Supporting Information for:

Nickel-Catalyzed Intermolecular Carboiodination of Alkynes with Aryl Iodides

Toshifumi Takahashi, Daiki Kuroda, Toru Kuwano, Yuji Yoshida, Takuya Kurahashi,* and Seijiro Matsubara*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

Table of Contents

1. Instrumentation and Chemicals	S 3
2. Additional Optimization of Reaction Conditions	S4
3. Stereochemical Characterization of Alkenyl Iodide 3aa	S 5
4. EPR Spectra of Reaction Mixtures	S 7
5. Experimental Procedure and Characterization Data for Products	S 8
6. X-ray Single Crystal Analysis of (Z)- 3pa	S 16
7. Computational Details	S17
8. NMR Spectra of Procducts	S23

1 Instrumentation and Chemicals

All manipulations of oxygen- and moisture-sensitive materials were conducted in a glove box filled with N₂ or with a standard Schlenk technique under a purified argon atmosphere. Nuclear magnetic resonance spectra were taken on Varian UNITY INOVA 500 (¹H, 500 MHz; ¹³C, 125.7 MHz) spectrometer using tetramethylsilane (¹H) as an internal standard. ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, br = broad, m = multiplet), coupling constants (Hz), integration, and identification. GC-MS analyses and High-resolution mass spectra were obtained with a JEOL JMS-700 spectrometer by electron ionization at 70 eV. Infrared spectra (IR) spectra were determined on a SHIMADZU FTIR-8200PC spectrometer. Melting points were determined using a YANAKO MP-500D. EPR spectra were measured with a JEOL JES-FA1000. TLC analyses were performed by means of Merck Kieselgel 60 F₂₅₄ (0.25 mm) Plates. Visualization was accomplished with UV light (254 nm) and/or an aqueous alkaline KMnO₄ solution followed by heating. Flash column chromatography was carried out using Kanto Chemical silica gel (spherical, 40-50 mm). Unless otherwise noted, commercially available reagents were used without purification. Toluene was purchased from Wako Pure Chemical Co. stored in the glove box. Bis(1,5cyclooctadiene)nickel was purchased from Strem Chemicals, Inc. Ligands L2 and L8 were synthesized according to the reported methods.^[1,2]

- [1] L2: H. Li, J. Oppenheimer, M. R. Smith III, E. Robert, R. E. Maleczka Jr, *Tetrahedron Lett.* 2016, *57*, 2231-2232.
- [2] L8: G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, J. Am. Chem. Soc. 2004, 126, 15195-15201.

2 Optimization of Reaction Conditions

	+ Pr	Ni(cod) ₂ (5 mo ligand (5 mol%	I%)))		+
\checkmark	Pr ²	solvent, Temp	(°C), 12 h	'' Pr	Pr
1a	2a			(Z)- 3aa	(<i>E</i>)-3aa
Entry	Ligand	Solvent	Temp. (°C)	Yield (%)	Z/E
1	L1	toluene	50	92	2/1
2	L2	toluene	50	60	1/1
3	L3	toluene	50	54	1/1
4	L4	toluene	50	52	1/1
5	L5	toluene	50	7	1/2
6	L6	toluene	50	25	2/1
7	L7	toluene	50	<5	1/1
8	L8	toluene	50	7	1/15
9	L9	toluene	50	<5	2/1
10	lPr	toluene	50	<1	-
11	PMe ₃	toluene	50	<1	-
12	PCy ₃	toluene	50	<1	-
13	dppe	toluene	50	<1	-
14	L1	1,4-dioxane	50	35	1/2
15	L1	toluene	110	66	1/2
16	L1	toluene	25	14	1/1
D	D				\land

Table S1. Addtitonal optimization of reaction condition

$$\begin{array}{c|c} R & R \\ \hline & N \\ \hline & N \\ L1: dtbpy (R=tBu) \\ L2: dCF_3bpy (R=CF_3) \\ L3: bny (R=H) \\ L3: bny (R=H) \\ L4: dtbp (R=CF_3) \\ L6: phen \\ L7: Biox (R=H) \\ L8: Biox Me_4 (R=Me) \\ L8: Biox Me_4 (R=Me) \end{array}$$

L3: bpy (R=H) L4: dPhbpy (R=Ph) L5: dMeObpy (R=OMe)

3 Stereochemical Characterization of Alkenyl Iodide 3aa

In a 50 mL round-bottom flask, 1 mmol of (Z)-**3aa** or (E)-**3aa** (50 mM in toluene) was added to a solution of phenylboronic acid (2.5 mmol), palladium(II) acetate (0.05 mmol), triphenylphosphine (0.2 mmol) and Na₂CO₃ (20 mmol) in water (10 mL) under Ar. The mixture was refluxed for 17 h. After cooled to room temperature, the precipitate was washed with water, and the aqueous layer was extracted with ethyl acetate. The organic layer was dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by silica gel column chromatography.

