Regiocontrol in the Cobalt-Catalyzed Hydrosilylation of Alkynes

Guojiao Wu, Uttam Chakraborty and Axel Jacobi von Wangelin*

Table of contents

1. General experimental methods	
2. Method optimization	
3. General procedure and characterization data	
Hydrosilylation of alkynes with Co-Phosphine ligands system	
Hydrosilylation of alkynes with Co-4-Mebipy system	S14
Transformations of the vinylsilanes	
4. NMR and kinetic studies	
5. References	
6. ¹ H, ¹³ C spectra	S27

1. General experimental methods.

Reagents were purchased from commercial suppliers and used without further purification. THF, toluene, and hexane, ethyl ether were used after distillation with the sodium. Dry acetonitrile and dichloromethane were purchased from Acros Organics. Column chromatograph was performed on 35-70 mesh silica gel (Acros Organics). ¹H, ¹³C, spectra were recorded on a Bruker Avance 300 Kryo spectrometer using CDCl₃ as solvent. Chemical shifts are reported in ppm and referenced to residual solvent signal (CDCl3: ¹H NMR: δ 7.26 ppm, ¹³C NMR: δ 77.0 ppm). High Resolution Mass Spectrometry (HRMS) were recorded on Finnigan MAT 900s. GC-yields was obtained using dodecane as internal standard with Gas chromatography with FID (GC-FID, HP6890 GC-System with injector 7683B and Agilent 7820A System, carried gas: H₂).

2. Method optimizations^[a]

Ligand Effect

			[Co] (x mol%)	Dh /		Ш
Ph-===	+	PhSiH ₃ -		SiH ₂ Ph	+ Ph SiH ₂ Ph	+ Ph SiH₂Ph
1a		2a	0.5 ML THF, R. T N	E	Z	α

entry	Cat. (x mol%)	Ligand	3a (%) ^[b]	E/Z/a
1	Co(OAc) ₂ •4H ₂ O (0.5)	dppe	72	87/0/13
2	Co(OAc) ₂ •4H ₂ O (0.5)	dppp	81	97/0/3
3	$Co(OAc)_2 \cdot 4H_2O(0.5)$	dppb	95	98/0/2
4	$Co(OAc)_2 (0.5)$	dppb	89	98/0/2
5	$Co(acac)_2(0.5)$	dppb	78	98/0/2
6	CoBr ₂ (0.5)	dppb	ND	
7	Co(OAc) ₂ •4H ₂ O (0.5)	dppf	92	97/0/3
8	Co(OAc) ₂ •4H ₂ O (0.5)	DPEphos	90	98/0/3
9	Co(OAc) ₂ •4H ₂ O (0.5)	Xantphos	81	87/2/11
10	Co(OAc) ₂ •4H ₂ O (0.5)	BINAP	<10	
11	Co(OAc) ₂ •4H ₂ O (0.5)	TMEDA	ND	
12	Co(OAc) ₂ •4H ₂ O (0.5)	bipy	75	10/0/90
13	Co(OAc) ₂ •4H ₂ O (0.5)	^{4-OMe} bipy	66	4/0/96
14	Co(OAc) ₂ •4H ₂ O (0.5)	^{4-Me} bipy	70	5/0/95
15	Co(OAc) ₂ •4H ₂ O (0.5)	^{4-tBu} bipy	64	5/0/95
16	Co(OAc) ₂ •4H ₂ O (0.5)	^{2-Me} bipy	50	20/0/80
17	$Co(OAc)_2 \cdot 4H_2O(0.5)$	^{3-Me} bipy	68	7/0/93
18	Co(OAc) ₂ •4H ₂ O (0.5)	phen	61	10/0/90
19	$Co(OAc)_2 \cdot 4H_2O(0.5)$	tripy	ND	
20	Co(OAc) ₂ •4H ₂ O (0.5)	L1	ND	
21	$Co(OAc)_2 \cdot 4H_2O(0.5)$	L2	ND	
22	$Co(OAc)_2 \cdot 4H_2O(0.5)$	L3	ND	

[a] Reaction conditions: 1a (0.4 mmol), 2a (0.48 mmol), catalyst (x mol%), ligand (x mol%) in 0.5 mL THF for 1 hours. [b] GC yield using dodecane as internal standard.

Solvent Effect

DL			Co(OAc) ₂ •4H ₂ O (0.1 mol%) dppb (0.1 mol%)	I%) PhSiH_Ph_+PhSiH_Ph_		$\downarrow \downarrow$
1a	Ŧ 1	2a	0.5 mL sol, rt. 1 h	E	Z	α SiH ₂ P
	entry	r	Sol.	3a (%) ^[b]	E/Z/a	-
	1		PhMe	77	98/0/2	-
	2		Et ₂ O	94	98/0/2	
	3		MeCN	73	98/0/2	
	4		DCM	64	98/0/2	
	[a] Reaction conditions: 3b (0.4 mmol), 2a (0.48 mmol), Co(OAc) ₂ •4H ₂ O (0.1 mol% in					
	10 µ	10 µL MeOH), ligand (1 mol%) in 0.5 mL THF/MeCN = 4: 1. [b] GC yield using				
	dode	cane as inte	ernal standard.			

Evaluation of Conditions for Hydrosilylation of alkyl alkynes

entry	Cat. (x mol%)	Ligand	5b (%) ^[b]	E/Z/a
1	Co(OAc) ₂ •4H ₂ O (0.5)	dppb	78	90/0/10
2	Co(OAc) ₂ •4H ₂ O (0.5)	DPEphos	85	97/0/3
3	Co(OAc) ₂ •4H ₂ O (0.5)	dppf	86	93/0/7
4	$Co(OAc)_2 (0.5)$	Xantphos	45 ^[c]	97/0/3

[a] Reaction conditions: **3b** (0.4 mmol), **2a** (0.48 mmol), $Co(OAc)_2 \cdot 4H_2O$ (1 mol%, 10 µL MeOH), ligand (1 mol%) in 0.5 mL THF/MeCN = 4: 1. [b] GC yield using dodecane as internal standard.

3. General Procedure and characterization data

Hydrosilylation of alkynes with Co-Phosphine ligands system.

Co(OAc)₂•4H₂O (0.1 mg, 0.0004 mmol, 0.001 equiv, in 10 μ L MeOH), was added into 0.5 mL THF containing dppb (0.17 mg, 0.0004 mmol, 0.001 equiv). Alkyne (0.4 mmol, 1.0 equiv) was added into the system (Note: if it is solid, weigh it firstly), followed with PhSiH₃ (0.48 mmol, 1.2 equiv). The mixture was stirred at room temperature for 1 hours. The solvent was removed to leave a crude product, which was purified by column chromatography on silica gel to afford the product **3**. The similar procedure to afford the product **5** with 1mol% Co(OAc)₂•4H₂O with DPEphos or 0.1 mol% Co(OAc)₂•4H₂O with Xantphos and product **6** was obtained with 1mol% Co(OAc)₂•4H₂O with $^{4-Me}$ bipy ligand.

The product $3a^{[1]}$ was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.63 (m, 2H), 7.49-7.46 (m, 2H), 7.43-7.32 (m, 6H), 7.18 (d, *J* = 19.0 Hz, 1H), 6.53 (dt, *J* = 19.0, 3.3 Hz, 2H), 4.71 (d, *J* = 2.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ

149.4, 137.8, 135.5, 131.7, 129.9, 128.70, 128.66, 128.2, 126.7, 119.4.

