## **Supporting Information**

Polycyclic heteroaromatic ring construction driven by silver/cobalt co-catalyzed desulfonylative and defluorinative fragment-recombination of enol nonaflates with amidines

Ting Xie, Yao-Wei Zhang, Li-Li Liu, Zhi-Liang Shen, Teck-Peng Loh,\* and Xue-Qiang Chu\*

## **Table of Contents**

| 1.  | General information page S2                                                                       |
|-----|---------------------------------------------------------------------------------------------------|
| 2.  | General procedures for the synthesis of enol nonaflatespage S2                                    |
| 3.  | General procedures for the synthesis of enol triflatespage S2                                     |
| 4.  | General procedures for the synthesis of 1-phenylvinyl 1,1,2,2,3,3,4,4,5,5,5-                      |
|     | undecafluoropentane-1-sulfonatepage S3                                                            |
| 5.  | General procedures for the synthesis of perfluoroalkylated pyrimidine derivativespage S3          |
| 6.  | 1 mmol scale synthesis of perfluoroalkylated pyrimidine <b>3ag</b> page S3                        |
| 7.  | General procedures for the synthesis of perfluoroalkylated benzo[h]quinazoline derivativespage S4 |
| 8.  | Optimization of reaction conditionspage S4                                                        |
| 9.  | Mechanistic studiespage S9                                                                        |
| 10. | Characterization data for perfluoroalkylated pyrimidine derivativespage S13                       |
| 11. | Referencespage S27                                                                                |
| 12. | The X-ray crystal structure of product <b>3ah</b> page S27                                        |
| 13. | <sup>1</sup> H, <sup>19</sup> F, and <sup>13</sup> C NMR spectra of productspage S28              |

#### 1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under air using undistilled solvent, without the need of precautions to exclude air and moisture unless otherwise noted. Melting points were recorded on an Electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. <sup>1</sup>H, <sup>19</sup>F, and <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> or DMSO- $d_6$  on Bruker Avance or Joel 400 MHz spectrometers. The chemical shifts ( $\delta$ ) are reported in ppm and coupling constants (J) in Hz. High resolution mass spectra (HRMS) were obtained using a commercial apparatus (ESI or EI Source). Column chromatography was generally performed on silica gel (300-400 mesh) or alkali alumina (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

#### 2. General procedures for the synthesis of enol nonaflates<sup>[1-2]</sup>



The solution of ketone (5 mmol) in dry THF (25 mL) was cooled to -78 °C and then lithium diisopropylamide (LDA, 3.75 mL, 7.5 mmol, 2.0 mol/L in THF/Hexane) was dropwise added to the reaction mixture. Nonafluorobutanesulfonyl fluoride (1.1 mL, 6 mmol) was added slowly by a syringe over 10 min. The reaction mixture was warmed to room temperature and stirred overnight. The reaction was then quenched by saturated NH<sub>4</sub>Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) on Et<sub>3</sub>N-treated silica gel eluting with petroleum ether to afford enol nonaflate.

## 3. General procedures for the synthesis of enol triflate 1m<sup>[1-2]</sup>



The solution of 3,4-dihydronaphthalen-1(2*H*)-one (0.73 g, 5 mmol) in dry THF (25 mL) was cooled to -78 °C and then lithium diisopropylamide (LDA, 3.75 mL, 7.5 mmol, 2.0 mol/L in THF/Hexane) was dropwise added to the reaction mixture. Trifluoromethanesulfonic anhydride (1.7 g, 6 mmol) was added slowly by a syringe over 10 min. The reaction mixture was warmed to room temperature and stirred overnight. The reaction was then quenched by saturated NH<sub>4</sub>Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) on Et<sub>3</sub>N-treated silica gel eluting with petroleum ether to afford 3,4-dihydronaphthalen-1-yl trifluoromethanesulfonate (0.97g, 70%).

# 4. General procedures for the synthesis of 1-phenylvinyl 1,1,2,2,3,3,4,4,5,5,5undecafluoropentane-1-sulfonate<sup>[3]</sup>

Ph + 
$$F_9C_4SO_2OH$$
   
 $5 \text{ mol\% RhCl}_3$   
 $15 \text{ mol\% Ph}_3P$   
DCE (dry), 70 °C, 24 h

RhCl<sub>3</sub> (52 mg, 0.25 mmol) and PPh<sub>3</sub> (197 mg, 0.75 mmol) were filled into a Schlenk tube under  $N_2$  protection. 1,2-Dichloroethane (5 mL), ethynylbenzene (1.1 mL, 10.0 mmol), and nonafluoro-1butanesulfonic acid (1.5 g, 5.0 mmol) were added consecutively under  $N_2$  protection. Then the reaction mixture was heated to 70 °C with an oil bath and stirred for 24 h. The resulting mixture was concentrated and purified by column chromatography on silica gel (300-400 mesh) to yield the pure 1-phenylvinyl 1,1,2,2,3,3,4,4,5,5,5-undecafluoropentane-1-sulfonate (382 mg, 19%).

#### 5. General procedures for the synthesis of perfluoroalkylated pyrimidine derivatives



A solution of enol sulfonate **1** (0.45 mmol), amidine **2** (0.3 mmol), AgNO<sub>3</sub> (5 mg, 0.03 mmol), CoBr<sub>2</sub> (13 mg, 0.06 mmol), 4,7-diphenyl-1,10-phenanthroline (20 mg, 0.06 mmol, L<sub>3</sub>), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (81 mg, 0.3 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs<sub>2</sub>CO<sub>3</sub> (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at 70 °C for 12-24 h. The reaction was then quenched by saturated NH<sub>4</sub>Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate as eluent to afford the pure product **3** or **4**.

#### 6. 1 mmol scale synthesis of perfluoroalkylated pyrimidine 3ag



A solution of enol sulfonate **1a** (642 mg, 1.5 mmol), amidine **2g** (201 mg, 1 mmol), AgNO<sub>3</sub> (17 mg, 0.1 mmol), CoBr<sub>2</sub> (44 mg, 0.2 mmol), 4,7-diphenyl-1,10-phenanthroline (66 mg, 0.2 mmol, L<sub>3</sub>),  $K_2S_2O_8$  (270 mg, 1 mmol), tetrabutylammonium bromide (322 mg, 1 mmol, TBAB), and Cs<sub>2</sub>CO<sub>3</sub> (815 mg, 2.5 mmol) in DMSO (5.0 mL) was stirred at 70 °C for 24 h under nitrogen atmosphere.

The reaction was then quenched by saturated NH<sub>4</sub>Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate as eluent to afford the pure product **3ag** in 60% yield (282 mg).

7. General procedures for the synthesis of perfluoroalkylated benzo[h]quinazoline derivatives



Dihydrobenzo[h]quinazoline **3** or **4** (0.1 mmol), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (0.5 mmol, 5 equiv, DDQ), and PhCl (2 mL) was stirred at 120 °C for 12 h. Upon completion of the reaction (indicated by TLC), solvent was removed under vacuum and the residue was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate as eluent to afford the pure products **5**.

Br

## 8. Optimization of reaction conditions

Table S1. Optimization of the reaction solvent<sup>[a]</sup>

| 0,5-C4<br>0,5-C4<br>1a | F9 NH+HCI<br>+ H <sub>2</sub> N Br 1<br>2<br>3<br>2a | 10 mol% AgNO <sub>3</sub><br>2 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br><u>5 equiv DABCO</u><br>Jovent, 50 °C, 24 h<br>) Desuitonylation<br>Defluorination<br>) Annulation<br>3aa |
|------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry                  | Solvent                                              | Yield of <b>3aa</b> (%) <sup>[b]</sup>                                                                                                                                                         |
| 1                      | MeCN                                                 | 0                                                                                                                                                                                              |
| 2                      | toluene                                              | 0                                                                                                                                                                                              |
| 3                      | EtOH                                                 | 0                                                                                                                                                                                              |
| 4                      | 1,4-dioxane                                          | 0                                                                                                                                                                                              |
| 5                      | DMF                                                  | 0                                                                                                                                                                                              |
| 6                      | DCE                                                  | 0                                                                                                                                                                                              |
| 7                      | DME                                                  | 0                                                                                                                                                                                              |
| 8                      | acetone                                              | 0                                                                                                                                                                                              |
| 9                      | PhCl                                                 | 0                                                                                                                                                                                              |
| 10                     | $(CH_2OH)_2$                                         | 0                                                                                                                                                                                              |
| 11                     | CF <sub>3</sub> CH(OH)C                              | F <sub>3</sub> 0                                                                                                                                                                               |
| 12                     | <sup>t</sup> BuOH                                    | 0                                                                                                                                                                                              |
| 13                     | DMSO                                                 | 5                                                                                                                                                                                              |

