Supporting Information

Delithiation/Lithiation Behaviors of Three Polymorphs of LiVOPO₄

Guang He,^{a,b} Wang Hay Kan,^c and Arumugam Manthiram^{*a}

^aMaterials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA

^bInstitute for New Energy Materials and Low-Carbon Technology, Tianjin University of Technology, Tianjin, 300384, P.R. China

^cChina Spallation Neutron Source, Institute of High Energy Physics, Dongguan, Guangdong, 523803, P.R. China

Synthesis of \alpha-LiVOPO₄ and \beta-LiVOPO₄: Both triclinic \alpha-LiVOPO₄ and orthorhombic \beta-LiVOPO₄ were synthesized by a sol-gel process with some modifications.^{18,19} \alpha-LiVOPO₄ was prepared with LiNO₃ as the lithium source, V₂O₅ as the vanadium source, NH₄H₂PO₄ as the phosphate source, and citric acid as the chelator, while LiNO₃ and citric acid were replaced by lithium acetate and oxalic acid for the preparation of the \beta-LiVOPO₄. The resulting gels were calcined at 600 °C and 500 °C in air, respectively, for 10 h to obtain \alpha-LiVOPO₄ and orthorhombic \beta-LiVOPO₄.

Synthesis of \alpha_1-LiVOPO₄: Tetragonal α_1 -LiVOPO₄ was synthesized by a microwave-assisted solvothermal (MT-SW) method.³⁵ Briefly, V₂O₅ was first dissolved in oxalic acid dehydrate (1:3) in deionized water at elevated temperatures. Next, LiOH·H₂O, phosphoric acid (85%), and ethanol were added in sequence under stirring (V_{H2O}:V_{EtOH} = 1: 1). The V concentration was kept at 0.067 M, and Li:V:P = 1.8 : 1 : 1. The microwave reaction was allowed for ~ 50 min, including approximately 20 – 25 min of ramping time to the desired temperature/pressure. Finally, the products were collected and washed with water and acetone.

Synthesis of \alpha-LiVOPO₄ nanoparticles: α -LiVOPO₄ nanoparticles were synthesized using ordered macroporous carbon as the hard template. The carbon was first prepared as described elsewhere.³⁸ Then, it was immersed into the precursor solutions to allow the penetration. α -LiVOPO₄ nanoparticles were formed after calcination in air, during which the carbon template was combusted in the furnace.

Chemical delithiation: Chemical delithiation was performed with three forms of LiVOPO₄ using nitronium tetrafluoroborate (NO₂BF₄) in the media of pre-dried acetonitrile in Ar atmosphere. For β - and α_1 -LiVOPO₄, 50% excess (molar ratio) NO₂BF₄ was sufficient to produce pure β - and α_1 -VOPO₄, while multiple delithiation was necessary for the complete delithiation of the α -LiVOPO₄. All the products were washed by acetonitrile twice after the reactions and kept in a vacuum oven at 150 °C for further use.

Chemical lithiation: Chemical lithiation was performed with three forms of LiVOPO₄ using n-butyllithium in pre-dried hexane under Ar atmosphere. Typically, ~ 5% excess n-butyllithium was added to ensure a complete lithiation. The reactions were allowed for 24 h, centrifuged with dry hexane twice, and stored in a glove box for further use.

Figure S1 SEM images of poly(methyl methacrylate) spheres (left), the ordered macroporous carbon replica (middle), and the templated resulting α -LiVOPO₄ nanoparticles (right).

Figure S2 XRD patterns of the three $LiVOPO_4$ samples and the chemically delithiated $VOPO_4$ and chemically lithiated Li_2VOPO_4 .

α-	ICP (Li:V:P)	β-	ICP (Li:V:P)	α ₁ -	ICP (Li:V:P)
α-LiVOPO₄	1.02:1.02:1	β-LiVOPO₄	1.03:0.99:1	α _I -LiVOPO ₄	1.10:0.92:1
ε-VOPO₄	0.002:1.02: 1	β -VOPO 4	0.03:0.98:1	α _I -VOPO₄	0.03:0.92:1
α- Li₂VOPO₄	2.04:1.02:1	β-Li ₂ VOPO ₄	2.05:0.99:1	α _ι - Li ₂ VOPO ₄	2.07:0.93:1

Table S1 ICP results of three sets of VOPO₄-LiVOPO₄-Li₂VOPO₄ upon chemical delithiation and lithiation.

Figure S3 SEM images of α -LiVOPO₄ (left), β -LiVOPO₄ (middle), and α_i -LiVOPO₄ (right) upon chemical lithiation with n-butyllithium.

Figure S4. Bond valence sum (BVS) maps of β -LiVOPO₄, showing the possible positions of the 2nd Li in the lattice at mismatch of (a) 0.15 and (b) 0.20.

Figure S5. XRD pattern and Rietveld refinement of $\beta\text{-Li}_2\text{VOPO}_4.$

Figure S6. Crystal structures of three $VOPO_4$ -Li $VOPO_4$ -Li $_2VOPO_4$ systems. Note the structure of β -Li $_2VOPO_4$ is just the approximate illustration.