ELECTRONIC SUPPLEMENTARY INFORMATION for:

Conformationally flexible arylethynyl bis-urea receptors bind disparate oxoanions with similar, high affinities

Lisa M. Eytel, Alexander C. Brueckner,[†] Jessica A. Lohrman, Michael M. Haley,* Paul H.-Y. Cheong,[†] and Darren W. Johnson*

Department of Chemistry & Biochemistry and Materials Science Institute University of Oregon, Eugene, Oregon 97403-1253 USA E-mail: haley@uoregon.edu; dwj@uoregon.edu; Fax: 541-346-0487; Tel: 541-346-1695

[†] Department of Chemistry

Oregon State University, Corvallis, Oregon 97331 USA E-mail: cheongh@oregonstate.edu; Fax: 541-737-2062; Tel: 541-737-6760

Table of Contents	
Experimental Procedures	S2
UV-Vis Titrations	S4
NMR Titrations	S30
Job's Plot Analysis	S36
Complete Authorship of Gaussian 09	S38
General Computational Procedure	S38
Computed Geometries	S39
References	S47
NMR Spectra	S48

Experimental Procedures

General methods. ¹H, ¹³C, and ¹⁹F NMR spectra were obtained on a Varian Mercury 300 MHz (¹H: 300.09 MHz), Inova 500 MHz (¹H: 500.10 MHz, ¹³C 125.75 MHz, ¹⁹F: 470.56 MHz), or Bruker Avance III HD 600 MHz NMR spectrometer with Prodigy multinuclear broadband BBO CryoProbe (¹H: 600.02 MHz, ¹³C: 150.89 MHz). Chemical shifts (δ) are expressed in ppm downfield from tetramethylsilane (TMS) using non-deutrated solvent present in the bulk deutrated solvent (CDCl₃: ¹H 7.26 ppm, ¹³C 77.16 ppm; *d*₆-DMSO: ¹H 2.50 ppm, ¹³C 39.52 ppm; *d*₆-acetone: ¹H 2.05 ppom, ¹³C 206.7 and 29.9 ppm). Mixed solvent systems were referenced to the most abundant solvent. All NMR spectra were processed using MestReNova NMR processing software. All oxygen-sensitive reactions were performed under an inert atmosphere of nitrogen using Schlenk techniques. Unless otherwise specified, all materials were obtained from TCI-America, Sigma-Aldrich, or Acros and used as received. Tetrabutylammonium salts were dried at 60 °C in vacuo prior to use. Aniline **4** was synthesized and desilated following known procedures.¹ 2,6-Pyridine receptor **2** was synthesized via known procedures.¹ 2,2'-Bipyridyl-6,6'-bis-ethynylaniline was synthesized following published procedures.²

Dianiline 6. To a sealable flask, 3,5-dibromopyridine (0.505 g, 2.13 mmol), CuI (0.099 g, 0.524 mmol), and Pd(PPh₃)₄ (0.212 g, 0.184 mmol) was added under nitrogen. A mixture of degassed DIPA (30 mL) and THF (30 mL) was added to the flask via cannula. The solution was continuously purged with N₂ for an additional 30 min. An N₂-purged solution of 4-*tert*-butyl-2-ethynylaniline (1.11 g, 6.41 mmol) in degassed DIPA (15 mL) and THF (15 mL) was then transferred into the flask via cannula. The mixture was stirred overnight at 55 °C under an inert atmosphere. The cooled solution was filtered through a 10 cm silica gel plug eluting with CH₂Cl₂ and then concentrated *in vacuo*. Column chromatography (2:1 hexanes:Et₂O) of the crude material afforded **6** (0.368 g, 41%) as an brown-orange solid. ¹H NMR (600 MHz, CDCl₃) δ 8.67 (s, 2H), 7.94 (s, 1H), 7.39 (d, *J* = 2.2 Hz, 2H), 7.23 (dd, *J* = 8.5, 2.2 Hz, 2H), 6.70 (d, *J* = 8.5 Hz, 2H), 4.18 (s, 4H), 1.30 (s, 18H). ¹³C NMR (151 MHz, CDCl₃) δ 150.48, 145.82, 141.17, 140.24, 128.99, 128.08, 120.47, 114.64, 106.53, 90.83, 90.15, 34.09, 31.51. HRMS (TOF-MS-ES⁺) for C₂₉H₃₁N₃ [M+H]⁺: calcd 422.2596, found 422.2587.

3,5-Pyridine receptor 1. In flame dried glassware under inert N₂ atmosphere, aniline **6** (0.240 g, 0.568 mmol) was dissolved in freshly distilled toluene (75 mL) and *p*-methoxyphenyl isocyanate (0.2 mL, 2.02 mmol) was added via syringe. The reaction mixture was stirred for 24 h at 55 °C. The reaction was cooled and the precipitate was isolated via vacuum filtration. The precipitate was washed with hexanes and dried to give **1** (0.209 g, 51%) as a yellow-white solid. ¹H NMR (500 MHz, *d*₆-acetone) δ 8.75 (s, 2H), 8.48 (s, 1H), 8.25 (d, *J* = 8.4 Hz, 2H), 8.18 (s, 1H), 7.91 (s, 1H), 7.57 (d, *J* = 2.5 Hz, 2H), 7.49 (dd, *J* = 8.9, 2.5 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 4H), 6.84 (d, *J* = 8.5 Hz, 4H), 3.74 (s, 6H), 1.34 (s, 18H). ¹³C NMR (151 MHz, *d*₆-acetone/DMSO) δ 155.70, 153.23, 151.65, 144.99, 141.36, 139.59, 139.57, 133.66, 127.96, 120.90, 120.53, 120.24, 114.57, 110.89, 91.41, 90.57, 55.48, 34.52, 31.36. HRMS (TOF-MS-ES⁺) for C4₄5H₄₅N₅O4 [M+H]⁺: calcd 720.3566, found 720.3559.

Bipyridine receptor 3. In flame dried glassware under inert N₂ atmosphere, 2,2'-bipyridyl-6,6'-bis-ethynylaniline (0.124 g, 0.248 mmol) was dissolved in freshly distilled toluene (50 mL) and *p*-methoxyphenyl isocyanate (0.150 mL, 1.52 mmol) was added via syringe. The reaction mixture was stirred at room temperature for 16 h. Hexanes was used to precipitate the crude product, which was then filtered and further washed with hexanes. A minimal amount of ethanol was then added to the crude product in a vial. The vial was sonicated and five drops of deionized water was added to re-precipitate the product. Receptor **3** was then isolated via vacuum filtration (0.104 g, 53%) as a cream-colored powder. ¹H NMR (500 MHz, *d*₆-acetone/DMSO) δ 9.28 (s, 2H), 8.55 (d, *J* = 7.9 Hz, 2H), 8.23 (s, 2H), 8.20 (d, *J* = 8.8 Hz, 2H), 8.07 (t, *J* = 7.8 Hz, 2H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.60 (d, *J* = 2.4 Hz, 2H), 7.52–7.44 (m, 6H), 6.88 (d, *J* = 8.5 Hz, 4H), 3.75 (s, 6H), 1.35 (s, 18H). ¹³C NMR (151 MHz, *d*₆-acetone/DMSO) δ 155.73, 155.26, 152.93, 144.77, 142.94, 139.33, 138.22, 133.31, 129.30, 128.72, 127.74, 120.88, 120.48, 120.09, 114.31, 110.55, 94.55, 85.76, 55.27, 34.25, 31.12. HRMS (TOF-MS-ES⁺) for C₅₀H₄₈N₆O₄ [M+H] ⁺: calcd 797.3815, found 797.3799.

Titrations

General Titration Procedures. Concentration of receptor was kept constant by preparing a stock solution of the receptor and performing a serial dilution with the receptor stock solution to dissolve the guest. Receptor concentration was maintained constant throughout the titration. Tetrabutylammonium salts, purchased from TCI America or SigmaAldrich, were dried by heating to 60 °C *in vacuo* before use. Hamilton gas-tight syringes were used for all titrations. Titrations were performed in triplicate and the reported association constants represent the average fits across all titrations. Representative data are provided for each receptor and anion.