<sup>[a]</sup> Reaction conditions: 3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (**1a**, 0.36 mmol), 4-bromobenzamidine hydrochloride (**2a**, 0.3 mmol), AgNO<sub>3</sub> (0.03 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.6 mmol), and DABCO (0.75 mmol) in solvent (2.0 mL) at 50 °C for 24 h under N<sub>2</sub>. <sup>[b]</sup> Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.

| Table S2. Optimization of the reaction temperatur | e[a | ] |
|---------------------------------------------------|-----|---|
|---------------------------------------------------|-----|---|

| 0, C4F9<br>1a | NH+HCI<br>H <sub>2</sub> N<br>Br | 10 mol% AgNO <sub>3</sub><br>2 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>2.5 equiv DABCO<br>DMSO, Temp., 24 h<br>1) Desuffonylation<br>2) Migration<br>3) Defluorination<br>4) Annulation | Br<br>N F F F<br>F F F<br>3aa |
|---------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Entry         | Temp. (°C                        | ) Yield of <b>3aa</b>                                                                                                                                                                                 | (%) <sup>[b]</sup>            |
| 1             | 30                               | 0                                                                                                                                                                                                     |                               |
| 2             | 70                               | 9                                                                                                                                                                                                     |                               |
| 3             | 90                               | 4                                                                                                                                                                                                     |                               |
| 4             | 110                              | 8                                                                                                                                                                                                     |                               |

<sup>[a]</sup> Reaction conditions: 3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (**1a**, 0.36 mmol), 4-bromobenzamidine hydrochloride (**2a**, 0.3 mmol), AgNO<sub>3</sub> (0.03 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.6 mmol), and DABCO (0.75 mmol) in DMSO (2.0 mL) for 24 h under N<sub>2</sub>. <sup>[b]</sup> Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.

| ion base <sup>[a]</sup> |
|-------------------------|
|                         |

|       | 4 <sup>F</sup> 9 + H <sub>2</sub> N + H <sub>2</sub> N -<br>Br 1 | 10 mol% AgNO <sub>3</sub><br>2 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>2.5 equiv Base<br>MSO, 70 °C, 24 h<br>Desufforylation<br>) Defluorination<br>) Defluorination |
|-------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1a    | 2a 4                                                             | J Annulation 3aa                                                                                                                                                                   |
| Entry | Base                                                             | Yield of <b>3aa</b> (%) <sup>[b]</sup>                                                                                                                                             |
| 1     | NaHCO <sub>3</sub>                                               | <5                                                                                                                                                                                 |
| 2     | NaOAc                                                            | 0                                                                                                                                                                                  |
| 3     | Cs <sub>2</sub> CO <sub>3</sub>                                  | 22                                                                                                                                                                                 |
| 4     | $K_2CO_3$                                                        | <5                                                                                                                                                                                 |
| 5     | Na <sub>2</sub> CO <sub>3</sub>                                  | <5                                                                                                                                                                                 |
| 6     | NaOH                                                             | 0                                                                                                                                                                                  |
| 7     | K <sub>3</sub> PO <sub>4</sub>                                   | <5                                                                                                                                                                                 |
| 8     | DBU                                                              | <5                                                                                                                                                                                 |
| 9     | Et <sub>3</sub> N                                                | 0                                                                                                                                                                                  |
| 10    | sodium ascorba                                                   | ate trace                                                                                                                                                                          |
| 11    | TMEDA                                                            | 0                                                                                                                                                                                  |
| 12    | <sup><i>i</i></sup> Pr <sub>2</sub> NH                           | 0                                                                                                                                                                                  |
| 13    | <sup>t</sup> BuOLi                                               | 8                                                                                                                                                                                  |
| 14    | DMAP                                                             | 0                                                                                                                                                                                  |
| 15    | pyridine                                                         | 0                                                                                                                                                                                  |
| 16    | CsOAc                                                            | <5                                                                                                                                                                                 |
| 17    | cesium pivala                                                    | te <5                                                                                                                                                                              |

<sup>[a]</sup> Reaction conditions: 3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (**1a**, 0.36 mmol), 4-bromobenzamidine hydrochloride (**2a**, 0.3 mmol), AgNO<sub>3</sub> (0.03 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.6 mmol), and base (0.75 mmol) in DMSO (2.0 mL) at 70 °C for 24 h under N<sub>2</sub>. <sup>[b]</sup> Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.

Table S4. Optimization of the reaction additive<sup>[a]</sup>

| o<br>o<br>t<br>t<br>a | $H_{2}^{C_{4}}F_{9}$ NH-HCl<br>+ $H_{2}N$ Br<br>2a | 10 mol% AgNO <sub>3</sub><br>Additive (x equiv)<br>2 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>DMSO, 70 °C, 12 h<br>1) Desulfonylation<br>2) Migration<br>3) Defluorination<br>4) Annulation | F<br>F<br>F        |
|-----------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Entry                 | Additive (x eq                                     | uiv) Yield of 3aa (?                                                                                                                                                                                     | ⁄o) <sup>[b]</sup> |
| 1                     | AIBN (0.05                                         | 5) 18                                                                                                                                                                                                    |                    |
| 2                     | BPO (0.05                                          | ) 22                                                                                                                                                                                                     |                    |
| 3                     | $Co(acac)_2(0.$                                    | 05) 24                                                                                                                                                                                                   |                    |
| 4                     | $Fe(OAc)_2(0.$                                     | 05) 17                                                                                                                                                                                                   |                    |
| 5                     | In (0.2)                                           | 25                                                                                                                                                                                                       |                    |
| 6                     | <i>n</i> -C <sub>4</sub> F <sub>9</sub> I (0.0     | 20                                                                                                                                                                                                       |                    |
| 7                     | Phen (0.2)                                         | ) 32                                                                                                                                                                                                     |                    |

<sup>[a]</sup> Reaction conditions: 3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (**1a**, 0.36 mmol), 4-bromobenzamidine hydrochloride (**2a**, 0.3 mmol), AgNO<sub>3</sub> (0.03 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.6 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.75 mmol), and additives (0.06 or 0.015 mmol) in DMSO (2.0 mL) at 70 °C for 12 h under N<sub>2</sub>. <sup>[b]</sup> Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.

Table S5. Optimization of the reaction oxidant<sup>[a]</sup>

| Ĺ     | $H_2N$              | 10 mol% AgNO <sub>3</sub><br>20 mol% Phen<br>Oxidant (x equiv)<br>2.5 equiv Cs <sub>2</sub> CO <sub>3</sub><br>DMSO, 70 °C, 12-24 f<br>1) Desulfonylation<br>2) Migration<br>3) Defluorination<br>4) Annulation | Br<br>N F F F<br>F F F F<br>3aa        |
|-------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Entry | Oxidant (x equiv)   | Time (h)                                                                                                                                                                                                        | Yield of <b>3aa</b> (%) <sup>[b]</sup> |
| 1     | oxone(2)            | 24                                                                                                                                                                                                              | 0                                      |
| 2     | $(NH_4)_2S_2O_8(2)$ | 24                                                                                                                                                                                                              | 7                                      |
| 3     | $Na_2S_2O_8(2)$     | 24                                                                                                                                                                                                              | 31                                     |
| 4     | $K_2S_2O_8(1)$      | 12                                                                                                                                                                                                              | 42                                     |
| 5     | $K_2S_2O_8(3)$      | 12                                                                                                                                                                                                              | <10                                    |
| 6     | $K_2S_2O_8(0.5)$    | 12                                                                                                                                                                                                              | <10                                    |
| 7     | $Cu(OAc)_2(1)$      | 12                                                                                                                                                                                                              | 0                                      |
| 8     | $PhI(OAc)_2(1)$     | 12                                                                                                                                                                                                              | 0                                      |

<sup>[a]</sup> Reaction conditions: 3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (**1a**, 0.36 mmol), 4-bromobenzamidine hydrochloride (**2a**, 0.3 mmol), AgNO<sub>3</sub> (0.03 mmol), oxidant (0.15-0.9 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.75 mmol), and Phen (0.06 mmol) in DMSO (2.0 mL) at 70 °C under N<sub>2</sub> for 12-24 h. <sup>[b]</sup> Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.

| ۲a    | C <sub>4</sub> F <sub>9</sub> NH+HCl<br>+ H <sub>2</sub> N Br<br>2a | 10 mol% AgNO <sub>3</sub><br>20 mol% Phen<br>1 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>1 equiv Cs <sub>2</sub> CO <sub>3</sub><br>DMSO, 70 °C, 12 h<br>1) Desultonylation<br>2) Migration<br>3) Defluorination<br>4) Annulation |
|-------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry | Phase transfer a                                                    | dditive Yield of 3aa (%) <sup>[b]</sup>                                                                                                                                                                                                       |
| 1     | TBAI                                                                | 56                                                                                                                                                                                                                                            |
| 2     | TBAHS                                                               | 19                                                                                                                                                                                                                                            |
| 3     | TBAB                                                                | 75                                                                                                                                                                                                                                            |
| 4     | TOMAC                                                               | 33                                                                                                                                                                                                                                            |
| 5     | BTEAB                                                               | 60                                                                                                                                                                                                                                            |
| 6     | CTAB                                                                | 35                                                                                                                                                                                                                                            |

Table S6. Optimization of the phase transfer additives<sup>[a]</sup>

<sup>[a]</sup> Reaction conditions: 3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (**1a**, 0.45 mmol), 4-bromobenzamidine hydrochloride (**2a**, 0.3 mmol), AgNO<sub>3</sub> (0.03 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.3 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.75 mmol), Phen (0.06 mmol), and phase transfer additive (0.3 mmol) in DMSO (2.0 mL) at 70 °C for 12 h under N<sub>2</sub>. <sup>[b]</sup> Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.