(Z)-Oct-4-ene-4,5-diyldibenzene: CAS RN [84224-51-1]

Yield: 57%, white solid. Mp: 39-41 °C. TLC: $R_f 0.33$ (hexane). ¹H NMR (CDCl₃) δ 7.06-7.03 (m, 4H; Ar-H), 7.00-6.97 (m, 2H; Ar-H), 6.94-6.91 (m, 4H; Ar-H), 2.54 (dd, *J* =7.5 Hz, 4H; 2CH₂), 1.39-1.31 (m, 4H; 2CH₂), 0.91 (t, *J* = 6.5 Hz, 6H; 2CH₃). ¹³C NMR (CDCl₃) δ 143.8, 138.6, 130.0, 127.5, 125.6, 36.5, 21.8, 14.1. IR (KBr): 2959, 2870, 1441 cm⁻¹. MS *m/z* (%): 265/264 (11/54) [M]⁺, 91 (100). HRMS (EI) Calcd for C₂₀H₂₄: [M]⁺ (264.1878), found 264.1873.

(E)-Oct-4-ene-4,5-diyldibenzene: CAS RN [112068-01-6]

Yield: 59%, white solid. Mp: 88-91 °C. TLC: $R_f 0.42$ (hexane). ¹H NMR (CDCl₃) δ 7.37-7.34 (m, 4H; Ar-H), 7.27-7.24 (m, 2H; Ar-H), 7.21-7.19 (m, 4H; Ar-H), 2.11 (dd, J = 7.5 Hz, 4H; 2CH₂), 1.21-1.14 (m, 4H; 2CH₂), 0.69 (t, J = 7.5 Hz, 6H; 2CH₃). ¹³C NMR (CDCl₃) δ 143.2, 138.5, 129.0, 128.1, 126.3, 37.6, 21.6, 14.0. IR (KBr): 2957, 2869, 1440 cm⁻¹. MS *m/z* (%): 265/264 (14/67) [M]⁺, 91 (100). HRMS (EI) Calcd for C₂₀H₂₄: [M]⁺ (264.1878), found 264.1877.

ORTEP Drawing of (E)-Oct-4-ene-4,5-diyldibenzene (CCDC: 1847370)

4 EPR Spectra of Reaction Mixtures

EPR merged-spectrum of reaction mixtures: standard reaction conditions: Ni(cod)₂ (0.025 mmol), dtbpy (0.025 mmol), 4-octyne (0.75 mmol), iodobenzene (0.5 mmol) in toluene (1 mL). EPR experimental parameters (toluene, 77 K): Microwave frequency: 9.092 GHz, power = 0.998 mW, modulation amplitude = 0.1 mT. EPR simulation parameters (isotropic): $g_{1,2,3} = 2.025$, 2.128, 2.2455; g-strain = 0.11, 0.11, 0.11; A (Ni, N, N, H, H) = -107, 35, 19, 5, 5 MHz, ; A-strain = 2.2, 0.2, 1.3; RMSD of fit = 0.087.

Mulliken Spin Density Plot of Ni(I)I/dtbpy 4

5 Experimental Procedure and Characterization Data for Products

General procedure. To a screw cap vial, an alkyne (0.75 mmol) was added to a solution of bis(1,5-dicyclooctadiene)nickel (0.025 mmol) and 4,4'-di-*tert*-butyl-2,2'-dipyridil (0.025 mmol) in dry toluene (1.0 ml) in a glove box, followed by an aryl iodide (0.5 mmol). The vial was sealed and stirred for 12 h at 50 °C. The reaction mixture was passed through a short silica gel pad, and concentrated in vacuo. The crude product was purified by silica gel column chromatography with given eluent.

(Z)-(5-lodooct-4-en-4-yl)benzene ((Z)-3aa).

Yield: 42%, colorless oil. TLC: R_f 0.67 (hexane). ¹H NMR (CDCl₃) δ 7.35-7.32 (m, 2H; Ar-H), 7.29-7.26 (m, 1H; Ar-H), 7.08-7.06 (m, 2H; Ar-H), 2.66 (dd, *J* = 7.5 Hz, 2H; CH₂), 2.45 (dd, *J* = 7.5 Hz, 2H; CH₂), 1.70-1.62 (m, 2H; CH₂), 1.35-1.29 (m, 2H; CH₂), 1.00 (t, *J* = 7.5 Hz, 3H; CH₃), 0.89 (t, *J* = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 147.8, 147.5, 128.5, 128.2, 127.0, 106.5, 43.1, 36.9, 23.2, 21.6, 13.9, 13.2. IR (neat): 2959, 2971, 1456, 1113 cm⁻¹. MS *m/z* (%): 315/314 (9/50) [M]⁺, 105 (55), 91 (100); HRMS (APCI) Calcd for C₁₄H₂₀I⁺: [M+H]⁺ (315.0604), found 315.0594.

(E)-(5-lodooct-4-en-4-yl)benzene ((E)-3aa).