UV-Vis Titration Conditions. UV-Vis titrations were carried out on an Agilent Technologies Cary 60 UV-Vis spectrometer. Water-saturated 10% DMSO/90% CHCl₃ v/v% was prepared using HPLC-grade solvents purchased from SigmaAldrich or Fisher Scientific. Association constants were determined by non-linear regression models using Open Data Fit.³ All host solutions in 10% DMSO/90% CHCl₃ started as deep, marigold-yellow solutions and transitioned to colorless over the course of the titrations. All host solutions in CHCN started as colorless and remained so over the course the titrations. The 10% DMSO/90% CHCl₃ spectra is more easily trackable when displayed as ε instead of absorbance. All data fit with change in absorbance values.

Tetrabutylammonium dihydrogenphosphate with 1. A concentrated solution of 1 (2.25 mg, [R] = 0.313 mM) in 10% DMSO/CHCl₃ (10.00 mL) was prepared. A serial dilution was then performed with 800 µL of 0.313 mM solution of 1 diluted to 10.00 mL to yield the stock solution of 1 ([R] = 25.0 µM). A 3.00 mL solution of TBAH₂PO₄ (2.14 mg, [G] = 2.10 mM) was prepared by solvation with the stock solution of 1. A serial dilution was then performed with 1200 µL of the 2.10 mM solution of TBAH₂PO₄ diluted to 3.00 mL with the stock solution of 1 to yield guest solution ([G] = 8.41 mM). The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[1] (M)	$[H_2PO_4^-](M)$	Equiv.
1	0	2.50E-05	0.00E+00	0.00
2	5	2.50E-05	2.39E-06	0.10
3	10	2.50E-05	4.78E-06	0.19
4	20	2.50E-05	9.50E-06	0.38
5	40	2.50E-05	1.88E-05	0.75
6	60	2.50E-05	2.79E-05	1.11
7	80	2.50E-05	3.67E-05	1.47
8	100	2.50E-05	4.54E-05	1.82
9	125	2.50E-05	5.60E-05	2.24
10	150	2.50E-05	6.64E-05	2.65
11	200	2.50E-05	8.62E-05	3.45
12	250	2.50E-05	1.05E-04	4.20
13	300	2.50E-05	1.23E-04	4.92
14	350	2.50E-05	1.40E-04	5.60
15	400	2.50E-05	1.56E-04	6.25
16	500	2.50E-05	1.87E-04	7.47
17	600	2.50E-05	2.15E-04	8.58
18	700	2.50E-05	2.40E-04	9.61
19	900	2.50E-05	2.85E-04	11.42
20	1100	2.50E-05	3.24E-04	12.98
21	1500	2.50E-05	3.88E-04	15.52

Table S1. Representative titration data for $H_2PO_4^-$ with **1**.

Figure S1. UV-Vis spectra of 1 titrated with H₂PO₄⁻ in 10% DMSO/CHCl₃.

Figure S2. Binding isotherm and Bindfit output for H₂PO₄⁻ titration with **1**.

Tetrabutylammonium hydrogensulfate with 1. A concentrated solution of **1** (2.25 mg, [R] = 0.313 mM) in 10% DMSO/CHCl₃ (10.00 mL) was prepared. A serial dilution was then performed with 800 µL of 0.313 mM solution of **1** diluted to 10.00 mL to yield the stock solution of **1** ([R] = 25.0 µM). A 3.00 mL solution of TBAHSO₄ (3.23 mg, [G] = 3.17 mM) was prepared by solvation with the stock solution of **1**. A serial dilution was then performed with 1200 µL of the 3.23 mM solution of TBAHSO₄ diluted to 3.00 mL with the stock solution of **1** to yield guest solution ([G] = 12.7 mM). The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[1] (M)	[HSO4 ⁻] (M)	Equiv.
1	0	2.50E-05	0.00E+00	0.00
2	5	2.50E-05	3.61E-06	0.14
3	10	2.50E-05	7.21E-06	0.29
4	20	2.50E-05	1.43E-05	0.57
5	40	2.50E-05	2.84E-05	1.13
6	60	2.50E-05	4.21E-05	1.68
7	80	2.50E-05	5.55E-05	2.22
8	100	2.50E-05	6.86E-05	2.74
9	125	2.50E-05	8.46E-05	3.38
10	150	2.50E-05	1.00E-04	4.01
11	200	2.50E-05	1.30E-04	5.20
12	250	2.50E-05	1.59E-04	6.34
13	300	2.50E-05	1.86E-04	7.43
14	350	2.50E-05	2.11E-04	8.46
15	400	2.50E-05	2.36E-04	9.44
16	500	2.50E-05	2.82E-04	11.28
17	600	2.50E-05	3.24E-04	12.96
18	700	2.50E-05	3.62E-04	14.50
19	900	2.50E-05	4.31E-04	17.23
20	1100	2.50E-05	4.90E-04	19.58
21	1500	2.50E-05	5.86E-04	23.42

Table S2. Representative titration data for HSO4⁻ with 1.

Figure S3. UV-Vis spectra of 1 titrated with HSO₄⁻ in 10% DMSO/CHCl₃.

Figure S4. Binding isotherm and Bindfit output for HSO₄⁻ titration with 1.

Tetrabutylammonium perchlorate with 1. A concentrated solution of 1 (2.27 mg, [R] = 0.285 mM) in 10% DMSO/CHCl₃ (10.00 mL) was prepared. A serial dilution was then performed with 900 µL of 0.285 mM solution of 1 diluted to 10.00 mL to yield the stock solution of 1 ($[R] = 25.6 \mu$ M). A 3.00 mL solution of TBAClO₄ (3.53 mg, [G] = 3.44 mM) was prepared by solvation with the stock solution of 1. A serial dilution was then performed with 1000 µL of the 3.53 mM solution of TBAClO₄ diluted to 3.00 mL with the stock solution of 1 to yield guest solution ([G] = 11.5 mM). The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[1] (M)	$[ClO_{4}^{-}](M)$	Equiv.
1	0	2.56E-05	0.00E+00	0.00
2	5	2.56E-05	3.27E-06	0.13
3	10	2.56E-05	6.52E-06	0.25
4	20	2.56E-05	1.30E-05	0.51
5	40	2.56E-05	2.56E-05	1.00
6	60	2.56E-05	3.80E-05	1.48
7	80	2.56E-05	5.01E-05	1.96
8	105	2.56E-05	6.49E-05	2.53
9	125	2.56E-05	7.65E-05	2.98
10	150	2.56E-05	9.06E-05	3.53
11	200	2.56E-05	1.18E-04	4.59
12	250	2.56E-05	1.43E-04	5.59
13	300	2.56E-05	1.68E-04	6.55
14	350	2.56E-05	1.91E-04	7.46
15	400	2.56E-05	2.13E-04	8.33
16	500	2.56E-05	2.55E-04	9.94
17	600	2.56E-05	2.93E-04	11.43
18	700	2.56E-05	3.28E-04	12.79
19	900	2.56E-05	3.90E-04	15.20
20	1100	2.56E-05	4.43E-04	17.27
21	1500	2.56E-05	5.29E-04	20.65

Table S3. Representative titration data for ClO₄⁻ with 1.

Figure S5. UV-Vis spectra of 1 titrated with ClO₄⁻ in 10% DMSO/CHCl₃.

Figure S6. Binding isotherm and Bindfit output for ClO₄⁻ titration with 1.