Table S7. Optimization of the reaction ligand<sup>[a]</sup>

|       | 10 mol% AgNO <sub>3</sub><br>20 mol% Ligand<br>1 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>1 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>1 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>1 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>20 mol% Ligand<br>1 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>1 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>1 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>20 mol% Ligand<br>1 equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>1 equiv K <sub>2</sub> | Br<br>N F F<br>F F F<br>Saa            |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Entry | Ligand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yield of <b>3aa</b> (%) <sup>[b]</sup> |
| 1     | 1,10-Phenanthroline $(L_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75                                     |
| 2     | 2,2'-Bipyridine (L <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37                                     |
| 3     | 4,7-Diphenyl-1,10-Phenanthroline (L <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80                                     |
| 4     | 2,9-Dimethyl-1,10-Phenanthroline (L <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39                                     |
| 5     | 4,7-Dimethoxy-1,10-Phenanthroline (L <sub>5</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65                                     |

<sup>[a]</sup> Reaction conditions: 3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (**1a**, 0.45 mmol), 4-bromobenzamidine hydrochloride (**2a**, 0.3 mmol), AgNO<sub>3</sub> (0.03 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.3 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.75 mmol), ligand (0.06 mmol), and TBAB (0.3 mmol) in DMSO (2.0 mL) at 70 °C for 12 h under N<sub>2</sub>. <sup>[b]</sup> Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.





| 2  | AgNO <sub>3</sub>                                    | 60 <sup>[d]</sup> |
|----|------------------------------------------------------|-------------------|
| 3  | AgNO <sub>3</sub>                                    | 35 <sup>[e]</sup> |
| 4  | Ag <sub>2</sub> CO <sub>3</sub>                      | 56                |
| 5  | AgOAc                                                | 59                |
| 6  | Ag <sub>2</sub> O                                    | 56                |
| 7  | $Ag_2SO_4$                                           | 33                |
| 8  | AgI                                                  | 49                |
| 9  | Fe(NO <sub>3</sub> ) <sub>3</sub> ·9H <sub>2</sub> O | <10               |
| 10 | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2H <sub>2</sub> O | <10               |
| 11 | $Co(acac)_2$                                         | 62                |
| 12 | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 34                |
| 13 | AgNO <sub>3</sub>                                    | $< 10^{[f]}$      |
| 14 | AgNO <sub>3</sub>                                    | 33 <sup>[g]</sup> |

<sup>[a]</sup> Reaction conditions: 3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (**1a**, 0.45 mmol), 4-bromobenzamidine hydrochloride (**2a**, 0.3 mmol), catalyst (0.03 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.3 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.75 mmol), 4,7-diphenyl-1,10-phenanthroline (L<sub>3</sub>, 0.06 mmol), and TBAB (0.3 mmol) in DMSO (2.0 mL) at 70 °C for 12 h under N<sub>2</sub>. <sup>[b]</sup> Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard. <sup>[c]</sup> Isolated yield. <sup>[d]</sup> 0.54 mmol of **1a** was used. <sup>[e]</sup> 0.6 mmol of **1a** was used. <sup>[f]</sup> 0.45 mmol of Cs<sub>2</sub>CO<sub>3</sub> was used. <sup>[g]</sup> 1.05 mmol of Cs<sub>2</sub>CO<sub>3</sub> was used.

Table S9. Optimization of the cocatalyst<sup>[a]</sup>

| O<br>L<br>1a | $\begin{array}{c} 10\\ x \text{ r}\\ \end{array}$        | mol% AgNO <sub>3</sub><br>nol% cocatalyst<br>20 mol% L <sub>3</sub><br>equiv K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>equiv TBAB<br>equiv CS <sub>2</sub> CO <sub>3</sub><br>SO, 70 °C, 12 h<br>esulfonylation<br>ligration<br>efluorination | Br<br>N<br>F<br>F<br>Saa             |
|--------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Entry        | cocatalyst (x mol                                        | %) Yi                                                                                                                                                                                                                                               | eld of <b>3aa</b> (%) <sup>[b]</sup> |
| 1            |                                                          |                                                                                                                                                                                                                                                     | 80 (56) <sup>[c]</sup>               |
| 2            | Ir(ppy) <sub>3</sub> (1)                                 |                                                                                                                                                                                                                                                     | <20 <sup>[d]</sup>                   |
| 3            | Ru(bipy) <sub>3</sub> Cl <sub>2</sub> ·6H <sub>2</sub> O | (1)                                                                                                                                                                                                                                                 | <20 <sup>[d]</sup>                   |
| 4            | $Co(OAc)_2$ (10)                                         |                                                                                                                                                                                                                                                     | (48) <sup>[c]</sup>                  |
| 5            | Co(PPh <sub>3</sub> ) <sub>2</sub> Cl <sub>2</sub> (10   | ))                                                                                                                                                                                                                                                  | 83                                   |
| 6            | $Co(acac)_2(10)$                                         |                                                                                                                                                                                                                                                     | 78                                   |
| 7            | $Co(acac)_3(10)$                                         |                                                                                                                                                                                                                                                     | <10                                  |
| 8            | CoBr <sub>2</sub> (10)                                   |                                                                                                                                                                                                                                                     | (56) <sup>[c,d]</sup>                |
| 9            | CoBr <sub>2</sub> (20)                                   |                                                                                                                                                                                                                                                     | 90 (63) <sup>[c,d,e]</sup>           |
| 10           | $CoBr_2(30)$                                             |                                                                                                                                                                                                                                                     | 78                                   |

<sup>[a]</sup> Reaction conditions: 3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (**1a**, 0.45 mmol), benzamidine hydrochloride (**2a**, 0.3 mmol), AgNO<sub>3</sub> (0.03 mmol), catalyst (0.03 mmol), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.3 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.75 mmol), 4,7-diphenyl-1,10-phenanthroline (L<sub>3</sub>, 0.06 mmol), and TBAB (0.3 mmol) in DMSO (2.0 mL) at 70 °C for 12 h under N<sub>2</sub>. <sup>[b]</sup> Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard. <sup>[c]</sup> Isolated yield. <sup>[d]</sup> Irradiation with blue LEDs (8 W). <sup>[e]</sup> For 24 h

#### 9. Mechanistic studies

## 1) Trapping experiment with 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)



A solution of 7-methoxy-3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1sulfonate (206 mg, 0.45 mmol, **1d**), 4-bromobenzamidine hydrochloride (71 mg, 0.3 mmol, **2a**), 2,2,6,6-tetramethylpiperidin-1-oxyl (0.9 mmol, TEMPO), AgNO<sub>3</sub> (5 mg, 0.03 mmol), CoBr<sub>2</sub> (13 mg, 0.06 mmol), 4,7-diphenyl-1,10-phenanthroline (20 mg, 0.06 mmol, L<sub>3</sub>), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (81 mg, 0.3 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs<sub>2</sub>CO<sub>3</sub> (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred at 70 °C for 24 h under nitrogen atmosphere.

