78 ${ }^{\circ} \mathrm{C}$) was added via cannula transfer. The resulting orange-brown solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$ then warmed to RT at stirred for a further 1 h . After this time, the volatiles were removed in vacuo and the residue was subjected to column chromatography ($40 \times 3 \mathrm{~cm}$ silica gel column), eluting initially with n-hexane then with $10 \% \mathrm{v} / \mathrm{v}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. An orange band was collected and the solvents were removed under reduced pressure. The resulting orange oil was dissolved in n-pentane and slow removal of the solvent under reduced pressure gave pure $\mathbf{2 a}(432 \mathrm{mg}, 0.648 \mathrm{mmol}, 35 \%)$ as orange microcrystals. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$,
$\left.\mathrm{cm}^{-1}\right):$ 2002s, 1919s r (CO). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 0.26$ (s, $9 \mathrm{H}, \mathrm{SiMe}_{3}$), 2.28(s, 3H, pzCH3), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.31$ (s, 3H, pzCH $)_{3}$, 2.32($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} 3), 2.43(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{pzCH} 3), 5.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzH}), 5.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzH}), 5.81(\mathrm{~s}, 1 \mathrm{H}$, pzH), 7.36-7.44 (m, 3H, PPh), 7.73-7.80 (m, 2H, PPh). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right):-0.1\left(\mathrm{SiMe}_{3}\right), 12.7,12.8(2 \mathrm{C}$, coincident), 14.6, 16.1, $16.3\left(\mathrm{pzCH}_{3}\right), 97.9\left(\mathrm{~d},{ }^{1}{ }_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right.$, PC $\equiv C T M S), ~ 106.3,106.3,106.5(\mathrm{pzCH}), 116.9$ (d, ${ }^{2} \mathrm{~J}_{\mathrm{CP}}=3.8 \mathrm{~Hz}$, PC $\equiv C T M S), 128.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=8.9 \mathrm{~Hz}, m-\mathrm{Ph}\right), 129.5(p-\mathrm{Ph}), 132.6(\mathrm{~d}$, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}}=3.8 \mathrm{~Hz}, i-\mathrm{Ph}\right), 133.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=22.1 \mathrm{~Hz}, o-\mathrm{Ph}\right), 133.2(i-\mathrm{Ph})$, 144.6 (2 C, coincident), 145.2, 151.3, 151.3, $151.5\left(\mathrm{pzCCH}_{3}\right)$, 225.8 (CO), 225.9 (CO), 295.5 (d, ${ }^{1}{ }_{\mathrm{CP}}=88.8 \mathrm{~Hz}, \mathrm{Mo} \equiv \mathrm{C}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$):-2.8. MS (ESI, m/z): Found: 669.1629. Calcd for $\mathrm{C}_{29} \mathrm{H}_{37^{11}} \mathrm{~B}^{98} \mathrm{MoN}_{6} \mathrm{O}_{2} \mathrm{PSiNa}[\mathrm{M}+\mathrm{H}]^{+}$:
669.1627. Anal. Found: C, 52.39; H, 4.59; N, 12.34\%. Calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{PSi}: \mathrm{C}, 52.26 ; \mathrm{H}, 5.44 ; \mathrm{N}, 12.61 \%$. Crystals used for X-ray structure determination were grown by slow evaporation of a dichloromethane/ethanol solution. Crystal data for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{PSi}\left(M=666.45 \mathrm{gmol}^{-1}\right)$: orthorhombic, space group Pna2 ${ }_{1}$ (no. 33), $a=17.0572(4), b=10.5503(2), c=17.9411$ (4) $\AA, V=$ $3228.65(12) \AA^{3}, Z=4, T=150.01(1) \mathrm{K}$,
$\mu(\mathrm{MoKa})=0.528 \mathrm{~mm}^{-1}$, Dcalc $=1.371 \mathrm{Mgm}^{-3}$, 28899 reflections measured $\left(6.55^{\circ} \leq 2 \Theta \leq 57.784^{\circ}\right)$, 6939 unique ($R_{\text {int }}=0.0333$, $R_{\text {sigma }}=$ 0.0323) which were used in all calculations. The final R_{1} was 0.0305 ($1>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0696 (all data) for 383 refined parameters with 1 restraint.

Synthesis of $\left[\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{CP}(\mathrm{Ph}) \mathrm{C} \equiv \mathrm{CSiMe}_{3}\right]$ (2b). A solution of $\mathbf{1 b}(1.25 \mathrm{~g}, 1.99 \mathrm{mmol})$ in $\mathrm{THF}(20 \mathrm{~mL})$ at- $78^{\circ} \mathrm{C}$ was treated with n-BuLi ($1.3 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 2.1 mmol). The resulting orange solution was stirred for 30 min then treated with $\mathrm{PCl}_{2} \mathrm{Ph}$ ($0.30 \mathrm{~mL}, 2.2 \mathrm{mmol}$), causing the solution to immediately turn dark red. Stirring was continued for 30 min , after which time the solution was warmed to RT and the volatiles were removed in vacuo. The residue was dissolved in THF (20 mL) and a solution of $\mathrm{LiC} \equiv \mathrm{CSiMe}_{3}$ (prepared by treatment of $\mathrm{HC} \equiv \mathrm{CSiMe}_{3}(0.54 \mathrm{~mL}, 3.9$ $\mathrm{mmol})$ in THF (5 mL) with n-BuLi ($2.0 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 3.2 mmol) at $-78^{\circ} \mathrm{C}$) was added via cannula transfer. The resulting orange-brown solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$ then warmed to RT at stirred for a further 1 h . After this time, the volatiles were removed in vacuo and the residue was subjected to column chromatography ($40 \times 3 \mathrm{~cm}$ silica gel column), eluting initially with nhexane then with $10 \% \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. An orange band was collected and the solvents were removed under reduced pressure. The resulting orange oil was dissolved in n - pentane and slow removal of the solvent under reduced pressure gave pure $\mathbf{2 b}$ (572 $\mathrm{mg}, 0.758 \mathrm{mmol}, 38 \%$) as orange microcrystals. A crystal suitable forXray structural analysis was grown by slow evaporation of a chloroform/cyclohexane solution. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 1986 \mathrm{~s}$, 1897 s $v(C O) .{ }^{1}$ HNMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 0.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right)$, $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.37$ (s, $3 \mathrm{H}, \mathrm{pzCH} 3$) $2.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} 3$), $5.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzH}), 5.85(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{pzH}), 5.87$ (s, $1 \mathrm{H}, \mathrm{pzH}), 7.33-7.43(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PPh}), 7.74-7.80$ (m, 2 H, PPh). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right):-0.1$ (SiMe ${ }_{3}$), 12.7, 12.8, 12.8, 15.2, 16.9, 17.0 (pzCH3 $), 99.0\left(\mathrm{~d},{ }^{1}{ }_{\mathrm{CP}}=\right.$ $7.3 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{CTMS}), 106.6,106.6,106.8(\mathrm{pzCH}), 115.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=1.6\right.$
$\mathrm{Hz}, \mathrm{PC} \equiv C T M S), 128.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=4.4 \mathrm{~Hz}, o-\mathrm{Ph}\right), 129.2(p-\mathrm{Ph}), 133.2$
($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=10.8 \mathrm{~Hz}, m-\mathrm{Ph}$), $133.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=1.5 \mathrm{~Hz}, i-\mathrm{Ph}\right), 144.6$, 144.6, 145.3, 152.2, 152.2, 152.6 (pzCCH3), 224.0, 224.3 (CO), $280.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=76.2,{ }^{1} \mathrm{~J} \mathrm{CW}=178 \mathrm{~Hz}, \mathrm{~W} \equiv \mathrm{C}\right) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25{ }^{\circ} \mathrm{C}, \delta\right):-4.0\left({ }^{2} \mathrm{~J}_{\mathrm{WP}}=84.4 \mathrm{~Hz}\right)$. MS (ESI, m/z): Found: 755.2088. Calcd for $\mathrm{C}_{29} \mathrm{H}_{37}{ }^{11} \mathrm{BN}_{6} \mathrm{OSiP}^{184} \mathrm{~W}[\mathrm{M}+\mathrm{H}]^{+}: 755.2088$.
Anal. Found: C, 46.22; H, 4.92; N, 11.06. Calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{SiPW}: \mathrm{C}, 46.17 ; \mathrm{H}, 4.81 ; \mathrm{N}, 11.14 \%$. Crystalsusedfor X -ray structure determination were grown by slow evaporation of a dichloromethane/ethanol solution. Crystal data for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{PSiW}\left(M=754.36 \mathrm{gmol}^{-1}\right)$: orthorhombic, space group Pna21 (no. 33), $a=17.0998(2), b=10.5256(2), c=17.8373(3) \AA$, $V=3210.46$ (9) $\AA^{3}, Z=4, T=150.0(1) \mathrm{K}$,
$\mu(\mathrm{MoKa})=3.721 \mathrm{~mm}^{-1}$, Dcalc $=1.561 \mathrm{Mgm}^{-3}, 55398$ reflections measured $\left(6.444^{\circ} \leq 2 \theta \leq 60.19^{\circ}\right)$, 8485 unique ($R_{\text {int }}=0.0387$, $R_{\text {sigma }}=$ 0.0312) which were used in all calculations. The final R_{1} was 0.0235 ($1>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0467 (all data) for 376 refined parameters with 1 restraint.