The product **3b** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.63 (m, 2H), 7.44-7.37 (m, 5H), 7.18-7.12 (m, 3H), 7.18 (d, *J* = 19.0 Hz, 1H), 6.46 (dt, *J* = 19.0, 3.3 Hz, 2H), 4.71 (d, *J* = 3.2 Hz, 2H), 2.37 (s, 3H); ¹³C NMR

(75 MHz, CDCl₃) δ 149.3, 138.7, 135.5, 135.1, 131.9, 129.8, 129.4, 128.1, 126.7, 117.8, 21.3; HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₅H₁₆Si: 224.1016, found: 224.1016.

The product **3c** was purified with silica gel chromatography (Pe/EA = 50 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.61 (m, 2H), 7.42-7.38 (m, 5H), 7.11 (d, *J* = 19.0 Hz, 1H), 6.88 (d, *J* = 8.8, 2H), 6.33 (dt, *J* = 18.9, 3.3 Hz, 2H), 4.69 (d, *J* =

3.2 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.1, 148.8, 135.5, 132.0, 130.9, 129.8, 128.10, 128.06, 116.3, 113.4, 55.4; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₅H₁₆OSi: 240.0965, found: 240.0962.

The product **3d** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.61 (m, 2H), 7.46-7.36 (m, 5H), 7.11 (d, *J* = 19.0 Hz, 1H), 7.04 (t, *J* = 8.1 Hz, 2H), 6.88 (d, *J* = 8.8, 2H), 6.42 (dt, *J* = 18.9, 3.3 Hz, 2H), 4.69 (d, *J* = 3.2

Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 163.0 (d, J = 248.3 Hz), 148.0, 135.5, 134.0 (d, J = 3.3 Hz), 131.6, 129.9, 128.4 (d, J = 8.2 Hz), 128.2, 119.2 (d, J = 2.2 Hz), 115.6 (d, J = 21.7 Hz); HRMS (EI) (m/z): [M]⁺ calcd for C₁₄H₁₃FSi: 228.0765, found: 228.0767.

The product **3e** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.61 (m, 2H), 7.49-7.39 (m, 5H), 7.34-7.30 (m, 2H), 7.10 (d, *J* = 19.0 Hz, 1H), 6.49 (dt, *J* = 19.0, 3.2 Hz, 1H), 4.70 (d, *J* = 3.2 Hz, 2H); ¹³C NMR

(75 MHz, CDCl₃) δ 147.8, 136.2, 135.5, 134.4, 131.4, 130.0, 128.8, 128.2, 127.9, 120.4; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₄H₁₃ClSi: 244.0470, found: 244.0474.

The product **3f** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.61 (m, 2H), 7.44-7.37 (m, 5H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.09 (d, *J* = 19.0 Hz, 1H), 6.51 (dt, *J* = 19.0, 3.2 Hz, 1H), 4.69 (d, *J* = 3.2 Hz, 2H); ¹³C

NMR (75 MHz, CDCl₃) δ 147.8, 136.6, 135.5, 131.8, 131.3, 130.0, 128.2, 122.6, 120.6; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₄H₁₃BrSi: 287.9964, found: 287.9957.

The product **3g** was purified with silica gel chromatography (Pe) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.52 (m, 8H), 7.47-7.35 (m, 6H), 7.20 (d, *J* = 19.0 Hz, 1H), 6.56 (dt, *J* = 19.0, 3.3 Hz, 1H), 4.72 (d, *J* = 3.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ

148.8, 141.4, 140.6, 136.8, 135.5, 131.7, 129.9, 128.8, 128.2, 127.5, 127.3, 127.2, 127.0, 119.5; HRMS (EI) (*m/z*): [M]⁺ calcd for C₂₀H₁₈Si: 286.1172, found: 286.1170.

The product **3h** was purified with silica gel chromatography (Pe/EA = 5 : 1) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.61 (m, 2H), 7.41-7.38 (m, 3H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 18.9 Hz, 1H), 6.65 (d, *J* = 8.5 Hz, 2H), 6.24 (dt, *J* =

18.9, 3.3 Hz, 1H), 4.63 (d, J = 3.0 Hz, 2H), 3.77 (brs, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 149.3,

147.1, 135.5, 132.3, 129.7, 128.7, 128.1, 128.05, 114.9, 114.1; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₄H₁₅NSi: 225.0968, found: 225.0962.

The product **3i** was purified with silica gel chromatography (Pe/EA = 30 : 1) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.63 (m, 2H), 7.40-7.36 (m, 5H), 7.10 (d, *J* = 18.9 Hz, 1H), 6.69 (d, *J* = 8.8 Hz, 2H), 6.23 (dt, *J* = 18.9, 3.3 Hz, 1H),

4.70 (d, J = 3.0 Hz, 2H), 2.99 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.8, 149.5, 135.5, 132.6, 129.6, 128.0, 127.9, 126.4, 112.9, 112.1, 40.1; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₆H₁₉NSi: 253.1281, found: 253.1285.

The product **3j** was purified with silica gel chromatography (Pe/EA = 30 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, *J* = 8.3 Hz, 2H), 7.65-7.62 (m, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.45-7.38 (m, 3H), 7.18 (d, *J* = 19.0 Hz, 1H), 6.66 (dt,

J = 19.0, 3.2 Hz, 1H), 4.71 (d, J = 3.2 Hz, 2H), 3.92 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 148.0, 141.9, 135.5, 131.1, 130.0, 129.98, 129.92, 128.2, 126.6, 123.1, 52.2; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₆H₁₆O₂Si: 268.0914, found: 268.0890.

The product **3k** was purified with silica gel chromatography (Pe/EA = 30 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.61 (m, 4H), 7.53 (d, J = 8.4 Hz, 2H), 7.45-7.43 (m, 3H), 7.14 (d, J = 19.0 Hz, 1H), 6.68 (dt, J = 19.0, 3.2 Hz, 1H), 4.71 (d, J = 3.1 Hz,

2H); ¹³C NMR (75 MHz, CDCl₃) δ 146.9, 141.7, 135.5, 132.4, 130.6, 130.1, 128.2, 127.1, 124.9, 118.8, 111.7; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₅H₁₃NSi: 235.0812, found: 235.0813.

The product **3I** was purified with silica gel chromatography (Pe/EA = 30 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 10.01 (s, 1H), 7.87 (d, *J* = 8.3 Hz, 2H), 7.65-7.59 (m, 4H), 7.45-7.39 (m, 3H), 7.19 (d, *J* = 19.0 Hz, 1H), 6.72 (dt, *J* = 19.0, 3.2 Hz,

1H), 4.72 (d, J = 3.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 191.2, 147.7, 143.3, 136.1, 135.5, 130.9, 130.2, 130.1, 128.3, 127.2, 124.5; HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₅H₁₄OSi: 238.0808, found: 238.0803.

The product **3m** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.63 (m, 2H), 7.44-7.40 (m, 3H), 7.30-7.25 (m, 3H), 7.15 (d, *J* = 19.0 Hz, 1H), 6.51 (dt,

J = 19.0, 3.3 Hz, 1H), 4.71 (d, *J* = 3.2 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 149.2, 139.2, 135.3, 131.6, 129.9, 129.6, 128.2, 119.8, 119.5, 114.5, 111.7, 55.3; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₅H₁₆Si: 224.1016, found: 224.1009.