| Elemental Composition Report                                                                                                                                                                                                                                    |                                                   |                                                         |                              |                       |              |                    |           |         |                                  | Page 1    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|------------------------------|-----------------------|--------------|--------------------|-----------|---------|----------------------------------|-----------|
| Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0<br>Element prediction: Off<br>Number of isotope peaks used for i-FIT = 3<br>HRMS m/z: calcd for C <sub>13</sub> H <sub>19</sub> F <sub>9</sub> NO <sup>+</sup> [M+H] <sup>+</sup> 376.1317<br>found: 376.1323 |                                                   |                                                         |                              |                       |              |                    |           |         |                                  |           |
| Monoisotopic<br>64 formula(e<br>Elements Us<br>C: 12-17 H                                                                                                                                                                                                       | : Mass, Ev<br>) evaluated<br>ed:<br>: 10-19       | en Electron lons<br>d with 2 results v<br>4: 0-5 O: 0-2 | s<br>vithin limit<br>F: 6-10 | s (up to              | 50 closes    | t results fo       | r each ma | ass)    |                                  |           |
| CXQ-X (1.836) Is (1.00,1.00) C13H19F9NO<br>1: TOF MS ES+                                                                                                                                                                                                        |                                                   |                                                         |                              |                       |              |                    |           |         |                                  |           |
| 100<br>0<br>0                                                                                                                                                                                                                                                   | 376.<br>376.00                                    | 1323<br>                                                | 376.50                       | 376.75                | 377          | 377.1355<br>.00 37 | 7.25      | 377.50  | 378.1384<br>377.75 378.00 378.25 | 8.62e+012 |
| Minimum:<br>Maximum:                                                                                                                                                                                                                                            | 80.00<br>100.00                                   |                                                         | 2.0                          | 5.0                   | -1.5<br>50.0 |                    |           |         |                                  |           |
| Mass                                                                                                                                                                                                                                                            | RA                                                | Calc. Mass                                              | mDa                          | PPM                   | DBE          | i-FIT              | Norm      | Conf(%) | Formula                          |           |
| 376.1323                                                                                                                                                                                                                                                        | 100.00                                            | 376.1323                                                | 0.0                          | 0.0                   | 0.5          | 41.8               | 0.000     | 100.00  | C13 H19 N O F9<br>C16 H18 N F8   |           |
| Elemental Composition Report<br>Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0<br>Element prediction: Off<br>Number of isotope peaks used for i-FIT = 3<br>Monoisotopic Mass. Even Electron Loss                                                             |                                                   |                                                         |                              |                       |              |                    |           |         |                                  | Page 1    |
| 66 formula<br>Elements U<br>C: 12-15<br>CXQ-X (2.4                                                                                                                                                                                                              | e) evaluate<br>Ised:<br>H: 15-20<br>86) Is (1.00, | N: 0-2 O: 2-5                                           | within lim<br>S: 0-2<br>O3S  | its (up to<br>F: 7-10 | 50 closes    | st results fo      | r each ma | ass)    |                                  |           |
| 1: TOF MS E                                                                                                                                                                                                                                                     | S+                                                | 440.0042                                                |                              |                       |              |                    |           |         |                                  | 8.15e+012 |
| 100<br>439.7                                                                                                                                                                                                                                                    | 5 440                                             | .00 440.25                                              | 440.50                       | 440                   | .75 4        | 441.0973           | 441.25    | 441.50  | 442.0927<br>441.75 442.00 442.25 | 442.50    |
| Minimum:<br>Maximum:                                                                                                                                                                                                                                            | 80.00<br>100.0                                    | 0                                                       | 2.0                          | 5.0                   | -1.5<br>50.0 |                    |           |         |                                  |           |
| Mass                                                                                                                                                                                                                                                            | RA                                                | Calc, Mass                                              | mDa                          | PPM                   | DBE          | i-FIT              | Norm      | Conf(%) | Formula                          |           |
| 440.0942                                                                                                                                                                                                                                                        | 100.0                                             | 0 440.0942                                              | 0.0                          | 0.0                   | 0.5          | 46.5               | n/a       | n/a     | C13 H19 N O3 S F9                |           |

2) Detection of the by-product (Z)-2-(perfluoropentylidene)-3,4-dihydronaphthalen-1(2H)-one (1a')



A solution of 3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (129 mg, 0.45 mmol, 1a), AgNO<sub>3</sub> (5 mg, 0.03 mmol), CoBr<sub>2</sub> (13 mg, 0.06 mmol), 4,7-diphenyl-1,10-phenanthroline (20 mg, 0.06 mmol, L<sub>3</sub>), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (81 mg, 0.3 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs<sub>2</sub>CO<sub>3</sub> (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred at 70 °C for 24 h under nitrogen atmosphere. The reaction was then quenched by saturated NH<sub>4</sub>Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate as eluent to afford by-product (*Z*)-2-(perfluoropentylidene)-3,4-dihydronaphthalen-1(2*H*)-one (<5%, 1a').



3.0 8.5 8.0 7.5 7.0 2.5 2.0 9.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 1.5 1.0 0.5 0.0



3) Crossover experiment with an equimolar amount of 7-methoxy-3,4-dihydronaphthalen-1yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (1d) and ((3,4-dihydronaphthalen-1yl)oxy)triisopropylsilane (6)



A solution of 7-methoxy-3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1sulfonate (103 mg, 0.225 mmol, **1d**), ((3,4-dihydronaphthalen-1-yl)oxy)triisopropylsilane (68 mg, 0.225 mmol, **6**), 2-ethoxybenzimidamide hydrochloride (60 mg, 0.3 mmol, **2g**), AgNO<sub>3</sub> (5 mg, 0.03 mmol), CoBr<sub>2</sub> (13 mg, 0.06 mmol), 4,7-diphenyl-1,10-phenanthroline (20 mg, 0.06 mmol, L<sub>3</sub>), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (81 mg, 0.3 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs<sub>2</sub>CO<sub>3</sub> (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred at 70 °C for 24 h under nitrogen atmosphere. The reaction was then quenched by saturated NH<sub>4</sub>Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The ratio of two possible products **3ag** and **3dg** was determined by NMR analysis (**3ag/3dg** = 1:1).



4) Control experiment without K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> or AgNO<sub>3</sub>



A solution of 7-methoxy-3,4-dihydronaphthalen-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1sulfonate (206 mg, 0.45 mmol, **1d**), 2-ethoxybenzimidamide hydrochloride (60 mg, 0.3 mmol, **2g**), AgNO<sub>3</sub> (0-0.3 mmol), CoBr<sub>2</sub> (13 mg, 0.06 mmol), 4,7-diphenyl-1,10-phenanthroline (20 mg, 0.06

mmol, L<sub>3</sub>), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0-0.3 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs<sub>2</sub>CO<sub>3</sub> (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred at 70 °C for 24 h under nitrogen atmosphere. The reaction was then quenched by saturated NH<sub>4</sub>Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure.

#### 10. Characterization data for perfluoroalkylated pyrimidine derivatives



**2-(4-Bromophenyl)-4-(perfluoropropyl)-5,6-dihydrobenzo**[*h*]quinazoline (3aa): Yield = 63% (95 mg). White solid. M.p. 111.1–112.9 °C. **IR** (KBr): v = 3072, 2943, 1556, 1399, 1227, 930, 770, 743, 606 cm<sup>-1</sup>. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.53$  (dd, J = 7.4, 1.7 Hz, 1H), 8.47 – 8.43 (m, 2H), 7.67 – 7.61 (m, 2H), 7.51 – 7.43 (m, 2H), 7.32 – 7.27 (m, 1H), 3.21 – 3.14 (m, 2H), 3.00 – 2.97 (m, 2H) ppm. <sup>19</sup>**F** NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.64$  (t, J = 9.5 Hz, 3F), -110.17 (q, J = 9.6 Hz, 2F), -125.44 (d, J = 3.6 Hz, 2F) ppm. <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 162.6$ , 161.2, 152.1 (t,  $J_{C-F} = 25.3$  Hz), 139.4, 135.7, 132.0, 131.9, 131.8, 129.8, 127.9, 127.5, 126.4, 126.3, 125.9, 26.8, 22.9 (m) ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

HRMS m/z: calcd for  $C_{21}H_{13}BrF_7N_2$  [M+H]<sup>+</sup> 505.0145, found: 505.0163.



#### 2-(4-Chlorophenyl)-4-(perfluoropropyl)-5,6-dihydrobenzo[*h*]quinazoline (3ab):

Yield = 58% (80 mg). White solid. M.p. 107.4–108.9 °C.

IR (KBr): v = 2954, 1553, 1397, 931, 766 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.54 - 8.48$  (m, 3H), 7.50 - 7.41 (m, 4H), 7.30 - 7.26 (m, 1H), 3.16 (dd, J = 8.4, 6.4 Hz, 2H), 2.97 (dd, J = 8.7, 5.8 Hz, 2H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.78$  (t, J = 9.9 Hz, 3F), -110.30 (q, J = 10.1 Hz, 2F), -125.55 - -125.62 (m, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 162.6$ , 161.1 (t,  $J_{C-F} = 1.3$  Hz), 152.1 (t,  $J_{C-F} = 24.0$  Hz), 139.4, 137.3, 135.2, 132.0, 131.9, 129.6, 128.8, 127.9, 127.5, 126.4, 126.2, 26.8 (t,  $J_{C-F} = 1.0 \text{ Hz}$ ), 22.9 (m) ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling. **HRMS** m/z: calcd for C<sub>21</sub>H<sub>13</sub>ClF<sub>7</sub>N<sub>2</sub> [M+H]<sup>+</sup> 461.0650, found: 461.0657.

2-(4-Fluorophenyl)-4-(perfluoropropyl)-5,6-dihydrobenzo[*h*]quinazoline (3ac):

Yield = 49% (63 mg). White solid. M.p. 114.6–116.6 °C.