Synthesis of [(Tp*)(CO) $\left.\mathbf{2}_{2} \mathrm{Mo}^{2}=\mathrm{CP}(\mathrm{Cy}) \mathrm{C} \equiv \mathrm{CSiMe}_{3}\right]$ (3a). A solution of 1a ($500 \mathrm{mg}, 0.924 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was treated with n-BuLi ($0.58 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 0.93 mmol). The resulting brown solution was stirred for 30 min then treated with $\mathrm{PCl}_{2} \mathrm{Cy}$ ($160 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), causing the solution to immediately turn orange-red. Stirring was continued for 30 min , after which time the solution was warmed to RT and the volatiles were removed in vacuo. The residue was dissolved in THF (10 mL) and a solution of $\mathrm{LiC}_{\mathrm{L}}=\mathrm{CSiMe}_{3}$ (prepared by
treatment of $\mathrm{HC} \equiv \mathrm{CSiMe}_{3}(250 \mu \mathrm{~L}, 1.8 \mathrm{mmol})$ in $\mathrm{THF}(5 \mathrm{~mL})$ with n - $\mathrm{BuLi}(1.0 \mathrm{~mL}, 1.6 \mathrm{Minhexanes}, 1.6 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$) was added via cannula transfer. The resulting orange-brown solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$ then warmed to RT at stirred for a further 1 h. After this time, the volatiles were removed in vacuo and the residue was subjected to column chromatography ($30 \times 3 \mathrm{~cm}$ silica gel column), eluting initially with n-hexane followed by $20 \% \mathrm{v} / \mathrm{v}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. An orange band was collected and the solvents were removed under reduced pressure. The resulting orange oil was dissolved in n - pentane and slow removal of the solvent under reduced pressure gave pure $3 \mathrm{a}(334 \mathrm{mg}, 0.497 \mathrm{mmol}, 54 \%$) as orange microcrystals. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 1999s, 1916s $⿲$ (CO). ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$): $0.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 1.22-2.20(\mathrm{~m}, 11$ H, PCy), 2.33 (s, 3H, pzCH 3), 2.38 (s, $9 \mathrm{H}, \mathrm{pzCH} 3$), 2.59 (s, 3 H , $\mathrm{pzCH} 3), 2.61(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} 3), 5.72(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzH}), 5.87(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzH})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) : 0.0 (SiMe 3), 12.7, 12.9 (2 C, coincident), 14.6, 16.5, 16.6 (s, pzCH3), 26.2 ($\mathrm{Cz}^{4}(\mathrm{Cy})$), 27.1 $\left(d^{2,3} J_{C P}=9.1 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 27.1\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=14.8 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right)$, $30.1\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=11.8 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 30.2\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right.$, $\left.\mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 39.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=6.2 \mathrm{~Hz}, \mathrm{C}^{1}(\mathrm{Cy})\right), 98.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=23.4 \mathrm{~Hz}\right.$, PCㅡCTMS), 106.3, 106.3, 106.5 (pzCH), 116.0 (d, ${ }^{2} \mathrm{~J}_{\mathrm{CP}}=6.2 \mathrm{~Hz}$, $\mathrm{PC} \equiv C T M S), 144.7,144.7,145.1,151.3,151.3,151.5\left(\mathrm{pzCCH}_{3}\right)$, 226.1 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=2.5 \mathrm{~Hz}, \mathrm{CO}$), $227.2(\mathrm{CO}), 303.6$ ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=88.8 \mathrm{~Hz}$, $\mathrm{Mo} \equiv \mathrm{CP}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 10.0 . \mathrm{MS}(\mathrm{ESI}$, m / z): Found: 675.2098. Calcd for $\mathrm{C}_{29} \mathrm{H}_{42}{ }^{11} \mathrm{~B}^{98} \mathrm{MoN}_{6} \mathrm{O}_{2} \mathrm{SiPNa}[\mathrm{M}+\mathrm{H}]^{+}$: 675.2102. Anal. Found: C, 51.72; H, 6.29; N, 12.36. Calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{PSi}: \mathrm{C}, 51.79 ; \mathrm{H}, 6.29 ; \mathrm{N}, 12.50 \%$. Crystals used for X-ray structure determination were grown by slow evaporation of a $\mathrm{CHCl}_{3} /$ cyclohexane solution. Crystal data for
$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{PSi}\left(\mathrm{M}=672.49 \mathrm{gmol}^{-1}\right)$ ：orthorhombic，space group Pna2 ${ }_{1}$（no．33），$a=17.5232(3), b=10.5308(2), c=18.0406(3) \AA$ A ， $V=3329.09(10) \AA^{3}, Z=4, T=150.0(1) \mathrm{K}$ ，
$\mu(\mathrm{MoKa})=0.513 \mathrm{~mm}^{-1}$ ，Dcalc $=1.342 \mathrm{Mgm}^{-3}, 70511$ reflections measured $\left(6.482^{\circ} \leq 2 \theta \leq 59.786^{\circ}\right), 8728$ unique（ $R_{\text {int }}=0.0338$ ，$R_{\text {sigma }}=$ 0.0227 ）which were used in all calculations．The final R_{1} was 0.0318 （l＞ $2 \sigma(I))$ and $w R_{2}$ was 0.0720 （all data）for 410 refined parameters with 85 restraints．

Synthesis of $\left[\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{CP}(\mathrm{Cy}) \mathrm{C} \equiv \mathrm{CSiMe}_{3}\right]$（3b）．A solution of 1b（ $250 \mathrm{mg}, 0.398 \mathrm{mmol}$ ）in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was treated with n－BuLi（ $0.25 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes， 0.40 mmol ）．The resulting orange solution was stirred for 30 min then treated with $\mathrm{PCl}_{2} \mathrm{Cy}(62 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ ，causing the solution to immediately turn dark red．Stirring was continued for 30 min ，after which time the solution was warmed to RT and the volatiles were removed in vacuo．The residue was dissolved in THF（ 10 mL ）and a solution of $\mathrm{LiC} \equiv \mathrm{CSiMe}_{3}$（prepared by treatment of $\mathrm{HC} \equiv \mathrm{CSiMe}_{3}(55 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ with n－BuLi（ $0.25 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes， 0.40 mmol ）at $-78^{\circ} \mathrm{C}$ ）was added via cannula transfer．The resulting orange－brown solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$ then warmed to RT at stirred for a further 1 h．After this time，the volatiles were removed in vacuo and the residue was subjected to column chromatography（ $20 \times 3 \mathrm{~cm}$ silica gel column），eluting initially with n－hexane followed by $10 \% \mathrm{v} / \mathrm{v}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$－hexane．An orange band was collected and the solvents were removed under reduced pressure．The resulting orange oil was dissolved in n－pentane and slow removal of the solvent under reduced pressure gave pure 3b（ $89.0 \mathrm{mg}, 0.117 \mathrm{mmol}, 29 \%$ ）as yellow－orange microcrystals．IR（ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ ：1984s，1893s $⿲ 丶 丶 丶(C O)$ ． ${ }^{1} \mathrm{H}$
NMR（ $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 0.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 1.20-2.20$ （m，11H，Cy），2．30（s，3H，pzCH3），2．37（s，6H，pzCH $)_{3}$ ，2．41（s， 3 $\mathrm{H}, \mathrm{pzCH} 3$ ），2．61（s，3H，pzCH3），2．62（s， $\left.3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 5.76(\mathrm{~s}, 1 \mathrm{H}$ ， $\mathrm{pzH}), 5.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right)$ ： 0.0 （SiMe ${ }_{3}$ ），12．7，12．8，15．3，17．3， $17.4\left(\mathrm{pzCH}_{3}\right), 26.3\left(\mathrm{C}^{4}(\mathrm{Cy})\right)$ ， $27.2\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=8.9 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 27.3\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=14.1 \mathrm{~Hz}\right.$ ， $\left.\mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 30.1\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=8.6 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 30.2\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=\right.$ $\left.14.1 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 39.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=6.2 \mathrm{~Hz}, \mathrm{C}^{1}(\mathrm{Cy})\right), 99.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=\right.$ $23.2 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{CTMS}), 106.6$（2C，coincident），106．8（pzCH）， 114.9 （ $\mathrm{d},{ }^{2}{ }_{\mathrm{J} P \mathrm{P}}=6.2 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{CTMS}$ ），144．6，144．7，145．3，152．2，152．3， $152.6\left(\mathrm{pzCCH}_{3}\right), 224.2,226.0$（CO）， 288.0 （d，${ }^{1} \mathrm{~J}_{\mathrm{CP}}=77.6 \mathrm{~Hz}, \mathrm{~W} \equiv \mathrm{C}$ ）． ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 6.6\left({ }^{2} \mathrm{~J}_{\mathrm{wp}}=78.0 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{ESI}$, m / z ）：Found： 761.2550 ．Calcd for $\mathrm{C}_{29} \mathrm{H}_{43}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{PSi}^{184} \mathrm{~W}[\mathrm{M}$ $+\mathrm{H}]+: 761.2565$ ．Anal．Found： $\mathrm{C}, 45.75 ; \mathrm{H}, 5.50 ; \mathrm{N}, 11.12$ ．Calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{BN}_{6} \mathrm{O}_{2}$ PSiW： $\mathrm{C}, 45.81$ ；H， 5.57 ；N，11．05\％．