The product **3n** was purified with silica gel chromatography (Pe/EA = 50 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.62 (m, 2H), 7.44-7.37 (m, 3H), 7.27 (t, *J* = 7.9 Hz, 1H), 7.14 (d, *J* = 18.9 Hz, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.01-7.00 (m,

1H), 6.87-6.84 (m, 1H), 6.51 (dt, J = 18.9, 3.3 Hz, 1H), 4.70 (d, J = 3.2 Hz, 2H), 2.83 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 149.5, 138.2, 137.7, 135.5, 131.8, 129.8, 129.5, 128.5, 128.1, 127.4, 123.9, 119.1, 21.4; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₅H₁₆OSi: 240.0965, found: 240.0964.

The product **30** was purified with silica gel chromatography (Pe/EA = 10 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.61 (m, 2H), 7.43-7.37 (m, 3H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.10 (d, *J* = 19.0 Hz, 1H), 7.03 (d, *J* = 7.7 Hz, 1H), 7.95-7.93 (m, 1H), 6.79-

6.76 (m, 1H), 6.49 (dt, *J* = 18.9, 3.3 Hz, 1H), 4.90 (brs, 1H), 4.69 (d, *J* = 3.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 155.8, 148.8, 139.5, 135.5, 131.6, 129.88, 129.85, 128.2, 120.0, 119.6, 115.7, 113.1.; HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₄H₁₄OSi: 226.0808, found: 226.0812.

The product **3p** was purified with silica gel chromatography (Pe/EA = 5 : 1) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.62 (m, 2H), 7.43-7.40 (m, 3H), 7.16 (t, *J* = 7.7 Hz, 1H), 7.09 (d, *J* = 19.3 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 6.80-6.79 (m,

1H), 6.66-6.62 (m, 1H), 6.46 (dt, J = 18.9, 3.3 Hz, 1H), 4.70 (d, J = 3.2 Hz, 2H), 3.65 (brs, 2H),; ¹³C NMR (75 MHz, CDCl₃) δ 149.6, 146.7, 138.9, 135.5, 131.8, 129.8, 129.6, 128.1, 119.1, 117.5, 115.6, 113.1; HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd for C₁₄H₁₆NSi: 226.1047, found: 226.1048.

The product **3q** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.62 (m, 2H), 7.45-7.40 (m, 4H), 7.33-7.26 (m, 3H), 7.09 (d, *J* = 19.0 Hz, 1H), 6.54 (dt, *J* = 18.9, 3.2 Hz, 1H), 4.70 (d, *J* = 3.2 Hz, 2H); ¹³C NMR

(75 MHz, CDCl₃) δ 147.7, 139.6, 135.5, 134.7, 131.2, 130.0, 129.9, 128.6, 128.2, 126.6, 124.9, 121.6; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₄H₁₃ClSi: 244.0470, found: 244.0469.

The product **3r** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.68-7.64 (m, 2H), 7.58-7.55 (m, 1H), 7.48-7.38 (m, 4H), 7.23-7.17 (m, 3H), 6.44 (dt, *J* = 18.9, 3.3 Hz,

1H), 4.73 (d, J = 2.8 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 147.3, 137.1, 135.7, 135.5, 131.8, 130.5, 129.9, 128.4, 128.2, 126.2, 125.6, 121.1, 19.7; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₅H₁₆Si: 224.1016, found: 221.1016.

The product **3s** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.56 (m, overlap, 4H), 7.44-7.35 (m, 4H), 7.26-7.22 (m, 2H), 6.53 (dt, *J* = 18.9, 3.3 Hz, 1H), 4.73 (d, *J* = 3.3 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 145.0, 135.8,

135.5, 133.4, 131.3, 129.9, 129.8, 129.5, 128.2, 126.94, 126.91, 123.2; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₀H₁₃ClSi: 244.0470, found: 244.0460.

The product **3t** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.63 (m, 2H), 7.57 (td, J = 7.7, 1.7 Hz, 1H), 7.44-7.36 (m, 4H), 7.31-7.23 (m, 1H), 7.16-7.02 (m, 2H), 6.60 (dt, J = 19.2, 3.3 Hz, 1H), 4.72 (d, J = 3.3 Hz, 2H); ¹³C NMR

 $(75 \text{ MHz}, \text{CDCl}_3) \delta 160.4 (d, J = 250.7 \text{ Hz}), 141.1 (d, J = 4.5 \text{ Hz}), 135.5, 131.4, 130.0, 129.9, 128.2, 127.2 (d, J = 3.3 \text{ Hz}), 125.6 (d, J = 11.6 \text{ Hz}), 124.2 (d, J = 2.6 \text{ Hz}), 122.6 (d, J = 3.8 \text{ Hz}), 115.6 (d, J = 22.1 \text{ Hz}); HRMS (EI) (m/z): [M]⁺ calcd for C₁₄H₁₃FSi: 228.0765, found: 228.0745.$

The product **3u** was purified with silica gel chromatography (Pe/EA = 30 : 1) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.65 (m, 6H), 7.45-7.40 (m, 3H), 7.29 (d, *J* = 19.2 Hz, 1H), 7.17-7.13 (m, 2H), 6.57 (dt, *J* = 18.9, 3.2 Hz,

1H), 4.74 (d, *J* = 3.1 Hz, 2H), 3.93 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 158.1, 149.4, 135.6, 134.8, 133.2, 131.9, 129.9, 129.8, 128.9, 128.2, 127.2, 127.1, 123.9, 119.1, 118.3, 105.9, 55.4; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₉H₁₈OSi: 290.1121, found: 290.1113.

The product **3v** was purified with silica gel chromatography (Pe) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.73 (d, *J* = 7.7 Hz, 1H), 8.67 (d, *J* = 8.0 Hz, 1H), 8.19-8.16 (m, 1H), 7.99-7.89 (m, 3H), 7.74-7.59 (m, 6H), 7.46-7.42 (m, 3H), 6.70 (dt, *J* = 18.6, 3.2 Hz, 1H), 4.82 (d, *J* = 2.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 147.3, 135.6, 135.1,

131.6, 130.5, 130..4, 130.2, 129.9, 128.9, 128.2, 126.88, 126.85, 126.8, 126.7, 125.2, 124.4, 124.1, 123.1, 122.6; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₂H₁₈Si: 310.1172, found: 310.1167.

The product **3w** was purified with silica gel chromatography (Pe/EA = 5 : 1) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.66 (d, *J* = 2.0 Hz, 1H), 8.52 (dd, *J* = 4.8, 1.5 Hz, 1H), 8.78 (dt, *J* = 8.0, 1.9 Hz, 1H),

7.65-7.62 (m, 2H), 7.45-7.40 (m, 3H), 7.30-7.26 (m, 1H), 7.14 (d, J = 19.0 Hz, 1H), 6.62 (dt, J = 19.0, 3.2 Hz, 1H), 4.71 (d, J = 3.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 143.0, 141.6, 135.5, 131.7, 129.9, 128.1, 126.2, 124.9, 123.9, 119.0; HRMS (EI) (m/z): [M]⁺ calcd for C₁₃H₁₃NSi: 211.0812, found: 244.0799.

The product **3x** was purified with silica gel chromatography (Pe/EA = 30 : 1) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.62 (m, 2H), 7.42-7.39 (m, 3H), 7.30-7.26 (m, 3H), 7.15 (d, *J* = 18.9 Hz, 1H), 6.29 (dt, *J* = 18.9, 3.3 Hz, 1H), 4.68 (d, *J* = 3.2 Hz, 2H); ¹³C NMR (75 MHz,

CDCl₃) δ 149.6, 148.8, 145.2, 135.5, 133.2, 133.0, 131.0, 130.1, 128.3, 123.6, 122.9; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₂H₁₂SSi: 216.0424, found: 216.0427.