Yield: 39%, colorless oil. TLC: $R_f 0.47$ (hexane). ¹H NMR (CDCl₃) δ 7.34-7.31 (m, 2H; Ar-H), 7.27-7.24 (m, 1H; Ar-H), 7.07-7.05 (m, 2H; Ar-H), 2.53 (dd, J = 7.5 Hz, 2H; CH₂), 2.24 (dd, J = 7.5 Hz, 2H; CH₂), 1.51-1.47 (m, 2H; CH₂), 1.36-1.31 (m, 2H; CH₂), 0.90 (t, J = 7.5 Hz, 3H; CH₃), 0.75 (t, J = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 146.4, 140.9, 128.4, 128.3, 127.0, 108.5, 47.1, 43.8, 23.6, 20.6, 13.9, 13.0. IR (neat): 2959, 2971, 1457, 1112 cm⁻¹. MS *m/z* (%): 315/314 (7/45) [M]⁺, 105 (52), 91 (100); HRMS (APCI) Calcd for C₁₄H₂₀I⁺: [M+H]⁺ (315.0604), found 315.0598.

(Z)-1-(5-iodooct-4-en-4-yl)-4-methylbenzene ((Z)-3ba).

Yield: 45%, colorless oil. TLC: R_f 0.55 (hexane). ¹H NMR (CDCl₃) δ 7.16-7.14 (m, 2H; Ar-H), 6.98-6.96 (m, 2H; Ar-H), 2.65 (dd, *J* = 7.0 Hz, 2H; CH₂), 2.43 (dd, *J* = 7.5 Hz, 2H; CH₂), 2.36 (s, 3H; CH₃), 1.68-1.63 (m, 2H; CH₂), 1.34-1.30 (m, 2H; CH₂), 0.99 (t, *J* = 7.5 Hz, 3H; CH₃), 0.87 (t, *J* = 7.0 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 147.4, 144.9, 136.7, 128.9, 128.3, 106.4, 43.2, 36.9, 23.2, 21.6, 21.4, 13.9, 13.2. IR (neat): 2960, 1507, 1457, 1113 cm⁻¹. MS *m/z* (%):329/328 (5/43) [M]^{*}, 105 (100). HRMS (APCI) Calcd for C₁₅H₂₂I^{*}: [M+H]^{*} (329.0761), found 329.0751.

(E)-1-(5-iodooct-4-en-4-yl)-4-methylbenzene ((E)-3ba).

Yield: 36%, colorless oil. TLC: $R_f 0.69$ (hexane). ¹H NMR (CDCl₃) δ 7.14-7.12 (m, 2H; Ar-H), 6.96-6.94 (m, 2H; Ar-H), 2.52 (dd, J = 7.0 Hz, 2H; CH₂), 2.35 (s, 3H; CH₃), 2.26 (dd, J = 7.5 Hz, 2H; CH₂), 1.49-1.46 (m, 2H; CH₂), 1.37-1.29 (m, 2H; CH₂), 0.89 (t, J = 7.0 Hz, 3H; CH₃), 0.76 (t, J = 7.0 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 146.3, 137.9, 136.6, 129.1, 128.1, 108.3, 47.2, 43.8, 23.6, 21.3, 20.7, 13.9, 13.0. IR (neat): 2960, 1507, 1457 cm⁻¹. MS *m/z* (%):329/328 (6/38) [M]⁺, 105 (100). HRMS (APCI) Calcd for C₁₅H₂₂₁⁺: [M+H]⁺ (329.0761), found 329.0753.

(Z)-1-(5-lodooct-4-en-4-yl)-3-methylbenzene ((Z)-3ca).

Yield: 49%, colorless oil. TLC: R_f 0.72 (hexane). ¹H NMR (CDCl₃) δ 7.22 (t, *J* = 7.5 Hz, 1H; Ar-H), 7.10-7.07 (m, 1H; Ar-H), 6.88-6.85 (m, 2H; Ar-H), 2.65 (dd, *J* = 7.0 Hz, 2H; CH₂), 2.43 (dd, *J* = 7.5 Hz, 2H; CH₂), 2.35 (s, 3H; CH₃), 1.69-1.62 (m, 2H; CH₂), 1.36-1.29 (m, 2H; CH₂), 1.00 (t, *J* = 7.5 Hz, 3H; CH₃), 0.87 (t, *J* = 7.0 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 147.8, 147.6, 137.8, 129.0, 128.1, 127.8,

125.6, 106.3, 43.1, 36.9, 23.2, 21.7, 21.6, 13.9, 13.2. IR (neat): 2960, 1560, 1457 cm⁻¹. MS *m*/*z* (%): 329/328 (6/40) $[M]^+$, 105 (100). HRMS (APCI) Calcd for $C_{15}H_{22}I^+$: $[M+H]^+$ (329.0761), found 329.0755.

(E)-1-(5-lodooct-4-en-4-yl)-3-methylbenzene ((E)-3ca).