Tetrabutylammonium dihydrogenphosphate with 2. A concentrated solution of 2 (2.23 mg, [R] = 0.310 mM) in 10% DMSO/CHCl₃ (10.00 mL) was prepared. A serial dilution was then performed with 800 µL of 0.310 mM solution of 2 diluted to 10.00 mL to yield the stock solution of 2 ($[R] = 24.7 \text{ }\mu\text{M}$). A 3.00 mL solution of TBAH₂PO₄ (2.02 mg, [G] = 1.97 mM) was prepared by solvation with the stock solution of 2 to prepare guest solution. The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[2] (M)	$[H_2PO_4^-](M)$	Equiv.
1	0	2.48E-05	0.00E+00	0.00
2	5	2.48E-05	5.61E-06	0.23
3	10	2.48E-05	1.12E-05	0.45
4	20	2.48E-05	2.23E-05	0.90
5	40	2.48E-05	4.40E-05	1.78
6	60	2.48E-05	6.53E-05	2.64
7	80	2.48E-05	8.62E-05	3.48
8	100	2.48E-05	1.07E-04	4.30
9	125	2.48E-05	1.31E-04	5.30
10	150	2.48E-05	1.56E-04	6.28
11	200	2.48E-05	2.02E-04	8.16
12	250	2.48E-05	2.46E-04	9.94
13	300	2.48E-05	2.88E-04	11.64
14	350	2.48E-05	3.28E-04	13.25
15	400	2.48E-05	3.67E-04	14.80
16	500	2.48E-05	4.38E-04	17.67
17	600	2.48E-05	5.03E-04	20.30
18	700	2.48E-05	5.63E-04	22.72
19	900	2.48E-05	6.69E-04	27.01
20	1100	2.48E-05	7.61E-04	30.69
21	1500	2.48E-05	9.10E-04	36.70

Table S4. Representative titration data for H₂PO₄⁻ with **2**.

Figure S7. Binding isotherm and Bindfit output for H₂PO₄⁻ titration with 2.

Tetrabutylammonium hydrogensulfate with 2. A concentrated solution of **2** (2.58 mg, [R] = 0.358 mM) in 10% DMSO/CHCl₃ (10.00 mL) was prepared. A serial dilution was then performed with 700 µL of 0.358 mM solution of **2** diluted to 10.00 mL to yield the stock solution of **2** ($[R] = 25.1 \mu$ M). A 3.00 mL solution of TBAHSO₄ (2.27 mg, [G] = 1.34 mM) was prepared by solvation with the stock solution of **2** to yield the guest solution. The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[2] (M)	[HSO4 ⁻] (M)	Equiv.
1	0	2.51E-05	0.00E+00	0.00
2	5	2.51E-05	3.81E-06	0.15
3	10	2.51E-05	7.60E-06	0.30
4	15	2.51E-05	1.14E-05	0.45
5	35	2.51E-05	2.62E-05	1.05
6	55	2.51E-05	4.07E-05	1.62
7	75	2.51E-05	5.50E-05	2.19
8	95	2.51E-05	6.89E-05	2.74
9	115	2.51E-05	8.25E-05	3.29
10	140	2.51E-05	9.90E-05	3.95
11	165	2.51E-05	1.15E-04	4.59
12	215	2.51E-05	1.46E-04	5.83
13	265	2.51E-05	1.76E-04	7.01
14	315	2.51E-05	2.04E-04	8.13
15	365	2.51E-05	2.31E-04	9.20
16	415	2.51E-05	2.56E-04	10.22
17	515	2.51E-05	3.04E-04	12.12
18	615	2.51E-05	3.48E-04	13.86
19	715	2.51E-05	3.88E-04	15.46
20	915	2.51E-05	4.59E-04	18.30
21	1115	2.51E-05	5.20E-04	20.74

Table S5. Representative titration data for HSO4⁻ with 2.

Figure S8. UV-Vis spectra of 2 titrated with HSO₄⁻ in 10% DMSO/CHCl₃.

Figure S9. Binding isotherm and Bindfit output for HSO₄⁻ titration with 2.

Tetrabutylammonium perchlorate with 2. A concentrated solution of 2 (2.58 mg, [R] = 0.358 mM) in 10% DMSO/CHCl₃ (10.00 mL) was prepared. A serial dilution was then performed with 6500 µL of 0.358 mM solution of 2 diluted to 10.00 mL to yield the stock solution of 2 ($[R] = 23.3 \mu$ M). A 3.00 mL solution of TBAClO₄ (2.79 mg, $[G] = 1.63 \mu$ M) was prepared by solvation with the stock solution of 2 to yield the guest solution. The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[2] (M)	$[ClO_4^-](M)$	Equiv.
1	0	2.33E-05	0.00E+00	0.00
2	5	2.33E-05	4.65E-06	0.20
3	10	2.33E-05	9.27E-06	0.40
4	20	2.33E-05	1.84E-05	0.79
5	40	2.33E-05	3.65E-05	1.57
6	60	2.33E-05	5.41E-05	2.32
7	85	2.33E-05	7.56E-05	3.25
8	100	2.33E-05	8.82E-05	3.79
9	125	2.33E-05	1.09E-04	4.67
10	150	2.33E-05	1.29E-04	5.53
11	200	2.33E-05	1.67E-04	7.19
12	250	2.33E-05	2.04E-04	8.76
13	300	2.33E-05	2.39E-04	10.25
14	350	2.33E-05	2.72E-04	11.68
15	450	2.33E-05	3.34E-04	14.33
16	550	2.33E-05	3.90E-04	16.75
17	700	2.33E-05	4.66E-04	20.02
18	900	2.33E-05	5.54E-04	23.79
19	1100	2.33E-05	6.30E-04	27.04
20	1400	2.33E-05	7.25E-04	31.14
21	1800	2.33E-05	8.27E-04	35.52

Table S6. Representative titration data for ClO₄⁻ with 2.

Figure S10. UV-Vis spectra of 2 titrated with ClO₄⁻ in 10% DMSO/CHCl₃.

Figure S11. Binding isotherm and Bindfit output for ClO₄⁻ titration with **2**.

Tetrabutylammonium dihydrogenphosphate with 3. A concentrated solution of 3 (2.05 mg, [R] = 0.257 mM) in 10% DMSO/CHCl₃ (10.00 mL) was prepared. A serial dilution was then performed with 975 µL of 0.257 mM solution of 3 diluted to 10.00 mL to yield the stock solution of 3 ([R] = 25.1 µM). A 3.00 mL solution of TBAH₂PO₄ (2.46 mg, [G] = 2.42 mM) was prepared by solvation with the stock solution of 3. A serial dilution was then performed with 500 µL of the 2.42 mM solution of TBAH₂PO₄ diluted to 3.00 mL with the stock solution of 3 to yield guest solution ([G] = 4.03 mM). The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[3] (M)	$[H_2PO_4^{-}](M)$	Equiv.
1	0	2.51E-05	0.00E+00	0.00
2	5	2.51E-05	1.15E-06	0.05
3	10	2.51E-05	2.29E-06	0.09
4	20	2.51E-05	4.55E-06	0.18
5	40	2.51E-05	9.00E-06	0.36
6	60	2.51E-05	1.33E-05	0.53
7	80	2.51E-05	1.76E-05	0.70
8	100	2.51E-05	2.18E-05	0.87
9	125	2.51E-05	2.68E-05	1.07
10	150	2.51E-05	3.18E-05	1.27
11	200	2.51E-05	4.13E-05	1.65
12	250	2.51E-05	5.03E-05	2.01
13	300	2.51E-05	5.89E-05	2.35
14	350	2.51E-05	6.71E-05	2.68
15	400	2.51E-05	7.49E-05	2.99
16	500	2.51E-05	8.95E-05	3.57
17	600	2.51E-05	1.03E-04	4.10
18	700	2.51E-05	1.15E-04	4.59
19	900	2.51E-05	1.37E-04	5.45
20	1100	2.51E-05	1.55E-04	6.20
21	1500	2.51E-05	1.86E-04	7.41

Table S7. Representative titration data for H₂PO₄⁻ with **3**.

Figure S12. Binding isotherm and Bindfit output for H₂PO₄⁻ titration with 3.

Figure S13. MatLab fit of binding isotherm for H₂PO₄⁻ titration with 3.