The product $3y^{[2]}$ was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.62 (m, 4H), 7.50-7.32 (m, 11H), 7.11 (d, *J* = 19.0 Hz, 1H), 6.73 (dt, *J* = 19.0, 3.2 Hz, 1H), 5.26 (d, *J* = 3.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 149.1, 137.9, 135.6,

133.6, 129.8, 128.64, 128.62, 128.1, 126.8, 121.5.

The product **5a** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.57 (m, 2H), 7.44-7.35 (m, 3H), 6.37 (dt, *J* = 18.4, 6.3 Hz, 1H), 5.78-5.69 (m, 1H), 4.55 (d, *J* =

3.2 Hz, 2H), 2.18 (q, J = 7.1 Hz, 2H), 1.47 (dd, J = 14.8, 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 154.0, 135.4, 132.4, 129.6, 128.0, 120.1, 39.0, 21.6, 13.7; HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₁H₁₆Si: 176.1016, found: 176.1015.

The product **5b** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.60-7.57 (m, 2H), 7.41-7.35 (m, 3H), 6.38 (dt, *J* = 18.4, 6.3 Hz, 1H), 5.77-5.69 (m,

1H), 4.54 (d, J = 3.3 Hz, 2H), 2.19 (q, J = 6.7 Hz, 2H), 1.46-1.42 (m, 2H), 1.33-1.29 (m, 4H), 0.90 (t, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 154.3, 135.4, 132.4, 129.6, 128.0, 119.8, 36.9, 31.4, 28.1, 22.6, 14.1; HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₃H₂₀Si: 204.1329, found: 204.1311.

The product **5c** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.56 (m, 2H), 7.40-7.35 (m, 3H), 6.33 (dd, J = 18.6, 6.0 Hz, 1H), 5.72-5.63 (m, 1H), 4.54 (d, J =

3.2 Hz, 2H), 2.11-2.02 (m, 2H), 1.80-1.72 (m, 4H), 1.36-1.05 (m, 6H), 0.90 (t, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 135.4, 132.5, 129.6, 128.0, 116.7, 44.2, 32.1, 26.2, 26.0; HRMS (EI) (m/z): [M]⁺ calcd for C₁₄H₂₀Si: 216.1329, found: 216.1327.

The product **5d** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.58 (m, 2H), 7.41-7.35 (m, 3H), 6.79 (d, *J* = 18.8 Hz, 1H), 5.88 (s, 1H), 5.73 (dt, *J* = 18.8, 3.3

Hz, 1H), 4.61 (d, J = 3.2 Hz, 2H), 2.19-2.16 (m, 4H), 1.71-1.59 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 153.1, 137.3, 135.4, 132.9, 132.4, 129.6, 128.0, 114.1, 26.0, 23.9, 22.5, 22.4; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₄H₁₈OSi: 214.1172, found: 214.1168.

The product **5e** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.58 (m, 2H), 7.43-7.38 (m, 3H), 6.31 (dt, *J* = 18.5, 6.2 Hz, 1H), 5.93-5.84 (m, 1H), 4.56

(d, J = 3.2 Hz, 2H), 3.46 (t, J = 7.0 Hz, 2H), 2.76 (q, J = 6.3 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 149.1, 135.4, 131.6, 129.8, 128.1, 124.1, 39.7, 31.1; HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₀H₁₃BrSi: 239.9964, found: 239.9937.

The product **5f** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.58 (m, 2H), 7.43-7.38 (m, 3H), 6.35 (dt, *J* = 18.4, 6.2 Hz, 1H), 5.81-5.72

(m, 1H), 4.54 (d, J = 3.2 Hz, 2H), 3.55 (t, J = 6.6 Hz, 2H), 2.23 (q, J = 6.2 Hz, 2H), 1.85-1.76 (m, 2H), 1.6-1.57 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 152.9, 135.4, 132.1, 129.7, 128.1, 120.9, 44.9, 36.0, 32.0, 25.6.; GC-MS (EI) (*m/z*): [M]⁺ calcd for C₁₂H₁₇ClSi: 224.08, found: 224.07.

The product **5g** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.56 (m, 2H), 7.42-7.36 (m, 3H), 6.34 (dt, *J* = 18.4, 6.3 Hz, 1H), 5.81-5.71 (m,

1H), 4.45 (d, J = 3.0 Hz, 2H), 3.20 (t, J = 6.9 Hz, 2H), 2.22 (q, J = 6.4 Hz, 2H), 1.90-1.80 (m, 2H), 1.61-1.53 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 153.8, 135.4, 132.1, 129.7, 128.1, 121.0, 35.7, 32.9, 29.2, 6.8; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₂H₁₇SiI: 316.0139, found: 316.0132.

The product **5h** was purified with silica gel chromatography (Pe/EA = 10 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.56 (m, 2H), 7.41-7.38 (m, 3H), 6.32 (dt, *J* = 18.5, 5.6 Hz, 1H), 5.97-5.88 (m, 2H), 7.41-7.38 (m, 3H), 6.32 (dt, *J* = 18.5, 5.6 Hz, 1H), 5.97-5.88 (m, 2H), 7.41-7.38 (m, 3H), 6.32 (dt, *J* = 18.5, 5.6 Hz, 1H), 5.97-5.88 (m, 2H), 7.41-7.38 (m, 3H), 6.32 (dt, *J* = 18.5, 5.6 Hz, 1H), 5.97-5.88 (m, 2H), 7.41-7.38 (m, 3H), 6.32 (dt, *J* = 18.5, 5.6 Hz, 1H), 5.97-5.88 (m, 2H), 7.41-7.38 (m, 3H), 6.32 (dt, *J* = 18.5, 5.6 Hz, 1H), 5.97-5.88 (m, 2H), 7.41-7.38 (m, 3H), 6.32 (dt, *J* = 18.5, 5.6 Hz, 1H), 5.97-5.88 (m, 2H), 7.41-7.38 (m, 3H), 6.32 (dt, J = 18.5, 5.6 Hz, 1H), 5.97-5.88 (m, 2H), 7.41-7.38 (m, 2H), 7.4

1H), 4.56 (d, J = 3.1 Hz, 2H), 2.54-2.44 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 147.7, 135.4, 131.2, 129.9, 128.2, 124.4, 119.0, 31.9, 16.4; HRMS (ESI) (*m*/*z*): [M+NH₄]⁺ calcd for C₁₁H₁₇N₂Si: 205.1156, found: 205.1157.

The product **5i** was purified with silica gel chromatography (Pe/EA = 50 : 1) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.55 (m, 2H), 7.39-7.36 (m, 3H), 6.32 (dt, *J* = 18.4, 6.3

Hz, 1H), 5.81-5.72 (m, 1H), 4.53 (d, J = 3.2 Hz, 2H), 3.67 (s, 3H), 2.33 (d, J = 7.5 Hz, 2H), 2.23 (q, J = 6.8 Hz, 2H), 1.83-1.73 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 152.4, 135.4, 132.1, 129.7, 128.0, 121.4, 51.6, 36.1, 33.4, 23.6; HRMS (ESI) (m/z): [M+H]⁺ calcd for C₁₃H₁₉O₂Si: 235.1149, found: 235.1150.