Yield: 22%, colorless oil. TLC: $R_f 0.86$ (hexane). ¹H NMR (CDCl₃) δ 7.20 (t, J = 7.5 Hz, 1H; Ar-H), 7.08-7.06 (m, 1H; Ar-H), 6.88-6.84 (m, 2H; Ar-H), 2.52 (dd, J = 7.5 Hz, 2H; CH₂), 2.35 (s, 3H; CH₃), 2.25 (dd, J = 7.0 Hz, 2H; CH₂), 1.52-1.46 (m, 2H; CH₂), 1.38-1.31 (m, 2H; CH₂), 0.90 (t, J = 7.5 Hz, 3H; CH₃), 0.76 (t, J = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 146.5, 140.9, 138.0, 128.9, 128.2, 127.7, 125.4, 108.3, 47.1, 43.8, 23.6, 21.6, 20.7, 13.9, 13.0. IR (neat): 2960, 1559, 1507, 1457 cm⁻¹. MS *m/z* (%): 329/328 (6/42) [M]⁺, 105 (100). HRMS (APCI) Calcd for C₁₅H₂₂I⁺: [M+H]⁺ (329.0761), found 329.0757.

(Z)-1-(5-lodooct-4-en-4-yl)-2-methylbenzene ((Z)-3da).

Yield: 59%, colorless oil. TLC: $R_f 0.66$ (hexane). ¹H NMR (CDCl₃) δ 7.20-7.15 (m, 2H; Ar-H), 6.90-6.89 (m, 2H; Ar-H), 2.75-2.18 (m, 2H; CH₂), 2.63-2.52 (m, 2H; CH₂), 2.21 (s, 3H; CH₃), 1.70-1.63 (m, 2H; CH₂), 1.59-1.31 (m, 2H; CH₂), 1.01 (t, *J* = 7.0 Hz, 3H; CH₃), 0.89 (t, *J* = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 147.3, 146.9, 134.7, 130.3, 128.6, 127.2, 125.7, 107.8, 42.6, 36.3, 23.2, 21.5, 19.4, 14.2, 13.2. IR (neat): 2960, 1560, 1507, 1457 cm⁻¹. MS *m/z* (%): 329/328 (7/48) [M]⁺, 105 (100). HRMS (APCI) Calcd for C₁₅H₂₂I⁺: [M+H]⁺ (329.0761), found 329.0751.

(E)-1-(5-lodooct-4-en-4-yl)-2-methylbenzene ((E)-3da).

Yield: 32%, colorless oil. TLC: $R_f 0.87$ (hexane). ¹H NMR (CDCl₃) δ 7.19-7.11 (m, 2H; Ar-H), 6.92-6.91 (m, 2H; Ar-H), 2.56-2.27 (m, 2H; CH₂), 2.18-2.11 (m, 2H; CH₂), 2.18 (s, 3H; CH₃), 1.49-1.44 (m, 2H; CH₂), 1.39-1.33 (m, 2H; CH₂), 0.91 (t, *J* = 7.0 Hz, 3H; CH₃), 0.73 (t, *J* = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 145.6, 140.2, 135.1, 130.3, 128.9, 127.2, 125.6, 108.1, 46.2, 43.5, 23.2, 20.5, 19.6, 14.2, 13.1. IR (neat): 2960, 1559, 1507, 1457 cm⁻¹. MS *m/z* (%): 329/328 (6/42) [M]⁺, 105 (100). HRMS (APCI) Calcd for C₁₅H₂₂I⁺: [M+H]⁺ (329.0761), found 329.0754.

(Z)-2-(5-lodooct-4-en-4-yl)naphthalene ((Z)-3ea).

Yield: 53%, colorless oil. TLC: $R_f 0.54$ (hexane). ¹H NMR (CDCl₃) δ 7.85-7.82 (m, 3H; Ar-H), 7.54-7.45 (m, 3H; Ar-H), 7.24-7.22 (m, 1H; Ar-H), 2.72 (t, *J* = 7.5 Hz, 2H; CH₂), 2.54 (t, *J* = 7.5 Hz, 2H; CH₂), 1.74-1.66 (m, 2H; CH₂), 1.37-1.33 (m, 2H; CH₂), 1.04 (t, *J* = 7.5 Hz, 3H; CH₃), 0.88 (t, *J* = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 147.4, 145.2, 133.5, 143.6, 128.2, 127.9, 127.8, 127.2, 127.0, 126.1, 106.8, 43.2, 37.0, 23.2, 21.7, 13.9, 13.2. IR (neat): 2958, 2870, 1597, 1457, 1107 cm⁻¹. MS *m/z* (%): 365/364 (12/63) [M]⁺, 141 (100). HRMS

(APCI) Calcd for C₁₈H₂₂I⁺: [M+H]⁺ (365.0761), found 365.0753.

(E)-2-(5-lodooct-4-en-4-yl)naphthalene ((E)-3ea).

Yield: 25%, colorless oil. TLC: $R_f 0.68$ (hexane). ¹H NMR (CDCl₃) δ 7.85-7.80 (m, 3H; Ar-H), 7.52-7.46 (m, 3H; Ar-H), 7.22-7.20 (m, 1H; Ar-H), 2.62 (t, *J* = 8.0 Hz, 2H; CH₂), 2.30 (t, *J* = 7.5 Hz, 2H; CH₂), 1.54-1.48 (m, 2H; CH₂), 1.42-1.35 (m, 2H; CH₂), 0.91 (t, *J* = 7.5 Hz, 3H; CH₃), 0.74 (t, *J* = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 146.3, 138.4, 133.4, 132.5, 128.1, 128.0, 127.9, 126.9, 126.8, 126.4, 126.1, 108.9, 47.1, 43.9, 23.6, 20.7, 13.9, 13.0. IR (neat): 2958, 2869, 1596, 1456, 1113 cm⁻¹. MS *m/z* (%): 365/364 (10/57) [M]⁺, 141 (100). HRMS (APCI) found Calcd for C₁₈H₂₂I⁺: [M+H]⁺ (365.0761), 365.0754.