Tetrabutylammonium hydrogensulfate with 3. A concentrated solution of 3 (2.27 mg, [R] = 0.285 mM) in 10% DMSO/CHCl₃ (10.00 mL) was prepared. A serial dilution was then performed with 800 μ L of 0.285 mM solution of 3 diluted to 10.00 mL to yield the stock solution of 3 ([R] = 22.8 μ M). A 3.00 mL solution of TBAHSO₄ (2.87 mg, [G] = 2.82 mM) was prepared by solvation with the stock solution of 3. A serial dilution was then performed with 1000 μ L of the 2.82 mM solution of TBAHSO₄ diluted to 3.00 mL with the stock solution of 3 to yield guest solution ([G] = 9.39 mM). The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[3] (M)	[HSO ₄ ⁻] (M)	Equiv.
1	0	2.28E-05	0.00E+00	0.00
2	5	2.28E-05	2.68E-06	0.12
3	10	2.28E-05	5.34E-06	0.23
4	20	2.28E-05	1.06E-05	0.47
5	40	2.28E-05	2.10E-05	0.92
6	60	2.28E-05	3.11E-05	1.37
7	80	2.28E-05	4.11E-05	1.80
8	105	2.28E-05	5.32E-05	2.33
9	125	2.28E-05	6.26E-05	2.75
10	150	2.28E-05	7.41E-05	3.25
11	200	2.28E-05	9.63E-05	4.23
12	250	2.28E-05	1.17E-04	5.15
13	300	2.28E-05	1.37E-04	6.03
14	350	2.28E-05	1.57E-04	6.87
15	400	2.28E-05	1.75E-04	7.67
16	500	2.28E-05	2.09E-04	9.16
17	600	2.28E-05	2.40E-04	10.52
18	700	2.28E-05	2.68E-04	11.78
19	900	2.28E-05	3.19E-04	14.00
20	1100	2.28E-05	3.63E-04	15.91
21	1500	2.28E-05	4.33E-04	19.02

Table S8. Representative titration data for HSO₄⁻ with **3**.

Figure S14. UV-Vis spectra of 3 titrated with HSO₄⁻ in 10% DMSO/CHCl₃.

Figure S15. Binding isotherm and Bindfit output for HSO₄⁻ titration with 3.

Figure S16. MatLab fit of binding isotherm for HSO₄⁻ titration with 3.

Tetrabutylammonium perchlorate with 3. A concentrated solution of 3 (2.27 mg, [R] = 0.285 mM) in 10% DMSO/CHCl₃ (10.00 mL) was prepared. A serial dilution was then performed with 900 µL of 0.285 mM solution of 3 diluted to 10.00 mL to yield the stock solution of 3 ($[R] = 25.6 \mu$ M). A 2.00 mL solution of TBAClO₄ (3.50 mg, $[G] = 5.12 \mu$ M) was prepared by solvation with the stock solution of 3. A serial dilution was then performed with 700 µL of the 5.12 mM solution of TBAClO₄ diluted to 3.00 mL with the stock solution of 3 to yield guest solution ($[G] = 11.9 \mu$ M). The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[3] (M)	$[ClO_4^-](M)$	Equiv.
1	0	2.56E-05	0.00E+00	0.00
2	5	2.56E-05	3.40E-06	0.13
3	10	2.56E-05	6.79E-06	0.26
4	20	2.56E-05	1.35E-05	0.53
5	40	2.56E-05	2.67E-05	1.04
6	60	2.56E-05	3.96E-05	1.54
7	80	2.56E-05	5.22E-05	2.04
8	105	2.56E-05	6.76E-05	2.64
9	125	2.56E-05	7.96E-05	3.11
10	150	2.56E-05	9.43E-05	3.68
11	200	2.56E-05	1.22E-04	4.78
12	250	2.56E-05	1.49E-04	5.82
13	300	2.56E-05	1.75E-04	6.82
14	350	2.56E-05	1.99E-04	7.76
15	400	2.56E-05	2.22E-04	8.67
16	500	2.56E-05	2.65E-04	10.35
17	600	2.56E-05	3.05E-04	11.89
18	700	2.56E-05	3.41E-04	13.31
19	900	2.56E-05	4.06E-04	15.82
20	1100	2.56E-05	4.61E-04	17.98
21	1500	2.56E-05	5.51E-04	21.50

Table S9. Representative titration data for ClO_4^- with **3**.

Figure S17. UV-Vis spectra of 3 titrated with ClO₄⁻ in 10% DMSO/CHCl₃.

Figure S18. Binding isotherm and Bindfit output for ClO₄⁻ titration with 3.

Figure S19. MatLab fit of binding isotherm for ClO₄⁻ titration with 3.

Acetonitrile titrations:

Tetrabutylammonium dihydrogenphosphate with 1. A concentrated solution of 1 (2.43 mg, [R] = 0.338 mM) in CHCN (10.00 mL) was prepared. A serial dilution was then performed with 600 µL of 0.338 mM solution of 1 diluted to 10.00 mL to yield the stock solution of 1 ([R] = 20.3 µM). A 3.00 mL solution of TBAH₂PO₄ (2.80 mg, [G] = 2.75 mM) was prepared by solvation with the stock solution of 1. A serial dilution was then performed with 350 µL of the 2.75 mM solution of TBAH₂PO₄ diluted to 2.00 mL with the stock solution of 1 to yield guest solution ([G] = 0.481 mM). The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[1] (M)	$[H_2PO_4^-](M)$	Equiv.
1	0	2.03E-05	0.00E+00	0.00
2	5	2.03E-05	1.37E-06	0.07
3	10	2.03E-05	2.73E-06	0.13
4	20	2.03E-05	5.44E-06	0.27
5	40	2.03E-05	1.08E-05	0.53
6	60	2.03E-05	1.60E-05	0.79
7	80	2.03E-05	2.10E-05	1.04
8	100	2.03E-05	2.60E-05	1.28
9	125	2.03E-05	3.21E-05	1.58
10	150	2.03E-05	3.80E-05	1.88
11	200	2.03E-05	4.94E-05	2.44
12	250	2.03E-05	6.01E-05	2.97
13	300	2.03E-05	7.04E-05	3.48
14	350	2.03E-05	8.02E-05	3.96
15	400	2.03E-05	8.95E-05	4.42
16	500	2.03E-05	1.07E-04	5.28
17	600	2.03E-05	1.23E-04	6.07
18	700	2.03E-05	1.37E-04	6.79
19	900	2.03E-05	1.63E-04	8.07
20	1100	2.03E-05	1.86E-04	9.17
21	1500	2.03E-05	2.22E-04	10.97

Table S10. Representative titration data for H₂PO₄⁻ with 1.

Figure S20. UV-Vis spectra of 1 titrated with H₂PO₄⁻ in CHCN.

Figure S21. Binding isotherm and Bindfit output for H₂PO₄⁻ titration with 1.

Tetrabutylammonium hydrogensulfate with 1. A concentrated solution of 1 (2.43 mg, [R] = 0.338 mM) in CHCN (10.00 mL) was prepared. A serial dilution was then performed with 500 μ L of 0.338 mM solution of 1 diluted to 10.00 mL to yield the stock solution of 1 ([R] = 16.9 μ M). A 2.015 mL solution of TBAHSO₄ (6.54 mg, [G] = 9.56 mM) was prepared by solvation with the stock solution of 1. A serial dilution was then performed with 1400 μ L of the 9.56 mM solution of TBAHSO₄ diluted to 3.046 mL with the stock solution of 1 to yield guest solution ([G] = 4.39 mM). The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[1] (M)	[HSO4 ⁻] (M)	Equiv.
1	0	1.69E-05	0.00E+00	0.00
2	5	1.69E-05	1.25E-05	0.74
3	10	1.69E-05	2.50E-05	1.48
4	20	1.69E-05	4.97E-05	2.94
5	40	1.69E-05	9.82E-05	5.82
6	60	1.69E-05	1.46E-04	8.63
7	80	1.69E-05	1.92E-04	11.38
8	100	1.69E-05	2.38E-04	14.07
9	125	1.69E-05	2.93E-04	17.36
10	150	1.69E-05	3.47E-04	20.56
11	200	1.69E-05	4.51E-04	26.71
12	250	1.69E-05	5.49E-04	32.55
13	300	1.69E-05	6.43E-04	38.11
14	350	1.69E-05	7.32E-04	43.40
15	400	1.69E-05	8.18E-04	48.44
16	500	1.69E-05	9.77E-04	57.86
17	600	1.69E-05	1.12E-03	66.48
18	700	1.69E-05	1.26E-03	74.40
19	900	1.69E-05	1.49E-03	88.43
20	1100	1.69E-05	1.70E-03	100.50
21	1500	1.69E-05	2.03E-03	120.18
22	1900	1.69E-05	2.29E-03	135.54
23	2300	1.69E-05	2.50E-03	147.87

 Table S11. Representative titration data for HSO₄⁻ with 1.