Synthesis of $\left[\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathbf{M o} \equiv \mathrm{CP}(\mathrm{Ph}) \mathrm{C}=\mathrm{CH}\right]$（4a）．A solution of 2a（ $100 \mathrm{mg}, 0.150 \mathrm{mmol}$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with TBAF（150 $\mu \mathrm{L}, 1.0 \mathrm{Min} \mathrm{THF}, 0.150 \mathrm{mmol}$ ）and the mixture was stirred at RT for 1 h ，during which time the initially bright orange solution darkened． After this time，the solution was dried in
vacuo and the residue was subjected to column chromatography（ $10 \times 1 \mathrm{~cm}$ silica gel column），eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ． An orange band was collected，n－hexane was added and slow removal of the dichloromethane under reduced pressure gave an orange solid of pure $4 \mathrm{a}(77.0 \mathrm{mg}, 0.130 \mathrm{mmol}, 86 \%)$ ．IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2003 \mathrm{~s}, 1921 \mathrm{~s}$ （CO）．${ }^{1} \mathrm{HNMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$
$\left.{ }^{\circ} \mathrm{C}, \delta\right): 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}$,
pzCH3）， $2.34(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH} 3), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 3.34(\mathrm{~s}, 1 \mathrm{H}$ ， $\mathrm{C} \equiv \mathrm{CH}), 5.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzH}), 5.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzH}), 5.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzH})$ ， $7.36-7.46(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PPh}), 7.77-7.82(\mathrm{t}, 3 \mathrm{JHH}=8.3 \mathrm{Hz2H}, \mathrm{PPh})$ ． ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 12.7,12.8(2 \mathrm{C}$ ， coincident），14．6，16．1，16．2（pzCH3），ca．77．1（PC $\equiv \mathrm{CH}$, obscured by CDCl_{3} ）， 96.2 （ $\mathrm{PC} \equiv С \mathrm{CH}$ ），106．3，106．4， 106.5 （pzCH）， 128.9 （d， $\left.{ }^{2} J_{\mathrm{CP}}=8.6 \mathrm{~Hz}, o-\mathrm{Ph}\right), 129.6(p-P h), 131.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=11.8 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{CH}\right)$ ， 132.0 （ $\left.\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=3.4 \mathrm{~Hz}, i-\mathrm{Ph}\right), 133.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=21.8 \mathrm{~Hz}, \mathrm{~m}-\mathrm{Ph}\right)$ ， 144．7，144．7，145．2，151．3，151．3， $151.5\left(\mathrm{pzCCH}_{3}\right), 225.7,225.7$（CO）， $294.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=87.6 \mathrm{~Hz}, \mathrm{Mo} \equiv \mathrm{C}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$ ， d）：－4．8．MS（ESI，m／z）：Found：597．1237．Calcd for $\mathrm{C}_{26} \mathrm{H}_{29}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{P}^{184} \mathrm{~W}[\mathrm{M}+\mathrm{H}]^{+} 597.1231$ ．Anal．Found：C，52．42； H ， 4．81；N，14．05\％．CalcdforC26 ${ }_{28}$ BMoN $_{6} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 52.55 ; \mathrm{H}, 4.75$ ；
N，14．14\％．
Synthesis of $\left[\left(T p^{*}\right)(C O)_{2} W \equiv C P(P h) C \equiv C H\right](4 b)$ ．A solution of 2b（ $25.0 \mathrm{mg}, 0.0331 \mathrm{mmol}$ ）in THF（ 5 mL ）was treated with TBAF（ 33.1 $\mu \mathrm{L}, 1.0 \mathrm{M}$ in THF， 0.0331 mmol ）and the mixture was stirred at RT for 2 h ，during which time the initially bright orange solution darkened． After this time，the solution was dried in vacuo，the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with deionised water $(3 \times 10$ mL ）．The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was collected and dried under reduced pressure． The residue was redissolved in dichloromethane and subjected to column chromatography（ $10 \times 1 \mathrm{~cm}$ silica gel column），eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ．An orange band was collected，n－hexane was added and slow removal of the dichloromethane under reduced pressure gave an orange solid of pure $\mathbf{4 b}$（ $19.0 \mathrm{mg}, 0.0279 \mathrm{mmol}, 84 \%$ ）． $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ ： 1999s，1910s w（CO）．${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 2.28(\mathrm{~s}$ ， $3 \mathrm{H}, \mathrm{pzCH} 3$ ），2．33（s， $3 \mathrm{H}, \mathrm{pzCH}_{3}$ ），2．33（ $\mathrm{s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}$ ），2．35（s， 3 $\mathrm{H}, \mathrm{pzCH} 3), 2.37(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH} 3), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 3.28(\mathrm{~s}, 1 \mathrm{H}$ ， C三CH）， 5.73 （s， $1 \mathrm{H}, \mathrm{pzH}$ ）， 5.85 （s， $1 \mathrm{H}, \mathrm{pzH}), 5.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzH})$ ， $7.34-7.43(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PPh}), 7.75-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PPh}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ （ $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 12.8,15.3,16.8,16.9\left(\mathrm{pzCH}_{3}\right), 78.3$ （ $\mathrm{d},{ }^{1}{ }_{\mathrm{CP}}=13.0 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{CH}$ ）， $95.5(\mathrm{PC} \equiv \mathrm{CH}), 106.7,106.9(\mathrm{pzCH})$ ， 128.8 （ ${ }^{1}{ }^{1} \mathrm{JPP}=8.8 \mathrm{~Hz}$ ），129．3，133．1， 133.3 （Ph，could not be unambiguously assigned），144．7，145．4，152．2，152．2， 152.7 $\left(\mathrm{pzCCH}_{3}\right), 224.4,224.4(\mathrm{CO}), 279.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=75.4 \mathrm{~Hz}, \mathrm{~W} \equiv \mathrm{C}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right):-5.5\left({ }^{2} \mathrm{~J}_{\mathrm{WP}}=81.8 \mathrm{~Hz}\right)$ ．MS（ESI， m / z ）：Found：683．1686．Calcd for $\mathrm{C}_{26} \mathrm{H}_{29}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{P}^{184} \mathrm{~W}[\mathrm{M}+\mathrm{H}]^{+}$ 683．1687．Anal．Found：C， 46.51 ；H，3．73；N，12．15\％．Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{WP}: \mathrm{C}, 45.78 ; \mathrm{H}, 4.14 ; \mathrm{N}, 12.32 \%$ ．Despite
spectroscopic purity，results for this complex were consistently high in carbon（ca 0.7% ）．

Synthesis of $\left[\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathrm{Mo} \equiv \mathrm{CP}(\mathrm{Cy}) \mathrm{C} \equiv \mathrm{CH}\right]$（5a）．To a solution of $\mathbf{3 a}$（ $100 \mathrm{mg}, 0.149 \mathrm{mmol}$ ）in THF（ 5 mL ）was added TBAF（ 149 $\mu \mathrm{L}, 1.0 \mathrm{Min}$ THF， 0.149 mmol ）and the mixture was stirred at RT for 3 h ． After this time，the volatiles were removed in vacuo and the residue subjected to column chromatography（ $10 \times 1 \mathrm{~cm}$ silica gel column）， eluting with n－hexane followed by $10 \% \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2} / n$－hexane．An orange band was collected and the solvents were removed under reduced pressure and the residue recrystallized from n－pentane to furnish pure $\mathbf{5 a}(78.0 \mathrm{mg}, 0.130 \mathrm{mmol}, 87 \%)$ as orange microcrystals．IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ ： 2000 s ，
1916 s （CO）．${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 1.30-2.22(\mathrm{~m}$ ， $11 \mathrm{H}, \mathrm{Cy}), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.59(\mathrm{~s}, 3 \mathrm{H}$ ， $\mathrm{pzCH} 3), 2.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} 3), 3.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}\right)$ ， $5.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzH}), 5.87(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$ ，
$\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 12.7,12.9(2 \mathrm{C}$, coincident), 14.6, 16.4, 16.4 $\left(\mathrm{pzCH}_{3}\right), 26.1\left(\mathrm{C}^{4}(\mathrm{Cy})\right), 27.0\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=9.0 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 27.0(\mathrm{~d}$, $\left.{ }^{2,3} J_{\mathrm{CP}}=14.5 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 30.0\left(\mathrm{~d},{ }^{2,3} J_{\mathrm{CP}}=12.5 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right)$, $30.1\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=10.4 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 39.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=6.3 \mathrm{~Hz}, \mathrm{C}^{1}(\mathrm{Cy})\right)$, ca. 77.1 (obs by CDCI3, PCCH), 95.7 (s, PC $\equiv \mathrm{CH}$), 106.3 (2C, coincident), 106.5 (pzCH), 144.7, 144.7, 145.2, 151.2, 151.3, $151.5(\mathrm{pzCCH} 3), 226.4,226.9$ (CO), 302.5 (d, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}}=89.1, \mathrm{Mo} \equiv \mathrm{CP}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, ~ \delta\right): 8.0 . \mathrm{MS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z})$: Found: 603.1705. Calcd for $\mathrm{C}_{26} \mathrm{H}_{35}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{98} \mathrm{MoP}[\mathrm{M}+\mathrm{H}]$: 603.1701. Anal. Found: C, 51.89;H,5.62;N, 13.93. Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BMON}_{6} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 52.02 ; \mathrm{H}, 5.71$; N, 14.00\%.