(Z)-1-(5-lodooct-4-en-4-yl)naphthalene ((Z)-3fa).

Yield: 48%, colorless oil. TLC: $R_f 0.51$ (hexane). ¹H NMR (CDCl₃) δ 7.88-7.78 (m, 3H; Ar-H), 7.49-7.45 (m, 3H; Ar-H), 7.15-7.14 (m, 1H; Ar-H), 2.88-2.37 (m, 2H; CH₂), 2.77-2.66 (m, 2H; CH₂), 1.79-1.73 (m, 2H; CH₂), 1.45-1.32 (m, 2H; CH₂), 1.10 (t, *J* = 7.5 Hz, 3H; CH₃), 0.88 (t, *J* = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 145.9, 145.3, 134.0, 130.4, 128.7, 127.4, 126.2, 125.9, 125.5, 125.5, 108.9, 42.9,

37.1, 23.4, 22.1, 14.1, 13.4. IR (neat): 2959, 2360, 1456, 1130 cm⁻¹. MS m/z (%): 365/364 (6/43) [M]⁺, 165 (100), 153 (71). HRMS (APCI) Calcd for C₁₈H₂₂I⁺: [M+H]⁺ (365.0761), found 365.0757.

(E)-1-(5-lodooct-4-en-4-yl)naphthalene ((E)-3fa).

Yield: 19%, colorless oil. TLC: Rf 0.77 (hexane). ¹H NMR (CDCl₃) δ 7.87-7.76 (m, 3H; Ar-H), 7.49-7.42 (m, 3H; Ar-H), 7.14-7.13 (m, 1H; Ar-H), 2.74-2.44 (m, 2H; CH₂), 2.15-2.06 (m, 2H; CH₂), 1.46-1.41 (m, 2H; CH₂), 1.40-1.35 (m, 2H; CH₂), 0.89 (t, J = 7.5 Hz, 3H; CH₃), 0.65 (t, *J* = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 144.5, 138.4, 134.0, 131.2, 128.5, 127.6, 126.3, 126.1, 125.8, 125.8, 125.4, 109.4, 46.9, 44.0, 23.4, 21.0, 14.1, 13.0. IR (neat): 2958, 2360, 1458, 1113 cm⁻¹. MS *m*/z (%): 365/364 (6/33) [M]⁺, 165 (100), 153 (77). HRMS (APCI) Calcd for $C_{18}H_{22}I^{+}$: $[M+H]^{+}$ (365.0761), found 365.0756.

(Z)-1-(5-lodooct-4-en-4-yl)-4-methoxybenzene ((Z)-3ga).

Yield: 47%, colorless oil. TLC: Rf 0.37 (hexane/ethyl acetate = 20/1). ¹H NMR (CDCl₃) δ 7.01-6.99 (m, 2H; Ar-H), 6.88-6.86 (m, 2H; Ar-H), 3.82, (s, 3H; OCH₃), 2.65 (dd, J = 7.5 Hz, 2H; CH₂), 2.43 (dd, J = 7.5 Hz, 2H; CH₂), 1.67 (m, 2H; CH₂), 1.34-1.29 (m, 2H; CH₂), 0.99 (t, J = 7.5 Hz, 3H; CH₃), 0.86 (t, J = 7.0 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 158.6, 147.1, 140.3, 129.6, 113.6, 106.8, 55.4, 43.3, 36.9, 23.2, 21.6, 13.9, 13.2. IR (neat): 2958, 1605, 1507, 1245 cm⁻¹. MS *m/z* (%): 345/344 (9/58) [M]⁺, 121 (100). HRMS (APCI) Calcd for C₁₅H₂₂IO⁺: [M+H]⁺ (345.0710), found 345.0706.

(E)-1-(5-lodooct-4-en-4-yl)-4-methoxybenzene ((E)-3ga).

Yield: 23%, colorless oil. TLC: Rf 0.47 (hexane/ethyl acetate = 20/1). ¹H NMR (CDCl₃) δ 7.01-6.99 (m, 2H; Ar-H), 6.87-6.85 (m, 2H; Ar-H), 3.81, (s, 3H; OCH₃), 2.52 (dd, J = 7.5 Hz, 2H; CH₂), 2.27 (dd, J = 7.5 Hz, 2H; CH₂), 1.53-1.47 (m, 2H; CH₂), 1.35-1.31 (m, 2H; CH₂), 0.89 (t, J = 7.0 Hz, 3H; CH₃), 0.76 (t, J = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 158.6, 146.0, 133.0, 129.3, 113.8, 108.4, 55.4, 47.2, 43.8, 23.6, 20.7, 13.9, 13.0. IR (neat): 2958, 1605, 1507, 1245 cm⁻¹. MS *m/z* (%): 345/344 (11/62) [M]⁺, 121 (100). HRMS (APCI) Calcd for C₁₅H₂₂IO⁺: [M+H]⁺ (345.0710), found 345.0704.