The product **5j** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.57-7.54 (m, 2H), 7.42-7.35 (m, 3H), 7.33-7.28 (m, 2H), 7.24-7.19 (m, 3H), 6.42 (dt, *J* = 18.4,

6.2 Hz, 1H), 5.82-5.74 (m, 1H), 4.55 (d, J = 3.2 Hz, 2H), 2.77 (d, J = 7.8 Hz, 2H), 2.53 (q, J = 7.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 152.8, 141.6, 135.4, 132.2, 129.7, 128.5, 128.4, 128.0, 125.9, 120.9, 38.6, 34.9; HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₆H₁₈Si: 238.1172, found: 238.1173.

The product **5k** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.55 (m, 2H), 7.41-7.36 (m, 3H), 6.35 (dd, *J* = 18.5, 4.5 Hz, 1H), 5.95-5.87 (m, 1H), 4.56

 $(d, J = 3.2 \text{ Hz}, 2\text{H}), 4.36-4.29 \text{ (m, 1H)}, 1.24 \text{ (d, } J = 6.5 \text{ Hz}, 3\text{H}), 0.13 \text{ (s, 9H)}; {}^{13}\text{C} \text{ NMR} (75 \text{ MHz}, CDCl_3) \delta 156.3, 135.4, 131.9, 129.7, 128.1, 117.6, 70.6, 23.8, 0.2; HRMS (ESI) ($ *m/z*): [M+H]+ calcd for C₁₃H₂₃OSi₂: 251.1282, found: 251.1280.

The product **51** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.56 (m, 2H), 7.41-7.36 (m, 3H), 6.37 (dd, *J* = 18.5, 6.3 Hz,

1H), 5.95-5.87 (m, 1H), 4.53 (d, J = 3.2 Hz, 2H), 3.62 (t, J = 6.4 Hz, 2H), 2.25 (q, J = 7.0 Hz, 2H), 1.70-1.61 (m, 2H), 0.90 (s, 9H), 0.04 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 153.5, 135.4, 132.3, 129.6, 128.0, 120.3, 62.5, 33.2, 31.5, 26.0, 18.4, -5.3; HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd for C₁₇H₃₁OSi₂: 307.1908, found: 307.1912.

The product **5m** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.60-7.56 (m, 4H), 7.41-7.35 (m, 6H), 6.31 (dt, *J* = 18.5, 6.2 Hz, 1H), 5.97-5.89 (m,

1H), 5.09 (d, J = 3.2 Hz, 1H), 2.25 (q, J = 6.9 Hz, 2H), 1.49-1.40 (m, 2H), 1.33-1.27 (m, 4H), 0.90 (t, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 154.1, 135.5, 134.3, 129.6, 128.0, 121.9, 37.0, 31.5, 28.1, 22.5, 14.1; HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₉H₂₄Si: 280.1642, found: 280.1637.

The product **5n** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.56 (m, 2H), 7.40-7.33 (m, 3H), 6.01 (t, *J* = 6.9 Hz, 1H), 4.53 (s, 2H), 2.20-2.12 (m, 4H), 1.39-1.26 (m, 8H), 0.91 (t, *J* = 7.0 Hz, 3H), 0.85 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75

MHz, CDCl₃) δ 146.3, 135.6, 134.0, 132.8, 129.5, 127.9, 31.7, 31.5, 30.1, 28.6, 22.7, 22.5, 14.03, 13.97; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₆H₂₆Si: 246.1798, found: 246.1795.

The product **50**^[3] was purified with silica gel chromatography (Pe) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.58 (m, 2H), 7.43-7.35 (m, 3H), 7.28-7.22 (m, 3H), 7.15-7.02 (m, 8H), 4.81 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 142.3, 141.4, 138.6, 136.9, 135.8, 131.4, 129.9, 129.6, 128.8,

128.1, 128.0, 127.8, 127.6, 126.4

The product **5p** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.63 (m, 0.44H), 7.55-7.52 (m, 2H), 7.40-7.28 (m, 6.64H), 7.22-7.16 (m, 1H), 7.09-7.06 (m, 2H), 6.37 (q, J = 6.7 Hz, 1H), 4.69 (s, 2H),

4.67 (s, 0.35H), 2.05 (d, *J* = 1.8 Hz, 0.6H), 1.73 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 141.6, 140.8, 137.3, 135.6, 131.9, 129.7, 129.0, 128.3, 128.2, 128.2, 128.1, 128.0, 127.1, 126.0, 17.5, 16.4; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₅H₁₆Si: 224.1016, found: 221.1012.

The product **5q** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.51 (m, 2H), 7.39-7.26 (m, 5H), 7.21-7.15 (m, 1H), 7.06-7.04 (m, 2H), 6.26 (t, *J* = 7.1 Hz, 1H), 4.69 (s, 2H), 2.12 (p, *J* = 7.5 Hz, 2H), 0.98 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, 2H), 0.98 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz), 130 (t, *J* = 7.5 Hz, 2H), 0.98 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz), 130 (t, *J* = 7.5 Hz), 140 (t, J = 7.5 Hz), 140 (t,

CDCl₃) δ 149.0, 141.1, 135.6, 135.5, 132.0, 129.7, 128.2, 128.1, 128.0, 126.0, 23.7, 14.0; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₆H₁₈Si: 238.1172, found: 238.1173.

The product **5r** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.51 (m, 2H), 7.39-7.26 (m, 5H), 7.21-7.16 (m, 1H), 7.06-7.03 (m, 2H), 6.27 (t, *J* = 7.1 Hz, 1H), 4.69 (s, 2H), 2.11 (q, *J* = 7.2 Hz, 2H), 1.37-1.23 (m, 4H), 0.84 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 147.6, 141.1, 136.1, 135.6, 132.0, 129.7, 128.2, 128.1, 128.0, 125.9, 31.6, 30.1, 22.4, 13.9; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₈H₂₂OSi: 266.1485, found: 266.1483.

The product **5s** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.60-7.57 (m, 2H), 7.40-7.35 (m, 3H), 5.96 (t, *J* = 7.1 Hz, 1H), 4.89-4.86 (m, 1H), 4.56 (s, 2H), 4.54.-4.53 (m, 1H), 2.17 (p, *J* = 7.4 Hz, 2H), 1.76-1.75 (m, 3H), 0.99 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃)

δ 147.0, 144.9, 137.6, 135.6, 132.3, 129.6, 127.9, 112.0, 23.9, 23.7, 14.2; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₃H₁₈Si: 202.1172, found: 202.1170.

The product **5t** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.60-7.56 (m, 2H), 7.41-7.37 (m, 3H), 6.07-6.02 (m, 1H), 4.54 (s, 0.17H), 4.52

(s, 1.74H), 2.17 (p, J = 7.4 Hz, 2H), 1.75-1.74 (m, 3H), 1.01 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 147.7, 135.5, 135.0, 132.3, 129.6, 128.0, 22.2, 15.4, 13.6; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₁H₁₆Si: 176.1016, found: 176.1016.

The product $5u^{[4]}$ was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.52 (m, 4H), 7.41-7.32 (m, 6H), 7.26-7.21 (m, 2H), 7.18-7.12 (m, 1H), 7.02-6.99 (m, 2H), 6.21 (t, *J* = 7.1 Hz, 1H), 5.20 (s, 1H), 2.12 (p, *J* = 7.4 Hz, 2H), 0.97 (t, *J* = 6.9 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 149.5, 141.3, 137.2, 135.8, 133.6, 129.6, 128.4, 128.1, 127.9, 125.8, 23.7, 14.1.