Synthesis of $\left[\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{CP}(\mathrm{Cy}) \mathrm{C} \equiv \mathrm{CH}\right](5 \mathrm{~b})$. To asolution of $3 \mathrm{~b}(100 \mathrm{mg}, 0.138 \mathrm{mmol})$ inTHF $(5 \mathrm{~mL})$ wasaddedTBAF (14 $\mu \mathrm{L}, 1.0 \mathrm{MinTHF}, 0.14 \mathrm{mmol}$) and the mixture was stirred at RT for 3 h . After this time, the volatiles were removed in vacuo and the residue subjected to column chromatography ($10 \times 1 \mathrm{~cm}$ silica gel column), eluting with n-hexane followed by $10 \% \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. An orange band was collected and the solvents were removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ethanol and on slow removal of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under reduced pressure, an orange precipitate formed, which was collected by filtration and washed with cold ethanol to give pure 5 b ($69.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 73 \%$) as orange microcrystals. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 1984s, 1893s \mathfrak{n} (CO). ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$): 1.30-1.50(m,5H, Cy), 1.66-1.72(m, $1 \mathrm{H}, \mathrm{Cy}), 1.79-1.87$ (m,2H, Cy), 2.02-2.20(m,3H,Cy), 2.32(s, $3 \mathrm{H}, \mathrm{pzCH} 3$), $2.37\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} 3), 2.61(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{pzCH} 3$), $2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 3.08(\mathrm{~s}, 1 \mathrm{H}$, integration varies between $0.4-0.8 \mathrm{H}, \mathrm{PC} \equiv \mathrm{CH}$), $5.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzCH}), 5.91$ (s, 2 H , pzCH). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 12.7,12.8,15.3$, 17.1, 17.1, $17.3\left(\mathrm{pzCH}_{3}\right), 26.2\left(\mathrm{C}^{4}(\mathrm{Cy})\right), 27.1\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=5.4 \mathrm{~Hz}\right.$, $\left.\mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 27.2\left(\mathrm{~d},{ }^{2,3} \mathrm{~J}_{\mathrm{CP}}=11.1 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6} \mathrm{Cy}\right)$), $30.0\left(\mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right)$, $30.2\left(\mathrm{~d},{ }^{2,3} J_{\mathrm{CP}}=9.7 \mathrm{~Hz}, \mathrm{C}^{2,3,5,6}(\mathrm{Cy})\right), 39.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=5.8 \mathrm{~Hz}, \mathrm{C}^{1}(\mathrm{Cy})\right)$, $78.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=22.2 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{CH}\right), 94.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=2.7 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{CH}\right)$, 106.7, 106.9 (pzCH), 144.6, 144.7, 145.3, 152.2, 152.3, 152.6 $\left(\mathrm{pzCH}_{3}\right), 224.7,225.7(\mathrm{CO}), 286.9,287.0\left({ }^{1} \mathrm{~J}_{\mathrm{CP}}=76.3 \mathrm{~Hz}, \mathrm{~W} \equiv \mathrm{C}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 5.0\left({ }^{1} \mathrm{~J} \mathrm{Cw}=77 \mathrm{~Hz}\right), 5.1$ $\left({ }^{1} \mathrm{~J}_{\mathrm{cw}}=77 \mathrm{~Hz}\right)$. The P and carbyne C atoms give rise to two slightly distinct signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra, respectively, in a ratio of $c a$. 40:60. We suspect that this observation is a result of a large barrier to rotation about the phosphorus, a consequence of the bulky substituents, thus giving rise to distinct rotamers with slightly (a difference of 10 Hz in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and 4 Hz in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$). MS (ESI, m/z): Found: 689.2160. Calcd for $\mathrm{C}_{26} \mathrm{H}_{35}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{P}^{184} \mathrm{~W}[\mathrm{M}+$ H $]^{+}$: 689.2162 .
Anal. Found: C, 45.59; H, 5.16; N, 12.11\%. Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{PW}: \mathrm{C}, 45.38 ; \mathrm{H}, 4.98 ; \mathrm{N}, 12.21 \%$. The crystal (of unfortunately less-than-ideal quality) used for X -ray structure determination was grown by slow evaporation of a $\mathrm{CHCl}_{3} /$ ethanol solution. The structure was found to contain diffuse solvent which could not be adequately modelled through disordered components and so the SQUEEZE algorithm was invoked. Crystal data for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BClN} \mathrm{N}_{6} \mathrm{O}_{2} \mathrm{PW}\left(M=688.22\right.$ gmol $\left.^{-1}\right)$: orthorhombic, space group Pbca (no. 61), $a=15.0730(4), b=20.5330(5), c=20.5731$ (5) \AA A, $V=$ $6367.2(3) \AA^{3}, Z=8, T=150.0(1) \mathrm{K}, \mu(\mathrm{CuKa})=7.441 \mathrm{~mm}^{-1}$, Dcalc $=1.436$ Mgm-
${ }^{3}, 9401$ reflections measured $\left(8.452^{\circ} \leq 2 \Theta \leq 133.176^{\circ}\right), 4874$
unique ($R_{\text {int }}=0.0326$, $R_{\text {sigma }}=0.0447$) which were used in all calculations. The final R_{1} was $0.0580\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.1676 (all data) for 346 refined parameters with 0 restraints.

Synthesis of $\left[\left\{\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathrm{~W}=\mathrm{C}\right\}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right]$ (6). A solution of $\mathbf{1 b}$ ($250 \mathrm{mg}, 0.398 \mathrm{mmol}$) in THF (10 mL) at $-78^{\circ} \mathrm{C}$ was treated with n-BuLi $(0.249 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 0.398 mmol$)$. The resulting orange solution was stirred for 30 min at reduced temperature then treated with $\mathrm{PCl}_{3}(17 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$. The solution was warmed to RT and the resulting red solution was stirred for 30 min, after which time the volatiles were removed in vacuo. The residue was dissolved in THF (5 mL) and a separately prepared solution of LiC $\equiv \mathrm{CPh}$ (prepared by treating $\mathrm{HC} \equiv \mathrm{CPh}(100 \mu \mathrm{~L}, 0.91 \mathrm{mmol})$ in THF (5 mL) with n-BuLi (0.50 $\mathrm{mL}, 1.6 \mathrm{M}$ in hexanes,
0.80 mmol) at $-78^{\circ} \mathrm{C}$) was added via cannula, causing the mixture to turn dark orange. Stirring was continued for 1 h , the volatiles were removed in vacuo and the residue was subjected to column chromatography ($30 \times 1 \mathrm{~cm}$ silica gel column), eluting with petroleum ether ($40-60^{\circ} \mathrm{C}$) with gradually increasing amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. An orange band was collected with $30 \% \mathrm{v} / \mathrm{vCH}_{2} \mathrm{Cl}_{2} /$ petrol and was dried under reduced pressure to give an orange solid of pure $6(198 \mathrm{mg}$, $0.161 \mathrm{mmol}, 81 \%)$. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$,
cm^{-1}): 1990s, 1981s, 1898s (CO). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$ $\left.{ }^{\circ} \mathrm{C}, \delta\right): 2.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.37\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.39(\mathrm{~s}, 6 \mathrm{H}$, pzCH 3), 2.45(s, 12H, pzCH $), 5.74(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzH}), 5.78(\mathrm{~s}, 4 \mathrm{H}, \mathrm{pzH})$, 7.29-7.34(m,3H,Ph),7.47-7.53(m,2H,Ph). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 12.7,12.8,15.3,16.8\left(\mathrm{pzCH}_{3}\right), 79.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}\right.$ $=9.6 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{C}), 106.4,106.8(\mathrm{pzCH}), 107.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right.$, PC $\equiv C$), 123.7 (i-Ph), 128.3 (o-Ph), 128.4 (p-Ph), 131.8 (m-Ph), 144.1, 145.3, 152.4, $152.6\left(\mathrm{pzCCH}_{3}\right), 224.7\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{cw}}=168 \mathrm{~Hz}\right)$, 274.6 (d, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}}=76.5, \mathrm{~W} \equiv \mathrm{CP}\right) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$ $\left.{ }^{\circ} \mathrm{C}, \delta\right): 34.5\left({ }^{2} \mathrm{~J}_{\mathrm{PW}}=82 \mathrm{~Hz}\right)$. MS (ESI, m/z): Found: 1230.3019. Calcd for $\mathrm{C}_{44} \mathrm{H}_{50}{ }^{11} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{P}^{184} \mathrm{~W}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 1231.3049$. Anal. Found: C , $43.10 ; \mathrm{H}, 4.10 ; \mathrm{N}, 13.55$. Calcd for $\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PW}_{2}$:
C, 42.96; H, 4.01; N, 13.66\%. A crystal suitable for X-ray structure determination was grown by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}$ solution. Crystal data for $\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PW}_{2}\left(M=1230.24 \mathrm{gmol}^{-1}\right)$: monoclinic, space group $\mathrm{C} 2 / \mathrm{c}$ (no. 15), $a=22.4317$ (10), $b=10.8744(3), c=23.8394(10) \AA$ A , $B=117.336(5)^{\circ}, V=5165.8(4) \AA^{3}, Z=4, T=$ 150.0(1) K, $\mu($ CuK $\alpha)=8.815 \mathrm{~mm}^{-1}$, Dcalc $=1.582 \mathrm{Mgm}^{-3}, 36085$
reflections measured $\left(8.876^{\circ} \leq 2 \Theta \leq 144.506^{\circ}\right)$, 5069 unique ($R_{\text {int }}=$ $0.0666, \mathrm{R}_{\text {sigma }}=0.0342$) which were used in all calculations. The final R_{1} was 0.0516 ($1>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1409 (all data) for324 refined parameters with 36 restraints.
Synthesis of $\left[\left\{\left(T p^{*}\right)(C O)_{2} W \equiv C\right\}_{2} P C \equiv C(p-t o l y l)\right]$ (7). A solution of $1 \mathrm{~b}(250 \mathrm{mg}, 0.398 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was treated with $n-$ BuLi ($0.249 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 0.398 mmol). The resulting orange solution was stirred for 30 min at reduced temperature then treated with $\mathrm{PCl}_{3}(17 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$. The solution was warmed to RT and the resulting red solution was stirred for 30 min , after which time the volatiles were removed in vacuo. The residue was dissolved in THF (5 mL) and a separately prepared solution of LiC $\equiv \mathrm{C}(p$-tolyl) (prepared by treating $\mathrm{HC} \equiv \mathrm{C}(p$-tolyl) ($110 \mathrm{mg}, 0.95$ mmol) in THF (5 mL) with n-BuLi ($0.50 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 0.80 mmol) at $-78^{\circ} \mathrm{C}$) was added via cannula, causing the mixture to turn dark orange-red. Stirring was continued for 1 h , the volatiles were removedin
vacuo and the residue was subjected to column chromatography（ $30 \times 1 \mathrm{~cm}$ silica gel column），eluting with petroleum ether（ $40-60^{\circ} \mathrm{C}$ ）with gradually increasing amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ．An orange band was collected with $50 \% \mathrm{v} / \mathrm{v}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petrol and the solvents were removed under reduced pressure to give a bright red solid of pure 7 （ $132 \mathrm{mg}, 0.106 \mathrm{mmol}$ ， 53% ）．IR（ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$ ）：1990s，1980s，1897s v（CO）．${ }^{1 \mathrm{H}} \mathrm{NMR}$（400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 2.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.36(\mathrm{~s}, 3$
$\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ ）， 2.37 （ $\mathrm{s}, 12 \mathrm{H}, \mathrm{pzCH}$ ）， $2.39(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}$ ）， 2.46 （s， 6 $\left.\mathrm{H}, \mathrm{pzCH}_{3}\right), 5.75(\mathrm{~s}, 2 \mathrm{HpzH}), 5.77(\mathrm{~s}, 4 \mathrm{H}, \mathrm{pzH}), 7.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}^{2,6}\left\{p\right.$－tolyl\}), 7.40 （d，${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3,5}\{p$－tolyl\}).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 12.7,12.8,15.3,16.8$ $(\mathrm{pzCH} 3), 21.7\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 79.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=7.4 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{C}\right), 106.4$ $106.6(\mathrm{pzCH}), 107.9$（d，$\left.{ }^{2} \mathrm{~J}_{\mathrm{CP}}=3.6 \mathrm{~Hz}, \mathrm{PC} \equiv C\right), 120.7$（C4\｛p－tolyl\}), 129.1 （ $\mathrm{C}^{2,6}\left\{p\right.$－toly｜\}), 131.7 （ $\mathrm{C}^{3,5}\left\{p\right.$－tolyl\}), 138.5 （ $\mathrm{C}^{1}\{p$－toly｜\}),
$144.1,145.3,152.4,152.6\left(\mathrm{pzCCH}_{3}\right), 224.7\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{Cw}}=168 \mathrm{~Hz}\right)$ ， 275.1 （d，$\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}}=75.3, \mathrm{~W} \equiv \mathrm{CP}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$
$\left.{ }^{\circ} \mathrm{C}, \delta\right): 34.8\left({ }^{2} \mathrm{~J}_{\mathrm{Pw}}=83 \mathrm{~Hz}\right)$ ．MS（ESI，m／z）：Found：1245．3196．Calcd for $\mathrm{C}_{45} \mathrm{H}_{52}{ }^{11} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{P}^{184} \mathrm{~W}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 1245.3182$ ．Anal．Found：C， $43.38 ; \mathrm{H}, 4.19 ; \mathrm{N}, 13.48$ ．Calcd for $\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PW}_{2}$ ：
C，43．44；H，4．13；N，13．51\％．The crystal used for X－ray structure determination was grown by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethanol mixture．Crystal data for $\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PW}_{2}\left(M=1244.26 \mathrm{gmol}^{-1}\right)$ ：triclinic，space group $\mathrm{P}-1$ （no．2），$a=10.7103(8), b=12.8936(5), c=19.5744(8) \AA$ ，,$a=$ $77.598(4)^{\circ}, B=78.252(5)^{\circ}, \gamma=70.388(5)^{\circ}, V=2461.3(2) \AA^{3}, Z=$ $2, T=150.0(1) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=4.757 \mathrm{~mm}^{-1}$, Dcalc $=1.679 \mathrm{gcm}^{-3}$ ，
35346 reflections measured $\left(6.776^{\circ} \leq 2 \Theta \leq 52.744^{\circ}\right)$ ， 10039 unique $\left(R_{\text {int }}=0.0470, R_{\text {sigma }}=0.0489\right)$ which were used in all calculations． The final R_{1} was 0.0367 （ $1>2 \sigma(\mathrm{I})$ ）and $w R_{2}$ was 0.0865 （all data）for 569 refined parameters with 0 restraints．