(Z)-1-(5-lodooct-4-en-4-yl)-4-(trifluoromethyl)benzene ((Z)-3ha).

Yield: 53%, colorless oil. TLC: R_f 0.59 (hexane). ¹H NMR (CDCl₃) δ 7.61-7.59 (m, 2H; Ar-H), 7.20-7.18 (m, 2H; Ar-H), 2.67 (dd, J = 7.5 Hz, 2H; CH₂), 2.45 (dd, J = 7.5 Hz, 2H; CH₂), 1.70-1.63 (m, 2H; CH₂), 1.33-1.27 (m, 2H; CH₂), 1.00 (t, J = 7.5 Hz, 3H; CH₃), 0.88 (t, J = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 151.2, 146.4, 129.3 (d, J = 32.2Hz), 129.0, 128.3 (q, J = 271.6 Hz), 125.4 (q, J = 3.4 Hz), 107.0, 43.1, 36.8, 23.2, 21.5, 13.9, 13.2. ¹⁹F (CDCl₃) d -62.9. IR (neat): 2962, 1325, 1126 cm⁻¹. MS m/z (%): 383/382 (10/61) [M]⁺, 185 (55), 173 (100), 159 (80). HRMS (EI) Calcd for C₁₅H₁₈F₃I: [M]⁺ (382.0405), found 382.0397.

(E)-1-(5-lodooct-4-en-4-yl)-4-(trifluoromethyl)benzene ((E)-3ha).

Yield: 8%, colorless oil. TLC: Rf 0.66 (hexane). ¹H NMR (CDCl₃) δ 7.60-7.58 (m, 2H; Ar-H), 7.20-7.18 (m, 2H; Ar-H), 2.54 (dd, J = 7.5 Hz, 2H; CH₂), 2.22 (dd, J = 7.0 Hz, 2H; CH₂), 1.52-1.48 (m, 2H; CH₂), 1.35-1.30 (m, 2H; CH₂), 0.91 (t, J = 7.5 Hz, 3H; CH₃), 0.76 (t, J = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 145.2, 144.8, 129.4 (q, J =32.7 Hz), 128.7, 125.5 (q, J = 272.0 Hz), 109.2, 47.0, 43.8, 23.6, 20.6, 13.8, 12.9. IR (neat): 2962, 1325, 1126 cm⁻¹. MS *m/z* (%): 383/382 (8/58) [M]⁺, 185 (58), 173 (100), 159 (77). HRMS (EI) Calcd for C₁₅H₁₈F₃I: [M]⁺ (382.0405), found 382.0406.

(Z)-4-(5-lodooct-4-en-4-yl)benzonitrile ((Z)-3ia) and (E)-4-(5-lodooct-4-en-4-yl)benzonitrile ((E)-3ia) (19 : 1 mixture).

Yield: 60%, yellow oil. TLC: $R_f 0.28$ (hexane/ethyl acetate = 20/1). ¹H NMR (CDCl₃) $\overline{0}$ 7.65-7.63 (m, 2H; Ar-H), 7.19-7.17 (m, 2H; Ar-H), 2.66 (dd, J = 7.5 Hz, 2H; CH₂), 2.52 (dd, J = 8.0 Hz, 0.1H; CH₂), 2.44 (dd, J = 7.5 Hz, 2H; CH₂), 2.20 (dd, J = 7.0 Hz, 0.1H; CH₂), 1.69-1.61 (m, 2H; CH₂), 1.51-1.45 (m, 0.1H; CH₂), 1.32-1.25 (m, 2H; CH₂), 0.99 (t, J = 7.0 Hz, 3H; CH₃), 0.87 (t, J = 7.0 Hz, 3H; CH₃), 0.75 (t, J = 7.5 Hz, 29, 1.51-1.45 (m, 0.1H; CH₂), 1.32-1.25 (m, 2H; CH₂), 0.99 (t, J = 7.0 Hz, 3H; CH₃), 0.87 (t, J = 7.0 Hz, 3H; CH₃), 0.75 (t, J = 7.5 Hz, 0.15H; CH₃). ¹³C NMR (CDCl₃) $\overline{0}$ 152.2, 146.0, 144.7, 132.4, 132.3, 129.5, 129.1, 119.1, 118.9, 111.1, 111.0, 109.5, 107.4, 46.8, 43.8, 43.0, 36.6, 23.5, 23.1, 21.5, 20.6, 13.9, 13.8, 13.2, 12.9. IR (neat): 2960, 2229, 1601, 1456, 1270, 1132 cm⁻¹. MS *m/z* (%): 340/339 (12/70) [M]⁺, 142 (77), 130(100), 116 (85). HRMS (EI) Calcd for C₁₅H₁₈IN: [M]⁺ (339.0484), found 339.0480.

(Z)-1-(4-(5-lodooct-4-cn-4-yl)phenyl)ethan-1-one ((Z)-3ja): CAS RN [935762-72-4].