Figure S22. UV-Vis spectra of 1 titrated with HSO₄⁻ in CHCN.

Figure S23. Binding isotherm and Bindfit output for HSO₄⁻ titration with 1.

Tetrabutylammonium perchlorate with 1. A concentrated solution of 1 (2.43 mg, [R] = 0.338 mM) in CHCN (10.00 mL) was prepared. A serial dilution was then performed with 300 µL of 0.338 mM solution of 1 diluted to 10.00 mL to yield the stock solution of 1 ($[R] = 10.1 \mu$ M). A 2.00 mL solution of TBAClO₄ (6.53 mg, [G] = 9.55 mM) was prepared by solvation with the stock solution of 1. A serial dilution was then performed with 1300 µL of the 9.55 mM solution of TBAClO₄ diluted to 3.00 mL with the stock solution of 1 to yield guest solution ([G] = 4.14 mM). The starting volume in the cuvette was 2.0 mL.

	Guest (µL)	[1] (M)	$[ClO_{4}^{-}](M)$	Equiv.
1	0	1.01E-05	0.00E+00	0.00
2	5	1.01E-05	1.18E-05	1.16
3	10	1.01E-05	2.35E-05	2.32
4	20	1.01E-05	4.68E-05	4.62
5	40	1.01E-05	9.25E-05	9.13
6	60	1.01E-05	1.37E-04	13.55
7	80	1.01E-05	1.81E-04	17.86
8	100	1.01E-05	2.24E-04	22.09
9	125	1.01E-05	2.76E-04	27.24
10	150	1.01E-05	3.27E-04	32.26
11	200	1.01E-05	4.24E-04	41.91
12	250	1.01E-05	5.17E-04	51.08
13	300	1.01E-05	6.06E-04	59.80
14	350	1.01E-05	6.90E-04	68.11
15	400	1.01E-05	7.70E-04	76.02
16	500	1.01E-05	9.20E-04	90.81
17	600	1.01E-05	1.06E-03	104.33
18	700	1.01E-05	1.18E-03	116.75
19	900	1.01E-05	1.41E-03	138.78
20	1100	1.01E-05	1.60E-03	157.72
21	1500	1.01E-05	1.91E-03	188.60

 Table S12. Representative titration data for ClO₄⁻ with 1.

Figure S24. UV-Vis spectra of 1 titrated with ClO₄⁻ in CHCN.

Figure S25. Binding isotherm ClO_4^- titration with 1. The change in absorbance is negligible. Fitting the data across a series of titrations with ClO_4^- in CHCN resulted in an error for K_a value.

¹H NMR Titration Conditions. ¹H NMR titrations were carried out on an Inova 500 MHz NMR spectrometer (¹H: 500.10 MHz). Chemical shifts (δ) are expressed in ppm downfield from tetramethylsilane (TMS) using non-deutrated solvent present in the bulk deutrated solvent (CDCl₃, ¹H 7.26 ppm; *d*₆-DMSO: ¹H 2.50 ppm). Mixed solvent systems were referenced to the most abundant solvent. All NMR spectra were processed using MestReNova NMR processing software. Association constants were determined using step-wise non-linear regression fitting in MatLab.⁴

Tetrabutylammonium dihydrogenphosphate with 1. A concentrated solution of 1 (2.09 mg, [R] = 0.968 mM) in 10% *d*₆-DMSO/CDCl₃ (3.00 mL) was prepared to yield the stock solution of 1. This solution (2.34 mL) was used in the dilution of TBAH₂PO₄ guest solution (12.84 mg, [G] = 16.2 mM). The remaining stock solution (0.600 mL) was used as the starting volume in the NMR tube.

	Creat (I)			Emire	Hc	H^{d}	Ha	H^{b}
	Guest (µL)		$[H_2PO_4](M)$	Equiv.	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)
1	0	9.68E-04	0.00E+00	0.00	8.635	8.592	8.024	7.714
2	5	9.68E-04	1.34E-04	0.14	8.829	8.575	8.125	7.819
3	10	9.68E-04	2.65E-04	0.27	9.140	8.551	8.274	7.993
4	15	9.68E-04	3.94E-04	0.41	9.444	8.529	8.409	8.152
5	20	9.68E-04	5.21E-04	0.54	9.705	8.510	8.484	8.307
6	25	9.68E-04	6.47E-04	0.67	9.927	8.496	8.626	8.419
7	30	9.68E-04	7.70E-04	0.80	10.099	8.483	8.693	8.517
8	35	9.68E-04	8.91E-04	0.92	10.215	8.472	8.733	8.581
9	40	9.68E-04	1.01E-03	1.04	10.317	8.464	8.773	8.642
10	50	9.68E-04	1.24E-03	1.28	10.455	8.453	8.824	8.708
11	60	9.68E-04	1.47E-03	1.52	10.558	8.446	8.851	8.774
12	80	9.68E-04	1.90E-03	1.97	10.639	8.436	8.877	8.811
13	100	9.68E-04	2.31E-03	2.39	10.688	8.430	8.890	8.838
14	150	9.68E-04	3.23E-03	3.34	10.801	8.442	8.902	8.902
15	200	9.68E-04	4.04E-03	4.18	10.847	8.418	8.905	8.905
16	300	9.68E-04	5.39E-03	5.57	10.831	8.415	8.904	8.904
17	400	9.68E-04	6.47E-03	6.68	10.852	8.412	8.904	8.904
18	600	9.68E-04	8.08E-03	8.35	10.925	8.411	8.906	8.906

Table S13. Representative titration data for H₂PO₄⁻ with 1.

Figure S26. Binding isotherm for $H_2PO_4^-$ titration with 1 in 10% *d*₆-DMSO/CDCl₃ by ¹H NMR.

Figure S27. MatLab fit to a 2:1 model of the binding isotherm for H₂PO₄⁻ titration with 1.

Figure S28. MatLab fit to a 1:1 model of the binding isotherm for $H_2PO_4^-$ titration with 1. Improper fitting model due to lack of randomness of residuals.

L.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 δ/ppm

Figure S29. ¹H NMR spectra of $H_2PO_4^-$ titration with 1.

Tetrabutylamamonium bromide with 1. A stock solution of **1** (2.19 mg, [R] = 1.01 mM) in 10% *d*₆-DMSO/CDCl₃ (3.00 mL) was prepared. This solution (2.34 mL) was used in the dilution of TBABr guest solution (28.1 mg, [G] = 37.3 mM). The remaining stock solution (0.600 mL) was used as the starting volume in the NMR tube.

	Cuest (uI)		$[\mathbf{D}_{m-1}](\mathbf{M})$	Eavin	Hc	H^{d}	H^{b}	H^{a}
_	Guest (µL)			Equiv.	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)
1	0	1.01E-03	0.00E+00	0.00	8.628	8.596	8.018	7.714
2	5	1.01E-03	3.08E-04	0.30	8.657	8.592	8.056	7.717
3	10	1.01E-03	6.12E-04	0.60	8.681	8.589	8.089	7.717
4	15	1.01E-03	9.10E-04	0.90	8.701	8.584	8.116	7.718
5	20	1.01E-03	1.20E-03	1.19	8.723	8.583	8.145	7.719
6	25	1.01E-03	1.49E-03	1.47	8.744	8.580	8.174	7.720
7	30	1.01E-03	1.78E-03	1.75	8.763	8.578	8.198	7.721
8	35	1.01E-03	2.06E-03	2.03	8.780	8.575	8.220	7.722
9	40	1.01E-03	2.33E-03	2.30	8.795	8.573	8.240	7.223
10	50	1.01E-03	2.87E-03	2.83	8.821	8.569	8.276	7.726
11	60	1.01E-03	3.39E-03	3.34	8.845	8.566	8.308	7.728
12	80	1.01E-03	4.39E-03	4.33	8.885	8.561	8.363	7.731
13	100	1.01E-03	5.33E-03	5.26	8.920	8.559	8.411	7.733
14	150	1.01E-03	7.46E-03	7.36	8.985	8.550	8.506	7.739
15	200	1.01E-03	9.33E-03	9.20	9.031	8.546	8.565	7.743
16	300	1.01E-03	1.24E-02	12.26	9.094	8.538	8.655	7.747
17	400	1.01E-03	1.49E-02	14.71	9.123	8.535	8.682	7.751
18	600	1.01E-03	1.87E-02	18.39	9.160	8.532	8.722	7.756

Table S14. Representative titration data for Br⁻ with 1.