Synthesis of $\left[\left\{\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{C}\right\}_{2} \mathrm{PC} \equiv \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}\right]$（8）．A solution of $1 \mathrm{~b}(250 \mathrm{mg}, 0.398 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was treated with $n-$ BuLi（ $0.249 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes， 0.398 mmol$)$ ．The resulting light brown solution was stirred for 1 h at reduced temperature then treated with $\mathrm{PCl}_{3}(17 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$ ．The resulting red solution was stirred for 30 min at reduced temperature then treated with a separately prepared solution of $\mathrm{LiC} \equiv \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}$（prepared by treating $\mathrm{HC} \equiv \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}(100 \mu \mathrm{~L}, 0.81 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ with $n-\mathrm{BuLi}(0.50 \mathrm{~mL}$ ， 1．6 M in hexanes，
0.80 mmol ）at $-78^{\circ} \mathrm{C}$ ）was added via cannula，causing the mixture to turn dark orange．Stirring was continued for 1 h ，the volatiles were removed in vacuo and the residue was subjected to column chromatography（ 30×1 cm silica gel column），eluting with n－pentane with a gradually increasing proportion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ．An orange band was collected with $50 \% \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane and was dried under reduced pressure to give a red solid of pure $8(48.0 \mathrm{mg}, 0.0397 \mathrm{mmol}, 20 \%)$ ．IR （ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$ ）：1989s，1979s，
1896s （CO）．${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 1.28(\mathrm{~s}, 9 \mathrm{H}$ ， $\left.{ }^{t} \mathrm{Bu}\right), 2.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.36\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.37(\mathrm{~s}, 6 \mathrm{H}$ ， pzCH_{3} ）， $2.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{pzCH}_{3}\right), 5.73(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzCH}), 5.75(\mathrm{~s}, 4 \mathrm{H}$ ， $\mathrm{pzCH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 12.7,12.8,15.2$ ，
 $\mathrm{PC} \equiv \mathrm{C}), 106.3,106.8(\mathrm{pzCH}), 117.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=2.4 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{C}\right), 144.0$ ， 145．2，152．4， $152.5(\mathrm{pzCCH} 3), 224.6(\mathrm{CO}), 277.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=74.2 \mathrm{~Hz}\right.$ ， $\mathrm{W} \equiv \mathrm{C}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 36.0\left({ }^{2} \mathrm{~J}_{\mathrm{PW}}=80\right.$ Hz ）．MS（ESI，m／z）：Found：1227．3284．Calcd for
$\mathrm{C}_{42} \mathrm{H}_{54}{ }^{11} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{5} \mathrm{P}^{184} \mathrm{~W}_{2}[\mathrm{M}+\mathrm{O}+\mathrm{H}]+:$ 1227．3288．Anal．Found： $\mathrm{C}, 38.83$ ； $\mathrm{H}, 4.22$ ； $\mathrm{N}, 12.69$ ．Calcd for $\mathrm{C}_{42} \mathrm{H}_{53} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PW}_{2} \cdot \mathrm{CHCl}_{3}: \mathrm{C}$ ，
38.84 ；H，4．09；N，12．64\％．The crystals used for elemental analysis and X －ray structure determination were grown by slow evaporation of a $\mathrm{CHCl}_{3} /$ ethanol mixture and proved to be a chloroform solvate．Crystal data for $\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{Cl}_{3} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PW}_{2}\left(M=1329.62\right.$ gmol $\left.^{-1}\right)$ ：monoclinic，space group $\mathrm{C} 2 / \mathrm{c}$（no．15），$a=21.4150(5), b=10.8991(2), c=24.0583(5) \AA, B=$ 115．668（3）${ }^{\circ}, V=5061.2(2) \AA^{3}, Z=4, T=$
$150.0(1) \mathrm{K}, \mu(\mathrm{MoKa})=4.785 \mathrm{~mm}^{-1}$, Dcalc $=1.745 \mathrm{gcm}^{-3}, 51216$
reflections measured $\left(6.76^{\circ} \leq 2 \Theta \leq 52.742^{\circ}\right), 5154$ unique（ $R_{\text {int }}=0.0238$ ， $R_{\text {sigma }}=0.0107$ ）which were used in all calculations．The final R_{1} was $0.0198(1>2 \sigma(1))$ and $w R_{2}$ was 0.0441 （all data）for 349 refined parameters with 30 restraints．

Synthesis of $\left[\left\{\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{C}\right\}_{2} \mathrm{PC} \equiv \mathrm{CSiMe}_{3}\right]$（9）．A solution of $1 \mathbf{b}(250 \mathrm{mg}, 0.398 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was treated with n－ BuLi（ $0.25 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes， 0.40 mmol ）．The resulting brown solution was stirred for 30 min at reduced temperature then treated with $\mathrm{PCl}_{3}(17 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$ ．The solution was warmed to RT and the resulting red solution stirred for 30 min ，after which time the volatiles were removed in vacuo．The residue was dissolved in THF（5 mL ）and a separately prepared solution of LiC三CTMS（prepared from HC三CTMS（290
$\mu \mathrm{L}, 2.0 \mathrm{mmol})$ and $n-\operatorname{BuLi}(1.00 \mathrm{~mL}, 1.6 \mathrm{Min}$ hexanes， 1.60 mmol$)$ in THF（ 5 mL ））was added via cannula，causing the mixture to turn dark orange．Stirring was continued for 1 h ，the volatiles were removed invacuo，and the residue was subjected to column chromatography（ 30 x 1 cm silica gel column），eluting with petroleum ether $\left(40-60^{\circ} \mathrm{C}\right)$ with gradually increasing amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ．At $40 \% \mathrm{v} / \mathrm{vCH}_{2} \mathrm{Cl}_{2} /$ petrol an orange band was collected，which was dried under reduced pressure and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethanol to give pure 9 （ 153 mg ， $0.125 \mathrm{mmol}, 63 \%$ ）as an orange－red solid．A small red band was also collected with $50 \% \mathrm{v} / \mathrm{vCH}_{2} \mathrm{Cl}_{2} /$ petrol as the eluent，which was dried in vacuo to give a red solid which proved to be the desilylated product $10(29.0 \mathrm{mg}, 0.0251 \mathrm{mmol}, 12 \%) . \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ ，
cm^{-1} ）：1991s，1982s， 1898 s v（CO）．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$
$\left.{ }^{\circ} \mathrm{C}, \delta\right): 0.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right) 3\right), 2.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.36(\mathrm{~s}, 12 \mathrm{H}$ ，
pzCH3），2．38（s， $\left.6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.41(\mathrm{~s}, 12 \mathrm{H}, \mathrm{pzCH} 3), 5.74(\mathrm{~s}, 2 \mathrm{H}$ ， $\mathrm{pzCH}), 5.77(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzCH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$ ， ठ）：$-0.1\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 12.7,12.8,15.2,17.0\left(\mathrm{pzCH}_{3}\right), 95.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=\right.$ $15.8 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{C}), 106.3,106.8$（pzCH）， 115.7 （PCミC），144．1，145．3， $152.4,152.6\left(\mathrm{pzCCH}_{3}\right), 224.5(\mathrm{CO}), 274.1$（d，$\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}}=75.7, \mathrm{~W} \equiv \mathrm{CP}\right)$ ． ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right):(\mathrm{s}) \cdot 36.1\left({ }^{2} \mathrm{~J}_{\mathrm{PW}}=83 \mathrm{~Hz}\right)$ ． MS（ESI，m／z）：Found：1227．3109．Calcd for $\mathrm{C}_{41} \mathrm{H}_{53}{ }^{11} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{P}^{184} \mathrm{~W}_{2}[\mathrm{M}+\mathrm{H}]+:$ 1227．3103．Anal．Found：C，39．98； $\mathrm{H}, 4.50 ; \mathrm{N}, 13.62$ ．Calcdfor $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PSiW} 2: \mathrm{C}, 40.16$ ；
H，4．36；N，13．71\％．A crystal suitable for structure determination was grown by slow evaporation of a $\mathrm{CHCl}_{3} /$ ethanol mixture and was found to contain ca． $2 / 3$ equivalents of chloroform of solvation．Crystal data for $\mathrm{C}_{41.67} \mathrm{H}_{53.67} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PSiW}_{2}\left(M=1305.92 \mathrm{gmol}^{-1}\right)$ ：monoclinic， space group $\mathrm{C} 2 / \mathrm{c}$（no．15），$a=21.7758$（4），$b=10.9760(2), c=$ 24.1570 （ 8 ）$\AA, B=115.485(2)^{\circ}, V=5212.0(2) \AA^{3}, Z=4, T=$ $150.0(1) \mathrm{K}, \mu(\mathrm{CuKa})=9.907 \mathrm{~mm}^{-1}$, Dcalc $=1.664 \mathrm{Mgm}^{-3}, 51072$ reflections measured $\left(8.11^{\circ} \leq 2 \Theta \leq 147.796^{\circ}\right), 5275$ unique（ $R_{\text {int }}$ $=0.0434, R_{\text {sigma }}=0.0209$ ）which were used in all calculations．

The final R_{1} was 0.0389 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1076 (all data) for 317 refined parameters with 6 restraints.