Yield: 87%, yellow oil. TLC: $R_f 0.37$ (hexane/THF = 10/1). ¹H NMR (CDCl₃) \overline{o} 7.96-7.94 (m, 2H; Ar-H), 7.18-7.17 (m, 2H; Ar-H), 2.67 (dd, *J* = 7.0 Hz, 2H; CH₂), 2.61 (s, 3H; C(O)CH₃), 2.46 (dd, *J* = 7.5 Hz, 2H; CH₂), 1.70-1.62 (m, 2H; CH₂), 1.34-1.27 (m, 2H; CH₂), 1.00 (t, *J* = 7.5 Hz, 3H; CH₃), 0.87 (t, *J* = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) \overline{o} 197.8, 152.5, 146.7, 135.9, 128.9, 128.9, 128.6, 106.7, 43.1, 36.8, 26.8, 23.1, 21.6, 13.9, 13.2; IR (neat): 2959, 1692, 1602, 1265 cm⁻¹. MS *m/z* (%): 357/356 (4/15) [M]⁺, 43 (100). HRMS (APCI) Calcd for C₁₆H₂₂IO⁺: [M+H]⁺ (357.0710), found 357.0710.

(E)-1-(4-(5-lodooct-4-en-4-yl)phenyl)ethan-1-one ((E)-3ja).

Yield: 11%, yellow oil. TLC: R_f 0.37 (hexane/THF = 20/1). ¹H NMR (CDCl₃) δ 7.94-7.92 (m, 2H; Ar-H), 7.18-7.16 (m, 2H; Ar-H), 2.61 (s, 3H; C(O)CH₃), 2.54 (dd, *J* = 7.5 Hz, 2H; CH₂), 2.23 (dd, *J* = 7.5 Hz, 2H; CH₂), 1.53-1.46 (m, 2H; CH₂), 1.36-1.29 (m, 2H; CH₂), 0.90 (t, *J* = 7.5 Hz, 3H; CH₃), 0.75 (t, *J* = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 197.8, 146.2, 145.5, 136.0, 128.6, 128.6, 108.9, 46.9, 43.9, 26.7, 23.6, 20.7, 13.8, 12.9. IR (neat): 2959, 1693, 1602, 1265 cm⁻¹. MS *m/z* (%): 357/356(3/13) [M]⁺, 43 (100); HRMS (APCI) Calcd for C₁₆H₂₂IO⁺: [M+H]⁺ (357.0710), found 357.0704.

(Z)-Ethyl-4-(5-iodooct-4-en-4-yl)phenyl propionate ((Z)-3ka) and (E)-Ethyl-4-(5-iodooct-4-en-4-yl)phenyl propionate ((E)-3ka) (8.8 : 1 mixture).

Yield: 88%, yellow oil. TLC: $R_f 0.42$ (hexane/ethyl acetate = 20/1). ¹H NMR (CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 2H; Ar-H), 7.14 (d, *J* = 8.0 Hz, 2H; Ar-H), 4.37 (q, *J* = 7.0 Hz, 2H; CO₂CH₂), 2.66 (dd, *J* = 7.0 Hz, 2H; CH₂), 2.53 (dd, *J* = 8.0 Hz, 0.22H; CH₂), 2.45 (dd, *J* = 7.5 Hz, 2H; CH₂), 2.22 (dd, *J* = 7.0 Hz, 0.22H; CH₂), 1.68-1.63 (m, 2H; CH₂), 1.52-1.47 (m, 2H; CH₂), 1.39 (t, *J* = 7.0 Hz, 3H; CH₃), 1.32-1.27 (m, 2H; CH₂), 1.00 (t, *J* = 7.0 Hz, 3H; CH₃), 0.87 (t, *J* = 7.0 Hz, 0.34H; CH₃). ¹³C NMR (CDCl₃) δ 166.6, 152.2, 146.7, 145.8, 145.6, 129.7, 129.2, 128.6, 128.3, 108.8, 106.7, 61.1, 46.9, 43.8, 43.0, 36.7, 23.5, 23.1, 21.5, 20.6, 14.6, 13.9, 13.2, 12.9. IR (neat): 2962, 1715, 1607, 1279, 1110 cm⁻¹. MS *m/z* (%): 387/386 (10/82) [M]⁺, 342/341 (3/22) [M-OEt]⁺, 129 (80), 119 (100). HRMS (APCI) Calcd for C₁₇H₂₄IO₂⁺: [M+H]⁺ (387.0815), found 387.0808.

(Z)-1-Bromo-4-(5-iodooct-4-en-4-yl)benzene ((Z)-3la).

Yield: 68%, colorless oil. TLC: R_f 0.62 (hexane). ¹H NMR (CDCl₃) δ 7.48-7.45 (m, 2H; Ar-H), 6.96-6.94 (m, 2H; Ar-H), 2.65 (dd, J = 7.0 Hz, 2H; CH₂), 2.42 (dd, J = 7.5 Hz, 2H; CH₂), 1.69-1.61 (m, 2H; CH₂), 1.31-1.28 (m, 2H; CH₂), 0.99 (t, J = 7.5 Hz, 3H; CH₃), 0.87 (t, J = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 146.5, 146.4, 131.5, 130.3, 121.1, 107.0, 43.1, 36.8, 23.1, 21.5, 13.9, 13.2. IR (neat): 2960, 1493, 1113, 1070, 1010 cm⁻¹. MS *m/z* (%):395/394/393/392 (8/68/6/70) [M]⁺, 157 (85), 129 (100). HRMS (APCI) Calcd for C₁₄H₁₉Brl⁺: [M+H]⁺ (392.9709), found 392.9702.