The product **5v** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.27 (m, 2H), 7.21-7.12 (m, 3H), 6.38 (t, *J* = 7.1 Hz, 1H), 3.78 (q, *J* = 7.0 Hz, 6H), 2.09 (p, *J* = 7.5 Hz, 2H), 1.17 (t, *J* = 7.0 Hz, 9H), 0.97 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75

MHz, CDCl₃) δ 149.1, 140.4, 134.6, 128.5, 127.9, 125.8, 58.7, 23.2, 18.1, 14.0; HRMS (ESI) (*m/z*): [M+H]⁺ calcd for C₁₆H₂₇O₃Si: 295.1724, found: 295.1730.

The product **5w** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.27 (m, 2H), 7.21-7.15 (m, 1H), 7.09-7.06 (m, 2H), 6.27 (t, *J* = 7.1 Hz, 1H), 3.78 (dq, *J* = 7.0, 0.9 Hz, 4H), 2.14 (p, *J* = 7.5 Hz, 2H), 1.18 (t, *J* = 7.0 Hz, 6H), 0.96

(t, J = 7.5 Hz, 3H), 0.15 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 147.1, 140.9, 138.6, 128.3, 128.0, 125.6, 58.4, 23.16, 18.3, 14.0, -4.6; HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd for C₁₅H₁₆Si: 265.1618, found: 265.1621.

Co(OAc)₂•4H₂O-^{4Me}bipy catalysed Hydrosilylation

 $Co(OAc)_2 \cdot 4H_2O$ (0.5 mg, 0.002 mmol, 0.005 equiv) and 4Mebipy (0.4 mg, 0.002 mmol, 0.005 equiv) were dissolved in 0.5 mL THF. Alkyne (0.4 mmol, 1.0 equiv) was added into the system (Note: if it is solid, weigh it firstly), followed with PhSiH₃ (0.48 mmol, 1.2 equiv). The mixture was stirred at room temperature for 3 hours. The solvent was removed to leave a crude product, which was purified by column chromatography on silica gel to afford the product **6**.

The product **6a** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.61 (dd, J = 7.7, 1.7 Hz, 2H), 7.42-7.27 (m, 8H), 6.26 (d, J = 2.3 Hz, 1H), 5.85 (d, J = 2.3 Hz, 1H), 4.86 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 144.2, 142.3, 135.6, 131.4, 131.2,

129.9, 128.5, 128.6, 127.3, 126.5; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₄H₁₄Si: 210.0859, found: 210.0857.

The product **6b** was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.60 (dd, J = 7.7, 1.7 Hz, 2H), 7.41-7.35 (m, 3H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 6.23 (d, *J* = 2.3 Hz, 1H), 5.79 (d, *J* = 2.3 Hz, 1H), 4.83 (s, 2H), 2.33 (s,

3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.7, 139.3, 137.1, 135.6, 131.3, 130.5, 129.9, 129.2, 128.1, 126.4, 21.1; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₅H₁₆Si: 224.1016, found: 221.1010.

The product 6c was purified with silica gel chromatography (Pe/EA = 50 : 1) as a colorless oil. ¹H

NMR (300 MHz, CDCl₃) δ 7.60 (dd, J = 7.7, 1.7 Hz, 2H), 7.39-7.32 (m, 5H), 6.85 (d, J = 8.9 Hz, 2H), 6.19 (d, J = 2.3 Hz, 1H), 5.75 (d, J = 2.3 Hz, 1H), 4.83 (s, 2H), 3.80 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 143.1, 135.6, 134.6, 131.4, 129.9, 129.6, 128.1, 127.6, 113.9,

55.3; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₅H₁₆OSi: 240.0965, found: 240.0963.

The product 6d was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300

MHz, CDCl₃) δ 7.59 (dd, J = 7.7, 1.6 Hz, 2H), 7.42-7.31 (m, 5H), 7.03-7.69 (m, 2H), 6.19 (d, J = 2.1 Hz, 1H), 5.83 (d, J = 2.2 Hz, 1H), 4.83 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 162.2 (d, J = 246.4 Hz), 143.2, 138.3, 135.6, 131.3, 130.9, 130.0, 128.2, 128.1 (d, J = 8.0 Hz), 115.4 (d, J =

21.4 Hz); HRMS (EI) (m/z): [M]⁺ calcd for C₁₄H₁₃FSi: 228.0765, found: 228.0763.

The product 6e was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300

MHz, CDCl₃) δ 7.58-7.55 (m, 2H), 7.45-7.36 (m, 5H), 7.24-7.21 (m, 2H), 6.21 (d, J = 2.2 Hz, 1H), 5.85 (d, J = 2.2 Hz, 1H), 4.81 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 141.2, 135.6, 133.6, 131.9, 131.6, 130.1, 128.2, 128.1, 121.3; HRMS (EI) (m/z): [M]⁺ calcd for

C₁₄H₁₃BrSi: 28.9964, found: 287.9959.

The product 6f was purified with silica gel chromatography (Pe) as a white solid. ¹H NMR (300

1H), 7.45-7.31 (m, 8H), 6.28 (d, J = 2.3 Hz, 1H), 5.84 (d, J = 2.3 Hz, 1H), 4.85 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 143.6, 141.2, 140.7, 140.2, 135.7, 131.3, 131.2, 130.0, 128.8, 128.2, 127.33, 127.26, 127.0, 126.9; HRMS (EI) (*m/z*): [M]⁺ calcd for C₂₀H₁₈Si: 286.1172, found: 286.1170.

The product **6g** was purified with silica gel chromatography (Pe/EA = 5:1) as a pale yellow oil. ¹H

NMR (300 MHz, CDCl₃) δ 7.61-7.58 (m, 2H), 7.40-7.35 (m, 3H), 7.23 (d, *J* = 8.6 Hz, 2H), 6.62 (d, *J* = 8.6 Hz, 2H), 6.17 (d, *J* = 2.3 Hz, 1H), 5.68 (d, *J* = 2.3 Hz, 1H), 4.82 (s, 2H), 3.67 (brs, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 145.9, 143.0, 135.6, 132.4, 131.6, 129.8, 128.2, 128.1,

127.5, 115.1; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₄H₁₅NSi: 225.0968, found: 225.0968.

The product **6h** was purified with silica gel chromatography (Pe/EA = 30 : 1) as a colorless oil. ¹H

NMR (300 MHz, CDCl₃) δ 7.97 (d, J = 8.6 Hz, 2H), 7.57 (dd, J = 7.8, 1.6 Hz, 2H), 7.42-7.35 (m, 5H), 6.28 (d, J = 2.3 Hz, 1H), 5.92 (d, J = 2.3 Hz, 1H), 4.84 (s, 2H), 3.90 (brs, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 147.1, 143.8, 135.6, 133.0, 130.6, 130.1,

129.9, 128.9, 128.2, 126.5, 52.1; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₆H₁₆O₂Si: 268.0924, found: 268.0903.

The product **6i** was purified with silica gel chromatography (Pe/EA = 30 : 1) as a colorless oil. ¹H

NMR (300 MHz, CDCl₃) δ 7.61-7.54 (m, 4H), 7.44-7.37 (m, 5H), 6.27 (d, J = 2.0 Hz, 1H), 5.96 (d, J = 2.0 Hz, 1H), 4.82 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 147.2, 143.5, 135.6, 134.0, 132.4, 130.3, 128.3, 127.2, 118.9, 110.8; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₅H₁₃NSi:

235.0812, found: 235.0806.