Figure S30. Binding isotherm for Br⁻ titration with 1 in 10% d_6 -DMSO/CDCl₃ by ¹H NMR.

Figure S31. MatLab fit of binding isotherm for Br⁻ titration with 1.

Figure S32. ¹H NMR spectra of Br⁻ titration with 1.

Job's Plot Analysis

Job's Plot of H₂PO₄ with 2

Figure S33. Binding isotherm for H₂PO₄⁻ titration with 2 in 10% DMSO/CHCl₃ by UV-Vis.

Job's Plot of ClO₄ with 2

Figure S34. Binding isotherm for ClO₄⁻ titration with 2 in 10% DMSO/CHCl₃ by UV-Vis.

Mole Fraction Host

Job's Plot of H₂PO₄ with 3

Job's Plot of ClO₄ with 3

Binding isotherm for ClO_4^- titration with **3** in 10% DMSO/CHCl₃ by UV-Vis.

Complete Authorship of Gaussian 09

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M.
Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J.
V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi,
J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N.
Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E.
Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T.
Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.
Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin,
K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.⁵

General Computational Procedure

Manual, exhaustive conformation searches were performed to locate all relevant structures. All conformers were optimized using the Gaussian 09 computational package (see above reference) using PBE⁵ with the 6-31G(d)⁶ basis set for all atoms. Minima were confirmed with vibrational frequency computations, with all structures having zero imaginary vibrational frequencies. Frequencies were computed at 1 atm and 298.15 K (25 °C) in order to match experimental reaction conditions as close as possible. All images were generated with PyMOL⁷ with distances in Ångströms (Å).

Computed Geometries

Figure S37. Optimized hosts with H₂PO₄⁻.

[3,5-pyridine core•••H₂PO₄⁻]

Jsing Gaussian 09: AM64L-G09RevD.01 24-Apr-2013				
<pre># pbepbe/6-31G*/auto gfprint gfinput scf=(direct,tight,maxcycle=300,xqc) opt=(maxcycle=250) freq=noraman iop(1/8=18) Temperature=298.15 #N Geom=AllCheck Guess=TCheck SCRF=Check Test GenChk RPBEPBE/6-31G(d)/Auto Freq</pre>				
Pointgroup= C1 Stoichiometry= C45H47N5O8P(1-) C1[X(C45H47N5O8P)] #Atoms= 106 Charge = -1 Multiplicity = 1				
SCF Energy= -2956.88311529 Predicted Change= -4.813685D-08				
Optimization completed. {Found 1 times} Item Max Val. Criteria Pass? RMS Val. Criteria Pass? Force 0.00001 0.00045 [YES] 0.00000 0.00300 [YES] Displ 0.00349 0.00180 [NO] 0.00349 0.00180 [YES]				
Atomic Coordinates (Angstroms)				
Type A I L				

С	-1.612533	-5.410922	-0.181670
Н	-2.566112	-5.953815	-0.156234
Ν	-0.495643	-6.155740	-0.151178
С	0.679849	-5.508856	-0.162129
Н	1.583435	-6.130829	-0.122005
С	0.811234	-4.093871	-0.218566
С	2.101653	-3.501664	-0.195091
С	3.247164	-3.052594	-0.149496
С	4.613580	-2.665090	-0.137395
С	-0.372017	-3.328524	-0.276966
Н	-0.345049	-2.236162	-0.342888
С	-1.617575	-3.992137	-0.240195
С	-2.840331	-3.271509	-0.233372
Ċ	-3.911540	-2.667467	-0.191991
Ċ	-5.161960	-1.999071	-0.133954
Ċ	5.581468	-3.676327	-0.353223
Н	5.200721	-4.692832	-0.501453
C	6.959311	-3.421847	-0.393729
Ċ	7.954187	-4.572629	-0.644049
Č	7.795025	-5.646808	0.460433
н	6.770240	-6.054429	0.487184
Н	8.012555	-5.221717	1.455813
Н	8 489873	-6 489346	0 284975
C	9 418936	-4 089212	-0.635589
н	10 094067	-4 944633	-0.816442
Н	9 696482	-3 642240	0 335231
Н	9 607640	-3 340722	-1 425101
C	7 665382	-5 214344	-2 023913
н	7 791326	-4 475576	-2 834496
Н	6 634580	-5 602855	-2.082765
Н	8 356952	-6.056615	-2 212813
C	7 350908	-2 081027	-0 203003
Н	8 411377	-1.811036	-0.222155
C	6 430314	-1 054093	0.021939
н	6 767281	-0.027212	0.157155
C	5 040889	-1 310476	0.067438
N	4 089439	-0 325649	0 323405
н	3 122021	-0.635460	0 503318
C	4 328251	1 065486	0 354210
N	3 209284	1 765494	0.755166
н	2 370678	1 201718	1 015061
C	3 077214	3 162124	0.853741
C	-5 256548	-0 567917	-0 193065
N	-4 081113	0.177091	-0.286527
Н	-3 190826	-0 339052	-0 193582
C	-3 988065	1 558060	-0 538910
N	-2 665086	1.970625	-0.601011
Н	-1 941831	1 219079	-0 531238
C	-2 193266	3 251561	-0 957589
C C	-6 545576	0 004948	-0 144063
н	-6 629625	1 089652	-0 200926
C	-7 686851	-0 796020	-0.033343
н	-8 655690	-0 288509	0.002876
C	-7 623073	-2.202238	0.037613
C C	-8 866921	-3 102935	0 172165
U	0.000721	5.102755	0.1/2100

С	-8.766520	-3.930796	1.477611
Н	-8.723484	-3.269164	2.360199
Н	-7.862705	-4.563227	1.489323
Н	-9.645215	-4.593951	1.584934
С	-8.942273	-4.067634	-1.037454
Н	-9.031461	-3.505175	-1.983170
Н	-9.819828	-4.735032	-0.948145
Н	-8.042243	-4.701692	-1.108452
С	-10.175057	-2.287059	0.219546
Н	-11.037179	-2.970227	0.319721
Н	-10.321823	-1.695071	-0.700922
Н	-10.193818	-1.594967	1.079716
С	-6.341758	-2.770583	-0.017648
Н	-6.213701	-3.857568	0.027232
0	-4.966428	2.306249	-0.675603
0	5.417098	1.578982	0.053375
С	4.066887	4.089733	0.446980
Н	5.013085	3.715907	0.055615
С	3.824478	5.461775	0.546657
Н	4.585194	6.182134	0.227374
С	2.604204	5.950412	1.048324
Ō	2.464983	7.328458	1.069793
Ċ	1.206608	7.834239	1.501135
Н	0.380591	7.501192	0.842324
Н	1.290484	8.931187	1.450547
Н	0.977629	7.537048	2.543995
C	1.624559	5.035873	1.469671
Ĥ	0.659049	5.373703	1.854023
C	1.863215	3.659203	1.373345
Ĥ	1.081142	2.959259	1.689764
C	-0.814493	3.376467	-1.223864
Н	-0.173225	2.490023	-1.168022
C	-0.242975	4.613335	-1.545863
Ĥ	0.835345	4.666618	-1.712263
C	-1.052527	5.760244	-1.609754
0	-0.598061	7.033082	-1.899730
Ċ	0.765705	7.151049	-2.298795
Н	0.904602	8.207225	-2.578000
Н	0.989311	6.509375	-3.173607
Н	1.464601	6.899345	-1.478794
C	-2.431247	5.641297	-1.354290
Н	-3.052950	6.540768	-1.413887
C	-3.002680	4.409057	-1.029067
Н	-4.072072	4.321373	-0.836066
P	-0.258074	-0.029645	1.314522
0	1.263926	-0.124987	1.315416
Õ	-0.650355	1.430063	2.006359
Ĥ	-1.504242	1.730905	1.625983
0	-0.836296	-1.153666	2.380852
Ĥ	-0.080810	-1.406154	2.950721
0	-1.082975	-0.181507	0.030400