Synthesis of $\left[\left\{\left(T p^{*}\right)(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{C}\right\}_{2} \mathrm{PC} \equiv \mathrm{CH}\right]$ (10). A solution of 9 $(100 \mathrm{mg}, 0.0815 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was treated with TBAF $(85 \mu \mathrm{~L}$, 1.0 M solution in THF, 0.085 mmol) and the mixture was stirred at RT for 1 h without visible colour change. After this time, the solvent was removed under reduced pressure and the residue was subjected to column chromatography ($30 \times 1 \mathrm{~cm}$ silica gel column), eluting initially with petroleum ether (40-60
${ }^{\circ} \mathrm{C}$) and gradually increasing the proportion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. At $50 \% \mathrm{v} / \mathrm{v}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petrol a red band was collected, which was dried under reduced pressure and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethanol to give a red solid of pure 10 ($74.0 \mathrm{mg}, 0.0641 \mathrm{mmol}, 79 \%$). $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: 1992 s , 1982s, 1899s v(CO). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$
$\left.{ }^{\circ} \mathrm{C}, \delta\right): 2.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.37\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.38(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{pzCH} 3), 2.42(\mathrm{~s}, 12 \mathrm{H}, \mathrm{pzCH} 3), 3.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 5.74(\mathrm{~s}, 2 \mathrm{H}$, pzH), $5.78(\mathrm{~s}, 4 \mathrm{H}, \mathrm{pzH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right)$: $12.7,12.8,15.3,16.9\left(\mathrm{pzCH}_{3}\right), 75.1\left(\mathrm{~d},{ }_{\mathrm{J}} \mathrm{J}_{\mathrm{CP}}=14.8 \mathrm{~Hz}, \mathrm{PC}=\mathrm{C}\right), 95.9$ (PCㅡ), 106.4, $106.8(\mathrm{pzCH}), 144.2,145.4,152.4,152.6\left(\mathrm{pzCCH}_{3}\right)$, 224.6 (CO), 272.9 ($\left.\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=75.6, \mathrm{~W} \equiv C \mathrm{P}\right) .{ }^{31} \mathrm{P}\left\{{ }^{4} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}, \delta\right): 33.8\left({ }^{2} \mathrm{~J}_{\mathrm{PW}}=84 \mathrm{~Hz}\right) . \mathrm{MS}(E S I, \mathrm{~m} / \mathrm{z})$: Found: 1155.2710. Calcd for $\mathrm{C}_{40} \mathrm{H}_{47}{ }^{11} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{P}^{184} \mathrm{~W}_{2}[\mathrm{M}+\mathrm{H}]+$:
1155.2708. Anal. Found: C, 39.70; H, 3.99; N, 14.36. Calcd for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PW}_{2}: \mathrm{C}, 39.55 ; \mathrm{H}, 3.93 ; \mathrm{N}, 14.56 \%$. Crystal datafor $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PW}_{2}\left(M=1154.15 \mathrm{gmol}^{-1}\right)$: monoclinic, space group 12/a (no. 15), $a=15.2850(6), b=10.7644(5), c=$ $27.3927(10) \AA, B=93.766(4)^{\circ}, V=4497.3(3) \AA^{3}, Z=4, T=$ 150.01 (10) K, $\mu(\mathrm{MoKa})=5.199 \mathrm{~mm}^{-1}$, Dcalc $=1.705 \mathrm{Mgm}^{-3}$,

13126 reflections measured ($6.636^{\circ} \leq 2 \Theta \leq 50.052^{\circ}$), 3968 unique ($R_{\text {int }}$ $=0.0334$, Rsigma $=0.0362$) which were used in all calculations. The final
R_{1} was 0.0282 ($1>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0687 (all data) for 290 refined parameters with 13 restraints. Synthesis of
$\left[\left\{\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{C}\right\}_{2} \mathrm{P}(\mathrm{AuCl})(\mathrm{C} \equiv \mathrm{C}\{p-\right.$ tolyl $\left.\})\right]$ (11). A solution of $7(50.0 \mathrm{mg}, 0.0402 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with $\mathrm{AuCl}(\mathrm{THT})(13.0 \mathrm{mg}, 0.0406 \mathrm{mmol})$ and the mixture was stirred at RT for 15 min . After this time the mixture was filtered through diatomaceous earth, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the filtrate dried under reduced pressure to give a red-orange solid of pure $11(55.0 \mathrm{mg}$, $0.0372 \mathrm{mmol}, 93 \%)$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$:
2007s, 2001s, 1918s v (CO). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right)$: 2.31 (s, $6 \mathrm{H}, \mathrm{pzCH}_{3}$), 2.38 (overlapping s, $21 \mathrm{H}, \mathrm{pzCH}_{3} \& \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 2.50 (overlapping s, $12 \mathrm{H}, \mathrm{pzCH}$), 5.76 (s, $2 \mathrm{H}, \mathrm{pzCH}$), 5.83 (s, 2 H , $\mathrm{pzCH}), 5.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzCH}), 7.18$ (d, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{3,5}\{\mathrm{p}$ - tolyl\}), 7.46 (d, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{2,6}\left\{p\right.$-tolylf). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$ $\left.{ }^{\circ} \mathrm{C}, \delta\right): 12.8,12.8,15.3,17.4,17.6\left(\mathrm{pzCH}_{3}\right), 21.9\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 74.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}\right.$ $=118 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{C}), 106.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=20 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{C}\right), 106.7,106.8,107.2$ (pzCH), 118.3 (d, ${ }^{3} J_{\mathrm{CP}}=3.6 \mathrm{~Hz}, \mathrm{C}^{1}\left\{p\right.$ - tolyly), 129.4 ($\mathrm{C}^{3,5}\{\mathrm{p}$-tolyly), 132.4 ($C^{2,6}\{p$-tolyl $\}$), 140.6 ($C^{4}\{p$ - tolyl\}), 144.7, 144.8, 145.8, 152.4, 152.4, $152.9(\mathrm{pzCCH} 3)$, 222.8, $224.3(\mathrm{CO}), 255.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=20.2 \mathrm{~Hz}, \mathrm{~W} \equiv \mathrm{CP}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 9.7\left({ }^{2} \mathrm{~J}_{\mathrm{PW}}=159 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{ESI}$, m / z): Found: 1477.25681. Calcd for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{Au}^{11} \mathrm{~B}_{2} \mathrm{ClN}_{12} \mathrm{O}_{4} \mathrm{P}^{184} \mathrm{~W}_{2}[\mathrm{M}$ $+\mathrm{H}+$: 1477.25324. Anal. Found: $\mathrm{C}, 36.71 ; \mathrm{H}, 3.71 ; \mathrm{N}, 11.12 \%$. Calcd for $\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{AuB}_{2} \mathrm{CIN}_{12} \mathrm{O}_{4} \mathrm{PW}_{2}: \mathrm{C}, 36.60 ; \mathrm{H}, 3.48 ; \mathrm{N}, 11.38 \%$.

Synthesis of $\left[\left\{\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{C}\right\}_{2} \mathrm{P}(\mathrm{AuCl})(\mathrm{C} \equiv \mathrm{CSiMe} 3)\right]$ (12). A solution of $9(50.0 \mathrm{mg}, 0.0408 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with $\mathrm{AuCl}(\mathrm{THT})(13.1 \mathrm{mg}, 0.0409 \mathrm{mmol})$ and the mixture
was stirred at RT for 30 min . After this time, the solution was filtered through diatomaceous earth, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the filtrate dried under reduced pressure. The residue was then subjected to column chromatography ($10 \times 1 \mathrm{~cm}$ silica gel column), eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A red band was collected and dried under reduced pressure to give a red solid of pure $12(39.0 \mathrm{mg}, 0.0267 \mathrm{mmol}, 66 \%)$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: 2002s, 1919s v(CO). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$): $0.26(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.30(\mathrm{~s}, 6$
$\mathrm{H}, \mathrm{pzCH} 3), 2.37(\mathrm{~s}, 18 \mathrm{H}, \mathrm{pzCH} 3), 2.43\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.48(\mathrm{~s}, 6 \mathrm{H}$, pzCH3), 5.76 (s, $2 \mathrm{H}, \mathrm{pzCH}$), 5.83 (s, $2 \mathrm{H}, \mathrm{pzCH}$), 5.85 (s, 2 H , $\mathrm{pzCH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right):-0.6\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $12.8,12.8,15.3,17.5,17.6\left(\mathrm{pzCH}_{3}\right), 89.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=99 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{C}\right)$, $106.6,106.8,107.3$ (pzCH), 115.9 (d, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}}=9.5 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{C}\right), 144.7$, 144.8, 145.8, 152.3, 152.4, 152.9 (pzCCH3), 222.6, 224.0 (CO), $254.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=20 \mathrm{~Hz}, \mathrm{~W} \equiv \mathrm{CP}\right) \cdot{ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$ $\left.{ }^{\circ} \mathrm{C}, \delta\right): 9.7\left({ }^{2} \mathrm{~J}_{\mathrm{PW}}=158 \mathrm{~Hz}\right)$. MS (ESI, m/z): Found: 1459.24371. Calcd for $\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{Au}^{11} \mathrm{~B}_{2} \mathrm{ClN}_{12} \mathrm{O}_{4} \mathrm{PSi}^{184} \mathrm{~W}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 1459.24656$. Found: 1481.22891. Calcd for $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{Au}^{11} \mathrm{~B}_{2} \mathrm{ClN}_{12} \mathrm{NaO}_{4} \mathrm{PSi}^{184} \mathrm{~W}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+}$: 1481.22851. Anal. Found: C, 33.82; H, 3.57; N,
11.42\%. Calcdfor $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{AuBB}_{2} \mathrm{ClN}_{12} \mathrm{O}_{4} \mathrm{PSiW}_{2}: \mathrm{C}, 33.76 ; \mathrm{H}, 3.66 ; \mathrm{N}$,
11.52%. A crystal suitable for X -ray structure determination was grown by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethanol mixture. The data quality is unfortunately rather poor and this structure is included primarily as evidence of connectivity. Crystal data for $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{AuB}_{2} \mathrm{CIN}_{12} \mathrm{O}_{4} \mathrm{PSiW}_{2}$ (M $=1458.75 \mathrm{gmol}^{-1}$): monoclinic, space group $\mathrm{C} 2 / \mathrm{c}$ (no. 15), $a=$ 22.114(2), $b=11.0992(5), c=23.9715(16) \AA, B=114.633(9)^{\circ}, V=$ 5348.3(7) $\AA^{3}, Z=4, T=$
$150.0(1) \mathrm{K}, \mu(\mathrm{MoKa})=7.178 \mathrm{~mm}^{-1}$, Dcalc $=1.812 \mathrm{Mgm}^{-3}, 13179$ reflections measured $\left(6.744^{\circ} \leq 2 \Theta \leq 50.05^{\circ}\right), 4708$ unique ($R_{\text {int }}=0.0546$, $R_{\text {sigma }}=0.0771$) which were used in all calculations. The final R_{1} was $0.0838(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1791 (all data) for 319 refined parameters with 1 restraint.