**IR** (KBr): v = 2936, 1613, 1397, 931, 775 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.63 - 8.57$  (m, 2H), 8.56 - 8.53 (m, 1H), 7.52 - 7.43 (m, 2H), 7.32 - 7.29 (m, 1H), 7.23 - 7.16 (m, 2H), 3.21 - 3.13 (m, 2H), 2.99 (dd, J = 8.5, 6.0 Hz, 2H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.65$  (t, J = 9.5 Hz, 3F), -109.52 - -109.59 (m, 1F), -110.11 - -110.24 (m, 2F), -125.47 (d, J = 4.7 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 166.1$ , 163.6, 162.5, 161.1 (d,  $J_{C-F} = 0.9$  Hz), 152.1 (t,  $J_{C-F} = 26.1$  Hz) 139.4, 132.9 (d,  $J_{C-F} = 2.9$  Hz), 132.1, 131.9, 130.4 (d,  $J_{C-F} = 8.7$  Hz), 127.7 (d,  $J_{C-F} = 39.22$  Hz), 126.4, 125.8 (d,  $J_{C-F} = 0.6$  Hz), 115.6 (d,  $J_{C-F} =$ 21.6 Hz), 26.9, 22.8 (m) ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

**HRMS** m/z: calcd for C<sub>21</sub>H<sub>13</sub>F<sub>8</sub>N<sub>2</sub> [M+H]<sup>+</sup> 445.0946, found: 445.0951.



### 4-(Perfluoropropyl)-2-phenyl-5,6-dihydrobenzo[*h*]quinazoline (3ad):

Yield = 53% (68 mg). White solid. M.p. 129.1–130.6 °C.

**IR** (KBr): v = 2936, 1622, 931, 731 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.64 - 8.55$  (m, 3H), 7.54 - 7.49 (m, 3H), 7.50 - 7.42 (m, 2H), 7.31 - 7.27 (m, 1H), 3.18 (t, J = 7.2 Hz, 2H), 2.99 (dd, J = 8.4, 6.1 Hz, 2H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.64$  (t, J = 9.5 Hz, 3F), -110.13 (q, J = 9.5 Hz, 2F), -125.45 (d, J = 4.6 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 162.4$ , 162.0 (t,  $J_{C-F} = 1.7$  Hz), 152.0 (t,  $J_{C-F} = 24.0$  Hz), 139.4, 136.7, 132.2, 131.8, 131.0, 128.6, 128.3, 127.8, 127.5, 126.4, 125.9, 26.9, 22.8 (m) ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling. **HRMS** m/z: calcd for C<sub>21</sub>H<sub>14</sub>F<sub>7</sub>N<sub>2</sub> [M+H]<sup>+</sup> 427.1040, found: 427.1038.

#### 4-(Perfluoropropyl)-2-(*p*-tolyl)-5,6-dihydrobenzo[h]quinazoline (3ae):

Yield = 50% (60 mg). White solid. M.p. 90.4–92.3 °C.

**IR** (KBr): v = 2954, 1613, 1553, 931, 792 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.59 - 8.53$  (m, 1H), 8.47 (d, J = 8.2 Hz, 2H), 7.49 - 7.40 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.29 - 7.25 (m, 1H), 3.15 (t, J = 7.1 Hz, 2H), 3.00 - 2.93 (m, 2H), 2.44 (s, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.77$  (t, J = 9.9 Hz, 3F), -110.27 (q, J = 10.8 Hz, 2F), -125.59 (d, J = 4.7 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 162.3$ , 162.1 (t,  $J_{C-F} = 1.0$  Hz), 152.0 (t,  $J_{C-F} = 24.4$  Hz), 141.4, 139.4, 134.1, 132.3, 131.7, 129.3, 128.2, 127.8, 127.4, 126.4, 125.5, 26.9, 22.8 (m), 21.5 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

**HRMS** m/z: calcd for C<sub>22</sub>H<sub>16</sub>F<sub>7</sub>N<sub>2</sub> [M+H]<sup>+</sup> 441.1196, found: 441.1202.



#### 2-(4-Methoxyphenyl)-4-(perfluoropropyl)-5,6-dihydrobenzo[h]quinazoline (3af):

Yield = 56% (77 mg). Light brown solid. M.p. 97.0–99.0 °C.

**IR** (KBr): v = 2945, 1648, 1622, 931, 792 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.64 - 8.49$  (m, 3H), 7.50 - 7.42 (m, 2H), 7.31 - 7.27 (m, 1H), 7.06 - 7.01 (m, 2H), 3.90 (s, 3H), 3.20 - 3.12 (m, 2H), 3.01 - 2.94 (m, 2H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.64$  (t, J = 10.0 Hz, 3F), -110.16 (q, J = 10.3 Hz, 2F), -125.47 (d, J = 4.3 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 162.2$ , 162.1, 161.8 (t,  $J_{C-F} = 1.2$  Hz), 151.9 (t,  $J_{C-F} = 23.2$  Hz), 139.4, 132.3, 131.6, 129.9, 129.5, 127.8, 127.4, 126.3, 125.0, 113.9, 55.3, 26.9, 22.8 (m) ppm; carbons corresponding to the  $C_3F_7$  group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C<sub>22</sub>H<sub>16</sub>F<sub>7</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 457.1145, found: 457.1151.

### 2-(2-Ethoxyphenyl)-4-(perfluoropropyl)-5,6-dihydrobenzo[*h*]quinazoline (3ag):

Yield = 72% (102 mg). Yellow solid. M.p. 87.6–88.9 °C.

**IR** (KBr): v = 2842, 1622, 1562, 922, 766 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.42$  (dd, J = 7.6, 1.4 Hz, 1H), 7.85 (dd, J = 7.6, 1.8 Hz, 1H), 7.40 - 7.30 (m, 3H), 7.23 - 7.19 (m, 1H), 7.03 - 6.96 (m, 2H), 4.08 (q, J = 7.0 Hz, 2H), 3.14 - 3.08 (m, 2H), 2.91 (dd, J = 8.5, 6.0 Hz, 2H), 1.34 (t, J = 7.0 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta =$ -80.20 - -80.81 (m, 3F), -110.70 - -111.69 (m, 2F), -126.21 (s, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 163.4$ , 162.2, 157.8, 151.5 (t,  $J_{C-F} = 23.4$  Hz), 139.3, 132.3, 132.0, 131.6, 131.3, 127.7, 127.6, 127.4, 126.6, 125.4, 120.6, 113.6, 64.5, 26.9, 22.9 (m), 14.8 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C<sub>23</sub>H<sub>18</sub>F<sub>7</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 471.1302, found: 471.1307.



#### 4-(Perfluoropropyl)-2-(pyridin-3-yl)-5,6-dihydrobenzo[*h*]quinazoline (3ah):

Yield = 44% (56 mg). Yellow solid. M.p. 109.4–111.0 °C.

**IR** (KBr): v = 2901, 1609, 1553, 931, 749 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 9.69$  (s, 1H), 8.73 – 8.70 (m, 1H), 8.66 (d, J = 3.6 Hz, 1H), 8.45 – 8.43 (m, 1H), 7.42 – 7.34 (m, 3H), 7.22 – 7.18 (m, 1H), 3.10 (t, J = 7.2 Hz, 2H), 2.93 – 2.87 (m, 2H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.24 - -80.12$  (m, 3F), -109.43 – -110.91 (m, 2F), -125.47 (d, J = 16.2 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 162.7$ , 160.2, 152.2 (t,  $J_{C-F} = 25.3$  Hz), 151.5, 149.8, 139.4, 135.5, 132.2 (m), 132.1, 131.7, 127.9, 127.5, 126.8, 126.4, 123.4 (m), 26.7, 22.8 (m) ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C<sub>20</sub>H<sub>13</sub>F<sub>7</sub>N<sub>3</sub> [M+H]<sup>+</sup> 428.0992, found: 428.0998.



4-(Perfluoropropyl)-2-(pyrimidin-2-yl)-5,6-dihydrobenzo[*h*]quinazoline (3ai):
Yield = 18% (23 mg). Brown solid. M.p. 162.6–164.3 °C.
IR (KBr): v = 2954, 1553, 939, 887 cm<sup>-1</sup>.
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 8.99 (d, J = 4.9 Hz, 2H), 8.52 (dd, J = 7.6, 1.4 Hz, 1H), 7.44 – 7.34 (m, 3H), 7.25 – 7.21 (m, 1H), 3.18 (t, J = 7.2 Hz, 2H), 2.97 – 2.91 (m, 2H) ppm. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ = -79.05 – -80.25 (m, 3F), -109.74 – -111.73 (m, 2F), -125.25 (d, J = 17.1 Hz, 2F) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 163.7, 162.5, 160.9, 160.8, 158.0, 139.4, 132.2, 131.6, 129.0, 127.7, 127.7, 127.2, 121.3, 26.7, 23.4 (m) ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

**HRMS** m/z: calcd for C<sub>19</sub>H<sub>12</sub>F<sub>7</sub>N<sub>4</sub> [M+H]<sup>+</sup> 429.0945, found: 429.0950.