The product 6j was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300

MHz, CDCl₃) δ 7.61 (dd, J = 7.7, 1.8 Hz, 2H), 7.42-7.35 (m, 3H), 7.21-7.19 (m, 3H), 7.10-7.06 (m, 1H), 6.24 (d, J = 2.4 Hz, 1H), 5.82 (d, J = 2.4 Hz, 1H), 4.84 (s, 2H), 2.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.2, 142.3, 138.1, 135.6, 131.3, 131.1, 129.9, 128.4, 128.1, 128.1, 127.1,

123.7, 21.5; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₅H₁₆Si: 224.1016, found: 224.1019.

The product 6k was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300

MHz, CDCl₃) δ 7.59 (dd, J = 7.7, 1.7 Hz, 2H), 7.44-7.37 (m, 4H), 7.23 (d, J = 7.7, 1.7 Hz, 3H), 7.10-7.06 (m, 1H), 6.23 (d, J = 2.1 Hz, 1H), 5.87 (d, J = 2.2 Hz, 1H), 4.83 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ

144.2, 143.3, 135.6, 134.5, 132.5, 130.6, 130.1, 129.7, 128.3, 127.3, 126.5, 124.9; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₄H₁₃ClSi: 244.0470, found: 224.0468.

The product **6** was purified with silica gel chromatography (Pe/EA = 10:1) as a colorless oil. ¹H

NMR (300 MHz, CDCl₃) δ 7.59 (dd, J = 7.7, 1.7 Hz, 2H), 7.41-7.34 (m, 3H), 7.20-7.15 (m, 1H), 6.96-6.93 (m, 1H), 6.85-6.84 (m, 1H), 6.75-6.71 (m, 1H), 6.23 (d, J = 2.3 Hz, 1H), 5.83 (d, J = 2.3 Hz, 1H), 4.91 (s, 1H), 4.83 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 155.6, 144.1,

143.8, 135.6, 131.6, 131.1, 130.0, 129.8, 128.2, 119.3, 114.3, 113.3; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₄H₁₄OSi: 226.0808, found: 226.0804.

The product 6m was purified with silica gel chromatography (Pe) as a colorless oil. ¹H NMR (300

MHz, CDCl₃) δ 7.54 (dd, J = 7.8, 1.6 Hz, 2H), 7.41-7.35 (m, 3H), 7.17-7.10 (m, 3H), 6.99-6.96 (m, 1H) , 5.92 (d, J = 3.1 Hz, 1H), 5.87 (d, J = 3.0 Hz, 1H), 4.70 (s, 2H), 2.24 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.5, 143.1, 135.6, 134.4, 133.0, 131.1, 130.1, 129.9, 128.0, 127.9, 126.6, 125.6, 20.3;

HRMS (EI) (m/z): [M]⁺ calcd for C₁₅H₁₆Si: 224.1016, found: 224.1003.

The product **6n** was purified with silica gel chromatography (Pe/EA = 30 : 1) as a white solid. ¹H

NMR (300 MHz, CDCl₃) δ 7.74 (d, *J* = 1.7 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.74 (dd, *J* = 7.7, 1.7 Hz, 2H), 7.53 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.40-7.33 (m, 3H), 7.14-7.10 (m, 2H) , 6.35 (d, *J* = 2.2 Hz, 1H), 5.88 (d, *J* = 2.2 Hz, 1H), 4.91 (s, 2H), 3.92 (s,

3H); ¹³C NMR (75 MHz, CDCl₃) δ 157.7, 143.8, 137.4, 135.6, 133.9, 131.3, 130.9, 129.9, 129.7, 128.9, 128.2, 12.0, 125.5, 125.0, 119.0, 105.6, 55.3; HRMS (EI) (*m*/*z*): [M]⁺ calcd for C₁₉H₁₈OSi: 290.1121, found: 290.1117.

The product 60 was purified with silica gel chromatography (Pe/EA = 30: 1) as a pale yellow oil.

¹H NMR (300 MHz, CDCl₃) δ 7.64-7.61 (m, 2H), 7.43-7.35 (m, 3H), 7.29-7.27 (m, 1H), 7.25-7.23 (m, 1H), 7.20-7.18 (m, 1H), 6.39 (d, *J* = 2.3 Hz, 1H), 5.78 (d, *J* = 2.3 Hz, 1H), 4.82 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 137.6, 135.6, 131.0, 130.0, 129.7, 128.2, 125.7, 125.4, 121.8; HRMS (EI)

(m/z): [M]⁺ calcd for C₁₂H₁₂SSi: 216.0424, found: 216.0432.

The product **6p** was purified with silica gel chromatography (Pe/EA = 5:1) as a pale yellow oil. ¹H

NMR (300 MHz, CDCl₃) δ 8.6 (d, J = 1.7 Hz, 1H), 8.47 (dd, J = 4.8, 1.6 Hz, 1H), 7.64-7.56 (m, 3H), 7.42-7.33 (m, 3H), 7.23-7.19 (m, 1H), 6.26 (d, J = 2.1 Hz, 1H), 5.93 (d, J = 2.1 Hz, 1H), 4.83 (s, 2H); ¹³C NMR (75 MHz,

CDCl₃) δ 148.4, 147.7, 141.4, 138.0, 135.6, 133.7, 133.2, 130.24, 130.21, 128.3, 123.3; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₃H₁₃NSi: 211.0812, found: 211.0807.

MHz, CDCl₃) δ 7.60-7.56 (m,
2H), 7.42-7.35 (m, 1H), 7.58-7.57 (m, 0.78H), 5.54 (d, J = 2.9 Hz,
0.78H), 4.54 (s, 1.56H), 2.23-2.14

(m, 2H), 1.48-1.37 (m, 2H), 1.29-1.20 (m, 4H), 0.91-0.84 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 145.4, 135.6, 131.7, 129.7, 129.4, 128.0, 37.4, 31.5, 28.5, 22.5, 14.0; HRMS (EI) (*m/z*): [M]⁺ calcd for C₁₃H₂₀Si: 204.1329, found: 204.1323.

The product **6r**^[4] was purified with silica gel chromatography (Pe) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.56 (m, 4H), 7.42-7.34 (m, 8H), 7.30-7.19 (m, 3H), 6.30 (dd, J = 2.5, 1.0 Hz, 1H), 5.69 (d, J = 2.5 Hz, 1H), 5.40 (d, J = 0.7 Hz, 1H), 4.83 (s, 2H).

Transformations of vinylsilanes^[5, 6]

Co(OAc)₂•4H₂O (1.0 mg, 0.004 mmol, 0.01 equiv, in 10 µL MeOH), was added into 0.5 mL THF containing Xantphos (2.3 mg, 0.004 mmol, 0.01 equiv). Phenylacetylene (0.4 mmol, 1.0 equiv) was added into the system, followed with **3a** (0.48 mmol, 1.2 equiv). The mixture was stirred at room temperature for 10 hours. The solvent was removed to leave a crude product, which was purified by column chromatography on silica gel to afford the desired product in 55% yield as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.71-7.67 (m, 2H), 7.53-7.52 (m, 4H), 7.45-7.30 (m, 10H), 7.16 (d, *J* = 19.0 Hz, 2H), 6.67 (dd, *J* = 19.3, 3.1 Hz, 2H), 6.28 (d, *J* = 1.8 Hz, 0.14H), 5.83 (d, *J* = 2.5 Hz, 0.14H), 5.19 (d, *J* = 3.2 Hz, 0.13H), 5.06 (t 4.83 (s, *J* = 3.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 148.7, 137.9, 135.3, 133.9, 129.7, 128.6, 128.6, 128.1, 126.7, 121.8.