Synthesis of $\left[\left\{\left(\mathrm{Tp}^{*}\right)(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{C}\right\}_{2} \mathrm{P}\left(\mathrm{C} \equiv \mathrm{CAsPh} \mathrm{C}_{2}\right)\right]$ (13). A solution of $10(50.0 \mathrm{mg}, 0.0433 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was treated with n-BuLi ($1.6 \mathrm{M}, 30 \mu \mathrm{~L}, 0.048 \mathrm{mmol}$) and the mixture was stirred at reduced temperature for 15 min , causing the initially bright red solution to turn yellow-brown. After this time, AsBrPh_{2} ($30.0 \mathrm{mg}, 0.0971$ mmol) was added as a solid and the mixture was stirred at RT for 30 min , during which time the solution turned orange-red. The solvents were removed under reduced pressure and the residue was subjected to column chromatography ($20 \times 1 \mathrm{~cm}$ silica gel column), eluting with $1: 1 n$-pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. An orange band was collected and the solvents were removed under reduced pressure to give a bright orange solid of pure $13(41.0 \mathrm{mg}, 0.0297 \mathrm{mmol}, 69 \%)$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cm^{-1}): 1991s, 1981s, 1899s (CO). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$ $\left.{ }^{\circ} \mathrm{C}, \delta\right): 2.30(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH} 3), 2.34(\mathrm{~s}, 12 \mathrm{H}, \mathrm{pzCH} 3), 2.36(\mathrm{~s}, 12 \mathrm{H}$, $\mathrm{pzCH} 3), 2.37(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH} 3), 5.73,5.74(2 \times s$ overlapping, 6 H , $\mathrm{pzCH}), 7.26-7.31$ (m, $6 \mathrm{H}, \mathrm{AsPh}_{2}$), 7.61-7.67 (m, 4 H, AsPh). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 12.7,12.8,15.3,16.8$ ($\mathrm{pzCH} \mathrm{H}_{3}$, $97.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=21.8 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{CAs}\right), 106.4,106.8(\mathrm{pzCH})$, $108.2\left(\mathrm{~d},{ }^{2}{ }_{\mathrm{CP}}=6.3 \mathrm{~Hz}, \mathrm{PC} \equiv \mathrm{CAs}\right), 128.6(p-\mathrm{Ph}), 128.8(o-\mathrm{Ph}), 133.0$ (m-Ph), $138.9(i-\mathrm{Ph}), 144.1,145.3,152.5,152.6\left(\mathrm{pzCCH}_{3}\right), 224.8$ (CO, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CW}}=167 \mathrm{~Hz}\right), 273.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=76.5,{ }^{1} \mathrm{~J}_{\mathrm{CW}}=197 \mathrm{~Hz}, \mathrm{~W} \equiv C \mathrm{P}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right): 37.0\left({ }^{2}{ }^{\mathrm{J}} \mathrm{Pw}=84 \mathrm{~Hz}\right) . \mathrm{MS}$
(ESI, m/z): Found: 1383.2631. Calcd for $\mathrm{C}_{50} \mathrm{H}_{55} \mathrm{As}^{11} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{P}^{184} \mathrm{~W}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 1383.2629$. Anal. Found: C ,
43.44; $\mathrm{H}, 3.87 ; \mathrm{N}, 11.99 \%$. Calcd for $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{AsB}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PW}_{2}$: C, $43.45 ; \mathrm{H}, 3.94 ; \mathrm{N}, 12.16 \%$. Crystal datafor $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{AsB}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PW}_{2}$ ($M=1382.26$ gmol $^{-1}$): triclinic, space group $\mathrm{P}-1$ (no. 2), $a=$ 11.2582(3), $b=11.6958(4), c=22.3488(6) \AA, a=83.656(3)^{\circ}, B=$ 81.841(2) $)^{\circ}, \gamma=71.230(3)^{\circ}, V=2751.44(15) \AA^{3}, Z=2, T=$ $150.0(1) \mathrm{K}, \mu($ CuK $\alpha)=8.990 \mathrm{~mm}^{-1}$, Dcalc $=1.668 \mathrm{gcm}^{-3}, 17344$ reflections measured $\left(8.004^{\circ} \leq 20 \leq 133.198^{\circ}\right), 9655$ unique ($R_{\text {int }}$ $\left.=0.0298, R_{\text {sigma }}=0.0446\right)$ which were used in all calculations. The final R_{1} was 0.0502 ($1>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1423 (all data) for 669 parameters with 36 restraints.

Single crystal X-ray structures

Figure S1. Molecular structure of 2a showing 50\% thermal probability ellipsoids. Pyrazolyl groups and phenyl rings are simplified and hydrogen atoms are not shown for clarity. Selected distances [\dot{A}] and angles [${ }^{\circ}$]: Mo1-C1 1.807(4), Mo1- N1 2.308(3), Mo1-N3 2.218(3), Mo1-N5 2.223(3), C1-P 1.803(4), P-C4 1.770(4), P-C9 1.828(4), C4-C5 1.198(6), C5-Si 1.855(4), Mo1-C1-P 157.2(2), C1-P-C4 101.37(18), C1-P-C9 103.13(18), C4-P-C9 103.04(18), P-C4-C5 172.1(4), C4-C5-Si $174.0(4) . T R=2(\mathrm{Mo}-\mathrm{N} 1) /(\mathrm{Mo}-\mathrm{N} 3+\mathrm{Mo}-\mathrm{N} 5)=1.039 .{ }^{9}$

Figure S2. Molecular structure of 2b showing 50% thermal probability ellipsoids. Pyrazolyl groups and phenyl rings are simplified and hydrogen atoms are not shown for clarity.

Selected distances [\dot{A}] and angles [${ }^{\circ}$]: W-C1 1.827(4), W-N1 2.287(4), W-N3 2.209(4), W-N5 2.204(4), C1-P 1.790(4), P-C9 1.831(5), P-C4 1.767(5), C4-C5 1.204(6), C5-Si 1.851(5), W-C1P 157.3(3), C1-P-C4 101.7(2), C1-P-C9 103.6(2), C4-P-C9 102.7(2), P-C4-C5 171.8(4), C4-C5-Si 174.1(4). $T R=2(W-$ $\mathrm{N} 1) /(\mathrm{W}-\mathrm{N} 3+\mathrm{W}-\mathrm{N} 5)=1.036$.

Figure S3. Molecular structure of 3a showing 50\% thermal probability ellipsoids. Pyrazolyl groups and phenyl rings are simplified, a minor disorder component and hydrogen atoms are not shown for clarity. Selected distances [\dot{A}] and angles [${ }^{\circ}$]: Mo-C1 1.812(3), Mo-N1 2.311 (3), Mo-N3 2.225(3), Mo-N5 $2.228(3)$, C1-P 1.795(3), P-C4 1.768(4), P-C7 1.865(4), C4-C5 1.203(5), C5-Si 1.847(4), Mo-C1-P 159.0(2), C1-P-C4 101.77(16), C1-P-C7 101.14(16), C4-P-C7 104.57(16), P-C4-C5 172.9(3), C4-C5-Si 176.2(3). TR=2(Mo-N1)/(Mo-N3+Mo-N5) $=1.038$.

Figure S4. Molecular structure of 5b showing 50\% thermal probability ellipsoids. Pyrazolyl groups are simplified and hydrogen atoms are not shown for clarity. Selected distances $[\dot{A}]$ and angles[${ }^{\circ}$: W-C11.850(8),C1-P1.764(8),P-C41.769(9), P-C6 1.854(8), C4-C5 1.182(14), W-N1 2.295(5), W-N3 2.194(8), W-N5 2.220(5), W-C1-P 163.4(5), C1-P-C4 101.4(4), C1-P-C6 102.7(4), C4-P-C6 101.3(4), P-C4-C5 174.2(10). TR = $2(\mathrm{~W}-\mathrm{N} 1) /(\mathrm{W}-\mathrm{N} 3+\mathrm{W}-\mathrm{N} 5)=1.040$.