#### 2-Methyl-4-(perfluoropropyl)-5,6-dihydrobenzo[*h*]quinazoline (3aj):

Yield = 42 % (46 mg). Brown solid. M.p. 80.4–82.4 °C.

**IR** (KBr): v = 2936, 1605, 1562, 740, 602 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.39$  (dd, J = 7.6, 1.5 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.29 – 7.26 (m, 1H), 3.13 – 3.07 (m, 2H), 2.93 (dd, J = 8.6, 5.9 Hz, 2H), 2.82 (s, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.76$  (t, J = 9.5 Hz, 3F), -110.71 (q, J = 9.5 Hz, 2F), -125.59 (d, J = 4.6 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 166.0$  (t,  $J_{C-F} = 1.0$  Hz), 162.3, 151.4 (t,  $J_{C-F} = 23.7$  Hz), 139.4, 131.9, 131.7, 127.8, 127.5, 126.3, 125.3, 26.9 (t,  $J_{C-F} = 1.4$  Hz), 25.8, 22.8 (m) ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

**HRMS** m/z: calcd for  $C_{16}H_{12}F_7N_2$  [M+H]<sup>+</sup> 365.0883, found: 365.0889.



#### 2-Cyclopropyl-4-(perfluoropropyl)-5,6-dihydrobenzo[*h*]quinazoline (3ak):

Yield = 57% (67 mg). Yellow oil.

**IR** (KBr): v = 2936, 1605, 1562, 749 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.36$  (dd, J = 7.5, 1.3 Hz, 1H), 7.45 – 7.35 (m, 2H), 7.27 – 7.22 (m, 1H), 3.07 (t, J = 7.0 Hz, 2H), 2.95 – 2.87 (m, 2H), 2.38 – 2.32 (m, 1H), 1.25 – 1.20 (m, 2H), 1.14 – 1.07 (m, 2H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.71$  (t, J = 9.4 Hz, 3F), -110.44 (q, J = 9.4 Hz, 2F), -125.58 (s, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 169.9$  (t,  $J_{C-F} = 0.8$  Hz), 161.9, 151.4 (t,  $J_{C-F} = 23.5$  Hz), 139.4, 132.1, 131.5, 127.7, 127.3, 126.2, 124.6, 27.0, 22.6 (m), 17.9, 10.9 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling. **HRMS** m/z: calcd for C<sub>18</sub>H<sub>14</sub>F<sub>7</sub>N<sub>2</sub> [M+H]<sup>+</sup> 391.1040, found: 391.1045.



### 4-(Perfluoropropyl)-5,6-dihydrobenzo[h]quinazolin-2-amine (3al):

Yield = 34% (37 mg). Yellow solid. M.p. 126.7–128.0 °C.

**IR** (KBr): v = 2954, 1640, 1622, 800, 749 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.18$  (dd, J = 7.7, 1.4 Hz, 1H), 7.36 – 7.32 (m, 1H), 7.30 – 7.26 (m, 1H), 7.20 – 7.15 (m, 1H), 5.33 (s, 2H), 2.89 (dd, J = 9.9, 4.4 Hz, 2H), 2.80 (dd, J = 8.7, 5.2 Hz, 2H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -78.17$  (t, J = 9.9 Hz, 3F), -109.57 (q, J = 10.0 Hz, 2F), -124.06 (d, J = 4.9 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 163.7$ , 161.2 (t,  $J_{C-F} = 1.6$  Hz), 152.1 (t,  $J_{C-F} = 24.6$  Hz), 139.9, 132.0, 131.5, 127.8, 127.2, 126.1, 118.3, 27.5 (t,  $J_{C-F} = 1.5$  Hz), 22.3 (m) ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling. **HRMS** m/z: calcd for C<sub>15</sub>H<sub>11</sub>F<sub>7</sub>N<sub>3</sub> [M+H]<sup>+</sup> 366.0836, found: 366.0841.



**2-(2-Ethoxyphenyl)-7-methoxy-4-(perfluoropropyl)-5,6-dihydrobenzo**[*h*]quinazoline (3bg): Yield = 42% (63 mg). Yellow solid. M.p. 87.6–88.5 °C. IR (KBr): ν = 2842, 1648, 1613, 766, 740 cm<sup>-1</sup>. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.05$  (d, J = 7.9 Hz, 1H), 7.84 (dd, J = 7.6, 1.8 Hz, 1H), 7.35 – 7.31 (m, 1H), 7.26 (t, J = 8.0 Hz, 1H), 7.01 – 6.91 (m, 3H), 4.07 (q, J = 7.0 Hz, 2H), 3.80 (s, 3H), 3.05 (t, J = 7.2 Hz, 2H), 2.90 (dd, J = 8.6, 6.0 Hz, 2H), 1.33 (t, J = 7.0 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -78.82 - -80.60$  (m, 3F), -109.19 - -111.57 (m, 2F), -125.42 (d, J = 16.6 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 163.2$  (t,  $J_{C-F} = 1.0$  Hz), 162.2, 157.7, 156.0, 151.4 (t,  $J_{C-F} = 24.5$  Hz), 133.3, 132.0, 131.3, 128.1, 127.6, 127.5, 125.4, 120.6, 118.7, 113.6, 113.1, 64.5, 55.6, 22.4 (m), 19.2, 14.8 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

**HRMS** m/z: calcd for  $C_{24}H_{20}F_7N_2O_2$  [M+H]<sup>+</sup> 501.1408, found: 501.1413.



**2-(2-Ethoxyphenyl)-8-methoxy-4-(perfluoropropyl)-5,6-dihydrobenzo**[*h*]**quinazoline (3cg):** Yield = 87% (131 mg). Yellow oil.

**IR** (KBr): v = 2936, 1613, 1553, 757, 740 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.44$  (d, J = 8.7 Hz, 1H), 7.92 – 7.89 (m, 1H), 7.42 – 7.38 (m, 1H), 7.10 – 7.01 (m, 2H), 6.91 (dd, J = 8.7, 2.6 Hz, 1H), 6.77 (d, J = 2.5 Hz, 1H), 4.14 (q, J = 7.0 Hz, 2H), 3.86 (s, 3H), 3.15 (t, J = 7.2 Hz, 2H), 2.94 (dd, J = 8.5, 6.0 Hz, 2H), 1.41 (t, J = 7.0 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.40 - -80.21$  (m, 3F), -109.83 – -110.86 (m, 2F), - 125.42 (d, J = 17.4 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 163.2$  (t,  $J_{C-F} = 1.2$  Hz), 162.4, 162.0, 157.7, 151.0 (t,  $J_{C-F} = 24.0$  Hz), 141.4, 132.0, 131.2, 128.6, 127.8, 125.2, 124.4, 120.5, 113.6, 113.1, 112.6, 64.5, 55.3, 27.3, 23.0 (m), 14.8 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C<sub>24</sub>H<sub>20</sub>F<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 501.1408, found: 501.1413.



**2-(2-Ethoxyphenyl)-9-methoxy-4-(perfluoropropyl)-5,6-dihydrobenzo**[*h*]**quinazoline (3dg):** Yield = 37% (56 mg). Yellow oil. **IR** (KBr): v = 2936, 1605, 1562, 809, 757 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.03$  (t, J = 3.0 Hz, 1H), 7.92 – 7.89 (m, 1H), 7.45 – 7.40 (m, 1H), 7.22 – 7.17 (m, 1H), 7.11 – 7.04 (m, 2H), 7.03 – 7.00 (m, 1H), 4.19 – 4.13 (m, 2H), 3.89 (d, J = 2.1Hz, 3H), 3.16 (t, J = 6.6 Hz, 2H), 2.92 (t, J = 6.9 Hz, 2H), 1.43 – 1.39 (m, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.75$  (t, J = 9.8 Hz, 3F), -110.30 (q, J = 8.3 Hz, 2F), -125.34 (s, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 163.3$  (t,  $J_{C-F} = 1.0$  Hz), 162.1, 159.0, 157.7, 151.6 (t,  $J_{C-F} = 24.1$  Hz), 133.2, 132.1, 131.7, 131.3, 128.8, 127.7, 125.7, 120.6, 118.4, 113.6, 110.5, 64.5, 55.5, 26.1, 23.2 (m), 14.8 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling. **HRMS** m/z: calcd for C<sub>24</sub>H<sub>20</sub>F<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 501.1408, found: 501.1413.



**9-Bromo-2-(2-ethoxyphenyl)-4-(perfluoropropyl)-5,6-dihydrobenzo**[*h*]**quinazoline (3eg):** Yield = 52% (86 mg). Yellow solid. M.p. 82.4–83.0 °C.