The Phenylmagnesium Bromide (1.0 M in THF, 0.56 mL, 0.56 mmol) and (Z) silane (0.4 mmol) was added to a suspension of LiCl (23.8 mg) in THF (0.8 mL) under N_2 . The reaction was stirred for 12 hours and quenched by adding saturated NH_4Cl solution (0.5 mL). The resulting solution was

extracted with Et2O (2 x 10 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified with silica gel flash column chromatography with Pe as eluent to give **3y** a colourless oil in 72% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.62 (m, 4H), 7.50-7.32 (m, 11H), 7.11 (d, *J* = 19.0 Hz, 1H), 6.73 (dt, *J* = 19.0, 3.2 Hz, 1H), 5.26 (d, *J* = 3.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 149.1, 137.9, 135.6, 133.6, 129.8, 128.64, 128.62, 128.1, 126.8, 121.5.

In a tube containing KHCO₃ (50 mg, 0.5 mmol) was added, THF (2.0 mL), MeOH (2.0 mL), 2 (0.5 mmol, 1.0 equiv.), then 30% H₂O₂ aq. (340 mg, 3.0 mmol). The resulting mixture was stirred at room temperature for 10 h before a saturated aqueous solution of Na₂S₂O₃ (5 mL) was added. The resulting solution was extracted with EtOAc and washed with brine (10 mL), dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent under vaccum, the residue was purified by flash column chromatography with Pe/EA (50/1) to give a colorless oil in 81% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.98-7.95 (m, 2H), 7.60-7.54 (m, 1H), 7.49-7.44 (m, 2H), 2.61 (s, 3H).

4. NMR and kinetic studies

Reaction of $Co(OAc)_2 \square 4H_2O$, dppb and PhSiH₃ (1:1:10):

A mixture of $Co(OAc)_2 \Box 4H_2O$ (5 mg, 0.2 mmol) and dppb (8.8 mg, 0.021 mmol) in 0.6 mL THF-d₈ was stirred for 20 minutes and then treated with PhSiH₃ (25 µL, 0.20 mmol). The reaction mixture was stirred for 1h and the obtained yellowish-orange mixture was filtered and subjected to NMR spectroscopy. The NMR sample was evaporated completely and the residue was re-dissolved in toluene and subjected to LIFDI-MS.

¹H NMR spectrum (in THF-d₈) of the reaction mixture of $Co(OAc)_2\Box 4H_2O$, dppb and PhSiH₃ (1:1:10).

LIFDI-MS of the reaction mixture of $Co(OAc)_2 \Box 4H_2O$, dppb and PhSiH₃ (1:1:10).in toluene:

Reaction of $Co(OAc)_2 \square 4H_2O$, ^{4-Me}bipy and PhSiH₃ (1:1:10):

A mixture of $Co(OAc)_2 \Box 4H_2O$ (5 mg, 0.2 mmol) and ^{4-Me}bipy (3.8 mg, 0.021 mmol) in 0.6 mL THF-d₈ was stirred for 20 minutes and then treated with PhSiH₃ (25 µL, 0.20 mmol). The reaction mixture was stirred for 1h and the obtained black brown mixture

¹H NMR spectrum (in THF-d₈) of the reaction mixture of $Co(OAc)_2 \Box 4H_2O$, ^{4-Me}bipy and PhSiH₃ (1:1:10).

was filtered and subjected to NMR spectroscopy. The NMR sample was evaporated completely and the residue was re-dissolved in toluene and subjected to LIFDI-MS.

Expanded region (0.5 – 8 ppm) of the ¹H NMR spectrum (in THF-d₈) of the reaction mixture of $Co(OAc)_2 \Box 4H_2O$, ^{4-Me}bipy and PhSiH₃ (1:1:10).

LIFDI-MS of the reaction mixture of $Co(OAc)_2 \square 4H_2O$, ^{4-Me}bipy and PhSiH₃ (1:1:10) in toluene:

Reaction of $Co(OAc)_2 \square 4H_2O$, ^{4-Me}bipy and PhSiH₃ (1:1:5):

¹H NMR spectrum of the reaction mixture of Co(OAc)₂ 4H₂O, ^{4-Me}bipy and PhSiH₃ (1:1:5).

A mixture of $Co(OAc)_2 \Box 4H_2O$ (5 mg, 0.2 mmol) and ^{4-Me}bipy (3.8 mg, 0.021 mmol) in 0.6 mL C₆D₆ was stirred for 10 minutes and then treated with PhSiH₃ (12,5 µL, 0.20

mmol). The reaction mixture was stirred for 1h and the obtained black brown mixture was filtered and subjected to NMR spectroscopy. The NMR sample was treated with $LiAlH_4$ (2 mg, 0.053 mmol) and stirred overnight. Color of the solution changed to red then to dark purple and a NMR was recorded.

¹H NMR spectrum of the reaction mixture of $Co(OAc)_2 \Box 4H_2O$, ^{4-Me}bipy and PhSiH₃ (1:1:5) upon treatment with LiAlH₄.

Kinetic studies

General procedure to acquire kinetic data: In an Ar-filled glovebox, a 5 mL screw-capped vial was charged with $Co(OAc)_2 \cdot 4H_2O$ (dissolved in 10 µL MeOH), ligand, phenylacetylene, dodecane (internal standard, 0.2 mmol), THF (1.0 mL) and a magnetic stirring bar. The timing was started upon addition of PhSiH₃, and 1 µL of the solution was drawn at intervals and diluted immediately with ethyl acetate to quench the reaction. The yield of the product was measured based on GC analysis.

Figure S1. Kinetic profile with varying phenylacetylene concentrations

 $\begin{array}{c} Co(OAc)_{2}\bullet 4H_{2}O~(0.1~mol\%)\\ \hline Ph \longrightarrow & + PhSiH_{3} & dppb~(0.1~mol\%)\\ \hline 0.4-0.8~mmol & 0.48~mmol & 1~mL~THF,~rt. \end{array} \qquad Ph \swarrow SiH_{2}Ph$

Figure S2. Kinetic profile with varying phenylsilane concentrations

Figure S3. Kinetic profile with varying cobalt concentrations

Figure S4. Kinetic profile with varying phenylacetylene concentrations

Figure S5. Kinetic profile with varying phenylsilane concentrations

Figure S6. Kinetic profile with varying phenylsilane concentrations

5. Reference

- A. K. Dash, I. Gourevich, J. Q. Wang, J. Wang, M. Kapon, M. S. Eisen, *Organometallics*, 2001, 20, 5084
- 2. Z. Mo, J. Xiao, Y. Gao, L. Deng, J. Am. Chem. Soc. 2014, 136, 17414.
- 3. W. J. Teo, C. Wang, Y. W. Tan, S. Ge. Angew. Chem. Int. Ed. 2017, 56, 4328.
- 4. a) J. Guo, Z. Lu, Angew. Chem. Int. Ed. 2016, 55, 10835; b) Z. Zuo, J. Yang, Z. Huang, Angew. Chem. Int. Ed. 2016, 55, 10839.
- 5. N. Hirone, H. Sanjiki, T. Tanaka, T. Hata, H. Urabe, Angew. Int. Chem. Ed. 2010, 49, 7762.
- 6. K. Tamao, N. Ishida, J. Organomet. Chem. 1984, 269, C37.

6. ¹H, ¹³C NMR spectrum