Statistical Thermodynamic Analysis

_

Temperature= 298.150 Kelvin Pressure= 1.00000 Atm

SCF Energy= -2956.88311529 Predicted Change= -4.813685D-08

_

Zero-point correct	ction (ZPE)=	-2956.0544	0.82871
Enthalpy (H)=	0)=	-2955.9945 -2955.9934	0.88874 0.88969
Gibbs Free Energ	gy (G)=	-2956.1557	0.72740
Frequencies	7.1336	11.5027	14.1963

[2,6-pyridine core•••H₂PO₄⁻]

Using Gaussian 09: AM64L-G09RevD.01 24-Apr-2013

pbepbe/6-31G*/auto gfprint gfinput scf=(direct,tight,maxcycle=300,xqc)
opt=(maxcycle=250) freq=noraman iop(1/8=18) Temperature=298.15
#N Geom=AllCheck Guess=TCheck SCRF=Check Test GenChk RPBEPBE/6-31G(d)/Auto
Freq

Pointgroup= C1 Stoichiometry= C45H47N5O8P(1-) C1[X(C45H47N5O8P)] #Atoms= 106 Charge = -1 Multiplicity = 1

SCF Energy= -2956.88200469 Predicted Change= -1.501878D-08

Optimiz	zation comp	leted.	{Found	d 1	times}	
Item	Max Val.	Criteria	Pass?	RMS Val.	Criteria	Pass?
Force	0.00001	0.00045	[YES]	0.00000	0.00030	[YES]
Displ	0.00273	0.00180	[NO]	0.00273	0.00180	[YES]

At	comic C	oordinates (Ar	ngstroms)	
T	ype X	Y	Z	
	_1 706461	-5 136709	1 603766	
н	-2 696919	-5 511445	1.875549	
C	-0 537503	-5 807289	1 974989	
Н	-0 594661	-6 740166	2 546644	
C	0 703869	-5 270018	1 629304	
Н	1 640987	-5 752606	1 919850	
C	0 743454	-4 059550	0.889069	
C	1.998544	-3.488488	0.543268	
C	3.136160	-3.066443	0.331432	
Ċ	4.495849	-2.742613	0.096918	
N	-0.390374	-3.421779	0.496252	
C	-1.593640	-3.932064	0.866400	
С	-2.764021	-3.212812	0.492536	
С	-3.816686	-2.629002	0.237634	
С	-5.064612	-2.029358	-0.071292	
С	5.421488	-3.820124	0.178750	
Н	5.000580	-4.800216	0.419251	
С	6.790618	-3.665538	-0.041789	
С	7.796606	-4.829113	0.027879	
С	7.124415	-6.164187	0.406469	
Н	6.361942	-6.462160	-0.334427	
Н	6.638986	-6.109919	1.396775	
Н	7.882861	-6.966264	0.447211	
С	8.879501	-4.516326	1.090760	
Н	9.622551	-5.334189	1.137487	
Η	8.426641	-4.403335	2.091147	

Н	9.420686	-3.582712	0.860761
С	8.475211	-5.003331	-1.353833
Η	8.990204	-4.081055	-1.672483
Η	7.729028	-5.254735	-2.127554
Н	9.225135	-5.815698	-1.318944
С	7.225191	-2.354642	-0.352550
Н	8.289367	-2.167254	-0.541565
С	6.358115	-1.269474	-0.432305
Н	6.728857	-0.272188	-0.665604
С	4.963600	-1.419361	-0.206873
Ν	4.068753	-0.363154	-0.270241
Н	3.061308	-0.556751	-0.100005
С	4.397587	0.995745	-0.502079
Ν	3.269302	1.782244	-0.534303
Н	2 357316	1 294163	-0 354147
C	3 219410	3 175123	-0 703523
Č	-5 257971	-0 604744	-0.088128
Ň	-4 188512	0.233806	0 193531
н	-3 246568	-0 191174	0.313249
C	-4 255118	1 636028	0.378426
N	-3.012067	2 154747	0.669259
н	-2 221204	1 463900	0.712552
C	-2 681382	3 502021	0 894448
c	-6 557569	-0 136984	-0 398981
н	-6 722384	0.939852	-0.376761
C	-7.601160	-1.021028	-0.400712
ч	-8 5770/1	-0.587674	-0.077331
C	-7 436252	-0.387074	-0.512000
c	-8 572508	-2.425201	-0.000200
C	-0.0/2508	-2 600602	-1.283180
н	-9.904303	-2.099002	-2 160654
н	-10.246774	-2.034034	-0.425151
н	-10.688426	-3 446091	-0.423131
C	-10.000420	-4 355927	0 229917
ч	-0.083750	-3 780174	1 1 2 6 2 0 8
и П	7 880061	4 022746	0.477288
и П	-7.880901	-4.923740	0.477288
C	-9.590805 8 180840	-5.085500	0.012929
с ц	7 251803	4 821015	2.219777
и П	-7.231803 8.047040	-4.021913	-2.033873
и П	8 08/755	-5.022018	-3.100202
II C	6 152909	-4.999120	-2.440770
с ц	-0.132898	2.090390	-0.334789
0	-5.345787	-3.905958	-0.320438
0	-3.302331	2.290041	0.284955
C	3.337724	1.410077	-0.039/04
С П	4.339900	4.029221	-0.04/809
п	3.329381	5.3942/1	-0.303972
с u	4.104093	J.419488 6 051424	-0.//3034
п	2.000207	0.031434 5.079252	-0./18330
	2.90989/	J.Y/83JZ	-0.902241
C	2.042118	/.33319/	-1.0/2028
с П	5./54/95 1.100267	0.210002	-0.983319
п	4.490267	8.023/72	-1./94008
H	4.2/0189	8.123401	-0.010529
Н	3.350270	9.229020	-1.090597
C	1./91594	5.128164	-1.045727

Η	0.801013	5.563961	-1.208143
С	1.942135	3.748995	-0.918650
Н	1.066019	3.095753	-1.001693
С	-3.608752	4.571234	0.881263
Н	-4.660956	4.355477	0.694114
С	-3.172046	5.880130	1.097750
Н	-3.885573	6.710788	1.083156
С	-1.814437	6.166501	1.331828
0	-1.499495	7.497845	1.523111
С	-0.123557	7.809797	1.709307
Н	0.294678	7.309477	2.605661
Н	-0.081835	8.900824	1.855201
Н	0.492165	7.537117	0.829623
С	-0.888465	5.108767	1.356664
Н	0.176813	5.287094	1.520752
С	-1.323214	3.795170	1.139950
Н	-0.590837	2.980450	1.154389
Р	-0.134276	-0.034376	-0.390360
0	-1.337900	0.024849	0.568570
0	-0.273110	1.175560	-1.523338
Н	-1.211914	1.235258	-1.795239
0	-0.252913	-1.350661	-1.342679
Η	-0.323174	-2.142592	-0.719852
0	1.266350	0.120867	0.207207

Statistical Thermodynamic Analysis Temperature= 298.150 Kelvin Pressure= 1.00000 Atm

SCF Energy=	-2956.88200469	Predicted Chang	ge = -1.501878D-08
Zero-point corre	ection (ZPE)=	-2956.0539	0.82808
Internal Energy	(U)=	-2955.9944	0.88754
Enthalpy (H)=		-2955.9935	0.88849
Gibbs Free Ener	rgy (G)=	-2956.1544	0.72752
Frequencies	6.4289	9.4121	15.7228

[Bipyridine core•••H₂PO₄⁻]

Using Gaussian 09: AM64L-G09RevD.01 24-Apr-2013

pbepbe/6-31G*/auto gfprint gfinput scf=(direct,tight,maxcycle=300,xqc) opt=(maxcycle=250) freq=noraman iop(1/8=18) Temperature=298.15 #N Geom=AllCheck Guess=TCheck SCRF=Check Test GenChk RPBEPBE/6-31G(d)/Auto Freq _____ Pointgroup=C1 Stoichiometry=C50H50N6O8P(1-) C1[X(C50H50N6O8P)] #Atoms=115 Charge = -1Multiplicity = 1----------SCF Energy= -3203.67970897 Predicted Change= -7.545578D-09 Optimization completed. {Found times} 1 Max Val. Criteria Pass? Item RMS Val. Criteria Pass?