Figure S5. Molecular structure of 6 showing 50\% thermal probability ellipsoids. Pyrazolyl groups are simplified and hydrogen atoms and a disorder component are not shown for clarity. Selected distances [$\dot{\mathrm{A}}$] and angles [${ }^{\circ}$]: W1-C1 1.831(7), W1-N1 2.280(6), W1-N3 2.226(6), W1-N5 2.201(6), C1-P 1.771(7), P-C71.608(14), C7-C81.24(2), C8-C91.382(18),W1-C1-P 170.8(5), C1-P-C1 102.0(5), C1-P-C7 107.2(5), P-C7-C8 $171.6(13) \cdot T R=2(\mathrm{~W}-\mathrm{N} 1) /(\mathrm{W}-\mathrm{N} 3+\mathrm{W}-\mathrm{N} 5)=1.030$. Inset:space-
filling diagram indicating steric bulk around the tungsten and phosphorus centers.

Figure S6. Molecular structure of 7 showing 50% thermal probability ellipsoids. Pyrazolyl groups are simplified and hydrogen atoms and a disorder component are not shown for clarity. Selected distances [\dot{A}] and angles [${ }^{\circ}$: W1-C1 1.813(5), C1-P 1.793(5), C2-W2 1.836(5), P-C2 1.781(5), P-C7 1.762(6), C7-C8 1.198(8), W1-N1 2.286(4), W1-N3 2.206(5), W1-N5 2.221(4), W2-N72.302(4), W2-N92.201(4), W2-N112.202(4), W1-C1-P 168.9(3), W2-C2-P 163.6(3), C1-P-C2 107.3(2), C1-P-C7 103.8(3), C2-P-C7 103.7(3), P-C7-C8 168.8(6). TR = $2(\mathrm{~W} 1-\mathrm{N} 1) /(\mathrm{W} 1-\mathrm{N} 3+\mathrm{W} 1-\mathrm{N} 5)=1.033 . \mathrm{TR}=2(\mathrm{~W} 2-\mathrm{N} 7) /(\mathrm{W} 2-\mathrm{N} 9$ + W2-N11) $=1.046$. Inset: space-filling representation and view along the W2 \cdots C2 vector.

Figure S7. Molecular structure of 8 showing 50\% thermal probability ellipsoids. Pyrazolyl groups are simplified and hydrogen atoms, solvent molecules and disorder components are not shown for clarity. Selected distances [A่] and angles [${ }^{\circ}$]: W-C1 1.823(3), C1-P 1.788(3), P-C41.783(8), C4-C51.149(10),

C5-C6 1.486(15), W-N1 2.279(2), W-N3 2.211(3), W-N5 2.219(2), W-C1-P 170.88(19), C1-P-C1 102.0(2), C1-P-C4 100.7(3), P-C4-C5 175.0(7). TR = $2(\mathrm{~W}-\mathrm{N} 1) /(\mathrm{W}-\mathrm{N} 3+\mathrm{W}-\mathrm{N} 5)=$ 1.029.

Figure S8. Molecular structure of 9 showing 50\% thermal probability ellipsoids. Pyrazolyl groups are simplified and hydrogen atoms, solvent molecules and disorder components are not shown for clarity. Selected distances [Ȧ] and angles [${ }^{\circ}$]: W1-C1 1.827(5), W1N1 2.274(4), W1-N32.204(4), W1-N5
$2.219(4), \mathrm{C} 1-\mathrm{P} 1.769(6), \mathrm{P}-\mathrm{C} 71.590(9), \mathrm{C} 7-\mathrm{C} 81.232(13), \mathrm{C} 8-\mathrm{Si}$ 1.826(13), W1-C1-P 171.3(4), C1-P-C1 103.8(4), C1-P-C7 109.2(4), P-C7-C8 165.2(9). TR = $2(\mathrm{~W}-\mathrm{N} 1) /(\mathrm{W}-\mathrm{N} 3+\mathrm{W}-\mathrm{N} 5)=$ 1.028. Inset: space-filling representation.

Figure S9. Molecular structure of 10 showing 50\% thermal probability ellipsoids. Pyrazolyl groups are simplified and hydrogen atoms and disorder components are not shown for clarity. Selecteddistances[Ȧ]andangles[${ }^{\circ}$]:W-C11.827(5), C1-P 1.788(5), PC4 1.660(10), C4-C5 1.221(17), W-N1 2.212(3),
W-N32.291(3), W-N5 2.221(4), W-C1-P 168.8(3), C1-P-C1 101.1(3), C1-P-C4 106.7(4), P-C4-C5 173.0(16). TR = 2(W$\mathrm{N} 3) /(\mathrm{W}-\mathrm{N} 1+\mathrm{W}-\mathrm{N} 5)=1.034$.

Figure S10. Molecular structure of 12 showing 50\% thermal probability ellipsoids. Pyrazolyl groups are simplified and hydrogen atoms, solvent molecules and disorder components are not shown for clarity. Selected distances [Aं] and angles [${ }^{\circ}$: W-C1 1.819(17), W-N1 2.282(14), W-N3 2.183(13), W-N5
2.231(13), C1-P 1.772(17), P-C4 1.726(19), P-Au2.297(4), AuCl 2.285(18), C4-C5 1.10(5), W-C1-P 170.0(11), C1-P-C4 99.6(15), C1-P-Au 119.3(6), $\mathrm{P}-\mathrm{Au}-\mathrm{Cl}$ 167.3(7). $T \mathrm{R}=2(\mathrm{~W} 1-$ $\mathrm{N} 1) /(\mathrm{W} 1-\mathrm{N} 3+\mathrm{W} 1-\mathrm{N} 5)=1.034$.

Figure S11. Molecular structure of 13 showing 50% thermal probability ellipsoids. Pyrazolyl and phenyl groups are simplified and hydrogen atoms are not shown for clarity. Selected distances [\dot{A}] and angles []: W1-C1 1.831(6), C1-P 1.783(6), P- C2 1.779(7), C2W2 1.830(7), W1-N1 2.295(5), W1-N3 2.206(5), W1-N5 2.208(5), W2-N7 2.294(5), W2-N9 2.205(5), W2-N11 2.209(6), P-C7 1.770(7), C7-C8 1.188(10), C8-As 1.919(7), As-C91.972(7), As-C151.969(9), W1-C1-P 167.2(4), W2-C2-P 170.8(4), C1-P-C2101.7(3),C1-P-C7104.8(3),C2-PC7 98.6(3), P-C7-C8 170.0(6), C7-C8-As 174.6(6), C8-As-C9 96.7(3), C8-As-C15 99.3(4), C9-As-C15 102.8(3). TR = 2(W1$\mathrm{N} 1) /(\mathrm{W} 1-\mathrm{N} 3+\mathrm{W} 1-\mathrm{N} 5)=1.040$. TR $=2(\mathrm{~W} 2-\mathrm{N} 7) /(\mathrm{W} 2-\mathrm{N} 9+\mathrm{W} 2-$ $\mathrm{N} 11)=1.039$. Inset:space-filling representation and view along the W1..C1 vector.

Notes and references

1. CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
2. G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, 71,3-8.
3. L. Farrugia, J. Appl. Crystallogr., 2012, 45, 849-854.
4. O.V.Dolomanov, L.J.Bourhis, R.J.Gildea, J.A.K. Howardand H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
5. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Crystallogr., 2008, 41, 466-470.
6. F. J. Lalor, T. J. Desmond, G. M. Cotter, C. A. Shanahan, G. Ferguson, M. Parvez and B. Ruhl, J. Chem. Soc., Dalton Trans., 1995, 1709-1726.
7. R.Uson,A.Laguna,M.Laguna,D.A.Briggs,H.H.MurrayandJ. P. F. J., in Inorg. Synth., ed. H. D. Kaesz, 2007, ch. 17.
8. W.R.CullenandJ.Trotter, Can. J.Chem., 1961,39,2602-2603.
9. For the numerous complexes of the form $\left[\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})\left(\mathrm{Tp}^{*}\right)\right]$, including carbyne complexes, the singular parameter $\boldsymbol{T R}$ is the ratio of the $\mathrm{M}-\mathrm{N}$ bond length trans to L , to the average of the remaining two $\mathrm{M}-\mathrm{N}$ bond lengths trans to CO ligands. R. L. Cordiner, A. F. Hill, R. Shang and A. C. Willis, Organometalics, 2010, 30, 139-144.

Chemical Communications

ELECTRONIC SUPPORTINGINFORMATION

FTIR spectrum of $\mathbf{2 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 a}$.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 a}$.

FTIR spectrum of $\mathbf{2 b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}$.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 b}$.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 b}$.

FTIR spectrum of $\mathbf{3 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$.

(

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3a.

(

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 a}$.

FTIR spectrum of $\mathbf{3 b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{b}$.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 b}$.

(
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 b}$.

FTIR spectrum of $\mathbf{4 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 a}$.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 a}$.

FTIR spectrum of $\mathbf{4 b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}$.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4} \mathbf{b}$.
(

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 b}$.

FTIR spectrum of $\mathbf{5 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a}$.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5 a}$.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5 a}$.

FTIR spectrum of $\mathbf{5 b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5 b}$.

(
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5 b}$.

FTIR spectrum of 6.

${ }^{1} \mathrm{H}$ NMR spectrum of 6 .

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 6 .

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 6.

FTIR spectrum of 7.

${ }^{1} \mathrm{H}$ NMR spectrum of 7 .

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7 .

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7 .

FTIR spectrum of 8 .

${ }^{1} \mathrm{H}$ NMR spectrum of 8 .

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 8.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 8 .

FTIR spectrum of 9 .

${ }^{1} \mathrm{H}$ NMR spectrum of 9 .

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 9.

(

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 9.

FTIR spectrum of 10.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 10.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 10.

FTIR spectrum of 11 .

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 11 .

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 11.

[^1]
FTIR spectrum of 12.

${ }^{1} \mathrm{H}$ NMR spectrum of 12.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 12.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 12.

FTIR spectrum of 13.

${ }^{1} \mathrm{H}$ NMR spectrum of 13

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 13.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 13.

[^2]
[^0]: a. Research School of Chemistry, Australian National University, Canberra,

 Australian Capital Territory, Australia ACT 2601. Email. a.hill@anu.edu.au

[^1]: Pleasedonotadjustmargins

[^2]: Please donotadjustmargins