**IR** (KBr): v = 2971, 1639, 1613, 809, 757 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.64$  (d, J = 1.7 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.53 (dd, J = 8.1, 1.8 Hz, 1H), 7.47 – 7.40 (m, 1H), 7.14 (d, J = 8.1 Hz, 1H), 7.11 – 7.04 (m, 2H), 4.17 (q, J = 7.0 Hz, 2H), 3.16 (t, J = 7.2 Hz, 2H), 2.97 – 2.88 (m, 2H), 1.48 (t, J = 6.9 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.71$  (t, J = 9.6 Hz, 3F), -110.31 (q, J = 9.5 Hz, 2F), -125.35 (d, J = 4.7 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 163.4$  (t,  $J_{C-F} = 0.9$  Hz), 160.8, 157.9, 151.9 (t,  $J_{C-F} = 24.1$  Hz), 137.9, 134.3, 134.1, 132.1, 131.6, 129.4, 129.4, 126.8, 125.2, 121.3, 120.5, 113.4, 64.4, 26.3, 22.7 (m), 14.9 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C<sub>23</sub>H<sub>17</sub>BrF<sub>7</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 549.0407, found: 549.0395.

#### 2-(2-Ethoxyphenyl)-4-(perfluoropropyl)-5H-chromeno[4,3-*d*]pyrimidine (3gg):

Yield = 41% (58 mg). Light yellow solid. M.p. 69.0–71.0 °C.

**IR** (KBr): v = 2998, 1622, 1613, 766, 731 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.36$  (dd, J = 7.8, 1.7 Hz, 1H), 7.92 (dd, J = 7.7, 1.8 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.16 – 7.10 (m, 1H), 7.10 – 6.98 (m, 3H), 5.43 (s, 2H), 4.14 (q, J = 7.0 Hz, 2H), 1.40 (t, J = 6.9 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.80$  (t, J = 10.3 Hz, 3F), -111.60 (q, J = 10.0 Hz, 2F), -125.83 (d, J = 16.3 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 165.0$ , 158.3, 157.8, 157.7, 149.5 (t,  $J_{C-F} = 25.2$  Hz), 134.1, 132.1, 131.7, 127.1, 126.1, 122.7, 120.9, 120.6, 119.6, 117.2, 113.5, 64.5, 63.9 (m), 14.7 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C<sub>22</sub>H<sub>16</sub>F<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 473.1095, found: 473.1100.



**2-(2-Ethoxyphenyl)-6-methyl-4-(perfluoropropyl)-5,6-dihydrobenzo**[*h*]quinazoline (3hg): Yield = 31% (45 mg). Yellow oil.

**IR** (KBr): v = 2971, 1604, 1570, 757, 731 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.52$  (dd, J = 7.7, 1.1 Hz, 1H), 7.96 (dd, J = 7.6, 1.8 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.45 – 7.37 (m, 2H), 7.32 (d, J = 7.5 Hz, 1H), 7.12 – 7.03 (m, 2H), 4.24 – 4.11 (m, 2H), 3.27 – 3.06 (m, 3H), 1.43 (t, J = 7.0 Hz, 3H), 1.26 (d, J = 6.6 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.77$  (t, J = 9.6 Hz, 3F), -109.14 – -111.14 (m, 2F), -125.32 (d, J = 4.5 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 163.3$  (t,  $J_{C-F} = 1.1$  Hz), 161.8, 157.8, 152.3 (t,  $J_{C-F} = 21.8$ Hz), 144.3, 132.1, 131.9, 131.4, 131.2, 127.5, 127.5, 127.2, 126.8, 126.5, 124.2, 120.6, 113.6, 64.5, 31.4, 30.3 (m), 20.4, 14.8 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

**HRMS** m/z: calcd for  $C_{24}H_{20}F_7N_2O [M+H]^+ 485.1458$ , found: 485.1464.



6-(3,4-Dichlorophenyl)-2-(2-ethoxyphenyl)-4-(perfluoropropyl)-5,6-

## dihydrobenzo[h]quinazoline (3ig):

Yield = 22% (41 mg). Yellow solid. M.p. 129–130 °C.

IR (KBr): v = 2920, 1597, 1544, 792, 740 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.66 - 8.60$  (m, 1H), 7.96 (dd, J = 7.6, 1.8 Hz, 1H), 7.51 - 7.42 (m, 3H), 7.36 (d, J = 8.3 Hz, 1H), 7.22 (d, J = 2.1 Hz, 1H), 7.11 - 7.01 (m, 3H), 6.96 (dd, J = 8.3, 2.1 Hz, 1H), 4.31 (t, J = 6.9 Hz, 1H), 4.20 - 4.14 (m, 2H), 3.46 (d, J = 7.0 Hz, 2H), 1.43 (t, J = 7.0 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.76$  (t, J = 10.0 Hz, 3F), -108.94 - -111.50 (m, 2F), -125.44 (s, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 163.7$ , 161.7, 157.8, 150.2 (t,  $J_{C-F} = 22.0$  Hz), 142.1, 140.1, 132.8, 132.3, 132.2, 132.1, 131.6, 131.2, 130.6, 130.1, 128.2, 128.0, 127.5, 127.1, 127.0, 123.2, 120.6, 113.5, 64.5, 42.0, 30.9 (m), 14.8 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

HRMS m/z: calcd for  $C_{29}H_{20}Cl_2F_7N_2O [M+H]^+ 615.0835$ , found: 615.0841.



2-(2-Ethoxyphenyl)-4-(perfluoropropyl)-6,7-dihydro-5H-benzo[6,7]cyclohepta[1,2-

### *d*]pyrimidine (3jg):

Yield = 46% (67 mg). Yellow oil.

**IR** (KBr): v = 2945, 1666, 1640, 766, 740 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.98 - 7.95$  (m, 1H), 7.94 - 7.89 (m, 1H), 7.49 - 7.38 (m, 3H), 7.31 - 7.24 (m, 1H), 7.09 - 7.01 (m, 2H), 4.20 - 4.12 (m, 2H), 2.71 (t, J = 6.4 Hz, 2H), 2.61 (t, J =7.0 Hz, 2H), 2.36 - 2.29 (m, 2H), 1.47 - 1.43 (m, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -$ 79.68 (t, J = 10.5 Hz, 3F), -108.24 - -108.97 (m, 2F), -124.56 (s, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 169.6, 163.1, 157.7, 149.7$  (t,  $J_{C-F} = 23.0$  Hz), 139.8, 137.7, 132.2, 131.4, 130.7, 129.6, 128.7, 128.6, 127.2, 127.1, 120.5, 113.4, 64.4, 32.9, 30.8, 24.9 (m), 14.8 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

HRMS m/z: calcd for  $C_{24}H_{20}F_7N_2O [M+H]^+ 485.1458$ , found: 485.1464.

2-(2-Ethoxyphenyl)-4-(perfluoropropyl)-5,6-dihydrothieno[2,3-h]quinazoline (3kg):

Yield = 45% (64 mg). Yellow oil.

**IR** (KBr): v = 2936, 1605, 1570, 853, 749 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.87$  (dd, J = 7.6, 1.7 Hz, 1H), 7.75 (d, J = 5.2 Hz, 1H), 7.44 – 7.37 (m, 1H), 7.20 (d, J = 5.2 Hz, 1H), 7.10 – 7.01 (m, 2H), 4.13 (q, J = 7.0 Hz, 2H), 3.30 (t, J = 7.5 Hz, 2H), 3.11 (t, J = 7.6 Hz, 2H), 1.39 (t, J = 7.0 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.76$  (t, J = 9.6 Hz, 3F), -110.51 (tq, J = 9.6, 4.9 Hz, 2F), -125.44 (d, J = 4.7 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 163.6$  (t,  $J_{C-F} = 1.3$  Hz), 159.8, 157.7, 150.9 (t,  $J_{C-F} = 24.4$  Hz), 145.9, 135.2, 131.9, 131.3, 127.7, 125.0, 123.7, 122.9, 120.6, 113.7, 64.6, 22.9 (m), 22.7, 14.7 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling. **HRMS** m/z: calcd for C<sub>21</sub>H<sub>16</sub>F<sub>7</sub>N<sub>2</sub>OS [M+H]<sup>+</sup> 477.0866, found: 477.0872.



#### 2-(2-Ethoxyphenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (3lg):

Yield = 58% (77mg). Yellow oil.