 Item
 Max Val.
 Criteria
 Pass?
 RMS Val.
 Criteria
 Pass?

 Force
 0.00001 ||
 0.00045
 [YES]
 0.00000 ||
 0.00030
 [YES]

 Displ
 0.00372 ||
 0.00180
 [NO]
 0.00372 ||
 0.00180
 [YES]

Atom	nic Co	oordinates (Ar	igstroms)	
Туре	e X	Y	Ζ	
С	-3.700700	-5.349797	0.721841	
Н	-4.744192	-5.268573	1.038436	
С	-2.997836	-6.548607	0.813905	
Н	-3.484075	-7.445823	1.212061	
С	-1.654051	-6.588267	0.417491	
Н	-1.064554	-7.503406	0.523296	
С	-1.061885	-5.413176	-0.087699	
Ν	-1.736095	-4.249319	-0.186800	
С	-3.031037	-4.197984	0.229646	
С	-3.717651	-2.955350	0.178060	
С	-4.404765	-1.936164	0.266766	
С	-5.282912	-0.833413	0.408433	
С	-4.830782	0.472192	0.806147	
Ν	-3.477458	0.731139	0.915845	
Н	-2.808921	0.162735	0.352972	
С	-2.908785	1.799257	1.654076	
Ν	-1.553766	1.871297	1.438580	
Н	-1.175895	1.219549	0.710620	
С	-0.653614	2.811957	1.965552	
С	-5.826691	1.446887	1.060457	
Н	-5.503342	2.430601	1.400576	
С	-7.181334	1.163471	0.888355	
Н	-7.894560	1.969732	1.086884	
С	-7.647279	-0.100299	0.459206	
С	-9.138316	-0.425342	0.238890	
С	-10.049437	0.776233	0.562876	
Н	-9.823051	1.645217	-0.079457	
Н	-9.949840	1.092320	1.616115	
Н	-11.105475	0.500197	0.393525	
С	-9.556587	-1.605930	1.150263	
Н	-8.958352	-2.510267	0.945558	
Н	-10.620661	-1.861962	0.990081	
Н	-9.420030	-1.347875	2.214914	
С	-9.366981	-0.819114	-1.241691	
Н	-10.429819	-1.069997	-1.418461	
Н	-8.760436	-1.695402	-1.527275	
Н	-9.091861	0.011262	-1.914963	
С	-6.669849	-1.077150	0.237830	
Н	-6.956464	-2.087641	-0.074091	
0	-3.569000	2.539036	2.401097	
С	-0.975466	3.768789	2.956064	
Н	-1.990217	3.799154	3.354530	
С	-0.001923	4.668860	3.397221	
Н	-0.244089	5.416112	4.160443	
С	1.302170	4.648012	2.868970	
0	2.175502	5.597154	3.369471	
С	3.482104	5.604935	2.810494	
Н	3.463812	5.784423	1.717515	
Н	4.018330	4.653415	2.999113	
Н	4.019084	6.428495	3.307438	
С	1.632352	3.694943	1.889922	
Н	2.624266	3.654027	1.431796	
С	0.660120	2.787509	1.456027	

Η	0.922488	2.053276	0.688397
С	0.903378	-6.576879	-1.141413
Η	0.266104	-7.443678	-1.338514
С	0.366568	-5.423250	-0.535986
Ν	1.097563	-4.309113	-0.317113
С	2.406357	-4.302206	-0.692249
С	3.018859	-5.435897	-1.290136
Η	4.073484	-5.384792	-1.574269
С	2.252453	-6.575436	-1.518744
Н	2.694954	-7.454041	-2.000449
С	3.190638	-3.138971	-0.460317
С	4.000623	-2.219487	-0.334500
С	5.006897	-1.239385	-0.137489
С	6.273448	-1.702637	0.299292
Н	6.371425	-2.782623	0.456737
С	7.358914	-0.851689	0.539866
С	8.705954	-1.424853	1.024018
С	9.237894	-2.446983	-0.011203
Н	9.410652	-1.962937	-0.988301
Н	8.524687	-3.273861	-0.168927
Н	10.193788	-2.885801	0.331348
С	8.506543	-2.135657	2.385764
Н	7.765481	-2.949677	2.313265
Н	8.147731	-1.424383	3.149858
Н	9.458790	-2.573144	2.740161
С	9.774186	-0.327191	1.206841
Н	9.469730	0.416988	1.963406
Н	9.977869	0.206005	0.261697
Н	10.721321	-0.782579	1.547293
С	7.129961	0.523643	0.317177
Н	7.934616	1.245940	0.487252
С	5.903176	1.023151	-0.120801
Н	5.759650	2.090489	-0.286955
С	4.802225	0.165885	-0.371142
Ν	3.579330	0.609072	-0.839988
Н	2.819197	-0.090621	-0.993566
С	3.245460	1.940776	-1.188677
Ν	1.990281	1.998329	-1.747846
Н	1.460963	1.087334	-1.777869
С	1.297880	3.152486	-2.155160
0	3.996317	2.915818	-1.005689
С	-0.099233	3.041635	-2.315575
Н	-0.597248	2.097467	-2.060699
С	-0.861211	4.132184	-2.753201
Н	-1.942752	4.009012	-2.853681
С	-0.236294	5.359989	-3.032184
0	-0.890612	6.500474	-3.464776
С	-2.302806	6.415623	-3.576183
Н	-2.615958	5.662387	-4.327477
Н	-2.642357	7.411764	-3.901425
Н	-2.779472	6.165682	-2.607481
С	1.155615	5.476332	-2.866779
Н	1.628743	6.440250	-3.081757
С	1.920477	4.390611	-2.435994
Н	2.997875	4.487514	-2.296794
Р	-0.170249	-0.988826	-0.911894

0	1.138982	-0.551726	-1.590245	
0	0.099375	-1.738210	0.522391	
Н	0.498858	-2.636016	0.347560	
0	-0.802265	-2.168706	-1.854658	
Н	-1.224280	-2.853254	-1.261102	
0	-1.198578	0.122918	-0.632044	

Statistical Thermodynamic Analysis

Temperature= 298.150 Kelvin Pressure= 1.00000 Atm

SCF Energy=	-3203.67970897	Predicted Chang	e= -7.545578D-09
Zero-point corre	ection (ZPE)=	-3202.7835	0.89616
Internal Energy	(U)=	-3202.7200	0.95961
Enthalpy (H)=		-3202.7191	0.96055
Gibbs Free Ener	-gy (G)=	-3202.8889	0.79077
Frequencies	4.7093	10.1799	13.3351

References

- (a) C. N. Carroll, B. A. Coombs, S. P. McClintock, C. A. Johnson, O. B. Berryman, D. W. Johnson and M. M. Haley, *Chem. Commun.* 2011, 47, 5539–5541; (b) C. N. Carroll, O. B. Berryman, C. A. Johnson, L. N. Zakharov, M. M. Haley and D. W. Johnson, *Chem. Commun.* 2009, 2520–2522.
- J. V. Gavette, N. S. Mills, L. N. Zakharov, C. A. Johnson II, D. W. Johnson, M. M. Haley, Angew. Chem. Int. Ed. 2013, 52, 10270–10274.
- 3. <u>http://supramolecular.org</u>
- 4. P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305–1323.
- (a) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865–6868. (b) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1997, 78, 1396.
- 6. S. Grimme, S. Ehrlich, L. Goerigk. J. Comput. Chem. 2011, 32, 1456-1465.
- 7. The PyMOL Molecular Graphics System, Version 1.7.4.2 Schrödinger, LLC.

50 155 L50 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 2 0;ppm

S51