**IR** (KBr): v = 3411, 2979, 1585, 1374, 1234, 753 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  = 8.50 (s, 1H), 8.44 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.80 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.68–7.58 (m, 3H), 7.57–7.50 (m, 1H), 7.22 (d, *J* = 8.2 Hz, 1H), 7.12 (t, *J* = 7.1 Hz, 1H), 4.13 (q, *J* = 6.9 Hz, 2H), 1.28 (t, *J* = 6.9 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  = -79.69 (t, *J* = 9.0 Hz, 3F), -115.42 (q, *J* = 9.0 Hz, 2F), -125.67 (s, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 166.3, 165.9, 157.9, 156.2 (t, *J*<sub>C-F</sub> = 26.0 Hz), 136.0, 132.2, 131.7, 131.7, 129.0, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5, 127.5,

127.4, 120.6, 113.5, 111.2 (t,  $J_{C-F} = 5.0$  Hz), 64.5, 14.7 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

**HRMS** m/z: calcd for  $C_{21}H_{16}F_7N_2O [M+H]^+ 445.1145$ , found: 445.1133.

#### 2-(4-Methoxyphenyl)-4-(perfluoropropyl)benzo[*h*]quinazoline (5af):

Yield = 79% (36 mg). White solid. M.p. 121.6–123.0 °C.

**IR** (KBr): v = 2833, 1648, 1579, 809, 775 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 9.42 - 9.35$  (m, 1H), 8.72 - 8.63 (m, 2H), 8.04 - 7.97 (m, 1H), 7.88 - 7.82 (m, 1H), 7.81 - 7.73 (m, 3H), 7.06 - 6.98 (m, 2H), 3.90 (s, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.52$  (t, J = 10.0 Hz, 3F), -107.99 (q, J = 10.4 Hz, 2F), -124.68 (d, J = 6.5 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 164.1$ , 162.3, 159.2 (t,  $J_{C-F} = 1.2$  Hz), 153.3, 134.9, 130.8, 130.4, 130.2, 129.7, 129.2 (t,  $J_{C-F} = 1.4$  Hz), 127.8, 127.8, 125.3, 119.9 (m), 118.4, 114.0, 55.4 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling. **HRMS** m/z: calcd for C<sub>22</sub>H<sub>14</sub>F<sub>7</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 455.0989, found: 455.0994.



#### 2-(2-Ethoxyphenyl)-4-(perfluoropropyl)benzo[h]quinazoline (5ag):

Yield = 86% (40 mg). Light yellow solid. M.p. 130.7–132.5 °C.

**IR** (KBr): v = 2989, 1657, 1613, 792, 740 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 9.47 - 9.41$  (m, 1H), 8.14 (dd, J = 7.7, 1.8 Hz, 1H), 8.11 - 8.05 (m, 1H), 7.94 - 7.87 (m, 2H), 7.85 - 7.73 (m, 2H), 7.49 - 7.45 (m, 1H), 7.18 - 7.08 (m, 2H), 4.20 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.60$  (t, J = 10.0 Hz, 3F), -107.52 - -109.19 (m, 2F), -124.52 (q, J = 7.1, 6.0 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 160.7$  (t,  $J_{C-F} = 10.9$  Hz), 158.1, 153.3, 152.6 (t,  $J_{C-F} = 24.2$  Hz), 134.7, 132.6, 131.6, 130.8, 130.4, 129.9 (t,  $J_{C-F} = 1.3$  Hz), 127.9, 127.8, 127.6, 125.6, 120.7, 119.9 (m), 118.4, 113.6,

64.5, 14.8 ppm; carbons corresponding to the  $C_3F_7$  group cannot be identified due to C-F coupling. HRMS m/z: calcd for  $C_{23}H_{16}F_7N_2O$  [M+H]<sup>+</sup> 469.1145, found: 469.1151.



#### 2-(2-Ethoxyphenyl)-8-methoxy-4-(perfluoropropyl)benzo[*h*]quinazoline (5cg):

Yield = 93% (46 mg). Yellow solid. M.p. 106.9–108.5 °C.

**IR** (KBr): v = 2936, 1613, 1544, 922, 853 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 9.34$  (d, J = 9.1 Hz, 1H), 8.11 (dd, J = 7.7, 1.8 Hz, 1H), 8.10 – 8.06 (m, 1H), 7.84 (d, J = 9.3 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.38 (dd, J = 9.1, 2.6 Hz, 1H), 7.28 (d, J = 2.6 Hz, 1H), 7.16 – 7.08 (m, 2H), 4.20 (q, J = 7.0 Hz, 2H), 4.01 (s, 3H), 1.43 (t, J = 7.0 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.64$  (t, J = 10.1 Hz, 3F), -107.76 – -109.40 (m, 2F), - 124.63 (s, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 161.8, 160.7$  (t,  $J_{C-F} = 0.9$  Hz), 158.1, 153.1, 136.7, 132.6, 131.5, 129.4 (t,  $J_{C-F} = 1.4$  Hz), 127.8, 127.6, 124.6, 120.7, 118.4, 117.4, 116.3 (m), 113.6, 107.9, 64.5, 55.6, 14.8 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C<sub>24</sub>H<sub>18</sub>F<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 499.1251, found: 499.1256.



2-(2-Ethoxyphenyl)-9-methoxy-4-(perfluoropropyl)benzo[h]quinazoline (5dg):

Yield = 84% (42 mg). Light yellow solid. M.p. 102.6–105.0 °C.

**IR** (KBr): v = 2989, 1613, 1553, 835, 809 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.81$  (d, J = 2.6 Hz, 1H), 8.06 (dd, J = 7.6, 1.8 Hz, 1H), 7.97 (d, J = 9.2 Hz, 1H), 7.86 (dd, J = 9.0, 6.0 Hz, 2H), 7.52 – 7.42 (m, 2H), 7.18 – 7.08 (m, 2H), 4.20 (q, J = 7.0 Hz, 2H), 4.05 (s, 3H), 1.41 (t, J = 7.0 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.63$  (t, J = 9.7 Hz, 3F), -108.40 – -108.50 (m, 2F), -124.53 (d, J = 4.8 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 160.2$  (t,  $J_{C-F} = 1.2$  Hz), 159.4, 157.9, 152.5, 132.6, 132.0, 131.4, 129.6, 129.5, 129.4, 128.0, 121.8, 120.7, 118.9, 117.4 (m), 113.6, 105.3, 64.5, 55.7, 14.8 ppm; carbons corresponding to

the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

**HRMS** m/z: calcd for  $C_{24}H_{18}F_7N_2O_2$  [M+H]<sup>+</sup> 499.1251, found: 499.1256.



#### 9-Bromo-2-(2-ethoxyphenyl)-4-(perfluoropropyl)benzo[h]quinazoline (5eg):

Yield = 92% (50 mg). Light yellow solid. M.p. 136.6–138.0 °C.

**IR** (KBr): v = 2998, 1631, 1622, 835, 749 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta = 9.60$  (d, J = 2.1 Hz, 1H), 8.21 (dd, J = 7.7, 1.8 Hz, 1H), 8.12 – 8.08 (m, 1H), 7.91 (dd, J = 8.5, 2.1 Hz, 1H), 7.87 (d, J = 9.2 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.19 – 7.09 (m, 2H), 4.23 (q, J = 7.0 Hz, 2H), 1.52 (t, J = 7.0 Hz, 3H) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta = -79.61$  (t, J = 9.7 Hz, 3F), -108.36 – -108.50 (m, 2F), -124.59 (d, J = 5.5 Hz, 2F) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>):  $\delta = 160.7$  (t,  $J_{C-F} = 1.1$  Hz), 158.3, 152.9, 152.1, 134.0, 133.2, 132.7, 132.0, 131.7, 129.4, 129.1 (t,  $J_{C-F} = 1.3$  Hz), 128.3, 126.8, 122.5, 120.7, 120.4 (m), 118.5, 113.4, 64.5, 14.9 ppm; carbons corresponding to the C<sub>3</sub>F<sub>7</sub> group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C<sub>23</sub>H<sub>15</sub>BrF<sub>7</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 547.0250, found: 547.0238.

## 11. References

[1] X. Su, H. Huang, Y. Yuan, and Y. Li, Angew. Chem., Int. Ed. 2017, 56, 1338–1341.

[2] S. Liu, J. Jie, J. Yu, X. Yang, Adv. Synth. Catal. 2018, 360, 267-271.

[3] Y. Yang, E. G. Moschetta, R. M. Rioux, ChemCatChem. 2013, 5, 3005–3013.

[4] A. Herrera, R. Martínez-Alvarez, M. Chioua, R. Chatt, R. Chioua, A. Sánchez, J. Almy, *Tetrahedron* **2006**, *62*, 2799–2811.

## 12. The X-ray crystal structure of product 3ah



4-(Perfluoropropyl)-2-(pyridin-3-yl)-5,6-dihydrobenzo[*h*]quinazoline (3ah)

Crystal Number: CCDC 1847355

Empirical formula: C<sub>20</sub>H<sub>12</sub>F<sub>7</sub>N<sub>3</sub>

Formula weight: 427.3258

Space Group: P 1 (2)

Cell: a 8.5757(7)Å b 10.7240(9)Å c 11.5979(7)Å, α 64.620(7)° β 77.985(7)° γ 71.245(7)°



13. The <sup>1</sup>H , <sup>19</sup>F, <sup>13</sup>C spectra of products 3-5:















































