(E)-1-Bromo-4-(5-iodooct-4-en-4-yl)benzene ((E)-3la).

Yield: 15%, colorless oil. TLC: $R_f 0.68$ (hexane). ¹H NMR (CDCl₃) δ 7.46-7.45 (m, 2H; Ar-H), 7.00-6.91 (m, 2H; Ar-H), 2.50 (dd, J = 7.5 Hz, 2H; CH₂), 2.23 (dd, J = 7.5 Hz, 2H; CH₂), 1.57-1.45 (m, 2H; CH₂), 1.34-1.29 (m, 2H; CH₂), 0.90 (t, J = 7.0 Hz, 3H; CH₃), 0.76 (t, J = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 145.2, 139.8, 131.7, 130.0, 121.1, 108.9, 46.9, 43.8, 23.6, 20.6, 13.8, 13.0. IR (neat): 2959, 1495, 1113, 1070, 1012 cm⁻¹. MS *m/z* (%): 395/394/393/392 (8/60/8/60) [M]⁺, 157 (87), 129 (100). HRMS (APCI) Calcd for C₁₄H₁₉Brl⁺: [M+H]⁺ (392.9709), found 392.9702.

(Z)-1-chloro-4-(5-iodooct-4-en-4-yl)benzene ((Z)-3ma).

Yield: 53%, colorless oil. TLC: R_f 0.68 (hexane). ¹H NMR (CDCl₃) δ 7.32-7.30 (m, 2H; Ar-H), 7.02-7.00 (m, 2H; Ar-H), 2.65 (dd, *J* = 7.5 Hz, 2H; CH₂), 2.42 (dd, *J* = 7.5 Hz, 2H; CH₂), 1.68-1.61 (m, 2H; CH₂), 1.34-1.26 (m, 2H; CH₂), 0.99 (t, *J* = 7.5 Hz, 3H; CH₃), 0.87 (t, *J* = 7.0 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 146.4, 146.1, 132.9, 129.9, 128.6, 107.0, 43.2, 36.8, 23.1, 21.5, 13.9, 13.2. IR (neat): 2959, 1495, 1113, 1014 cm⁻¹. MS *m/z* (%): 351/350/349/348 (2/16/6/50) [M]⁺, 125 (100). HRMS (APCI) Calcd for C₁₄H₁₉Cll⁺: [M+H]⁺ (349.0214), found 349.0208.

(E)-1-Chloro-4-(5-iodooct-4-en-4-yl)benzene ((E)-3ma).

Yield: 7%, colorless oil. TLC: $R_f 0.78$ (hexane). ¹H NMR (CDCl₃) δ 7.32-7.29 (m, 2H; Ar-H), 7.01-6.98 (m, 2H; Ar-H), 2.51 (dd, J = 7.5 Hz, 2H; CH₂), 2.24 (dd, J = 7.0 Hz, 2H; CH₂), 1.54-1.45 (m, 2H; CH₂), 1.34-1.28 (m, 2H; CH₂), 0.90 (t, J = 7.0 Hz, 3H; CH₃), 0.76 (t, J = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 145.2, 139.2, 133.0, 129.6, 128.7, 108.9, 47.0, 43.8, 23.6, 20.6, 13.8, 13.0. IR (neat): 2959, 1499, 1092, 1016 cm⁻¹. MS *m*/z (%): 351/350/349/348 (2/14/6/42) [M]⁺, 125 (100). HRMS (APCI) Calcd for C₁₄H₁₉Cll⁺: [M+H]⁺ (349.0214), found 349.0209.

(Z)-2-(2-(5-lodooct-4-en-4-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((Z)-3na).

Yield: 31%, colorless oil. TLC: R_f 0.40 (hexane/ethyl acetate = 40/1). ¹H NMR (CDCl₃) δ 7.84-7.83 (m, 1H; Ar-H), 7.42-7.39 (m, 1H; Ar-H), 7.28-7.25 (m, 1H; Ar-H), 6.96-6.95 (m, 1H; Ar-H), 2.75-2.57 (m, 2H; CH₂), 2.56-2.28 (m, 2H; CH₂), 1.72-1.64 (m, 2H; CH₂), 1.47-1.29 (m, 2H; CH₂), 1.30 (s, 12H; 4CH₃), 1.03 (t, *J* = 7.5 Hz, 3H; CH₃), 0.88 (t, *J* = 7.0 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 154.2, 148.4, 136.0, 130.7, 128.8, 126.3, 105.9, 83.5, 43.2, 37.4, 25.1, 25.0, 22.8, 21.5, 14.3, 13.6. IR (neat): 2958, 1462, 1368, 1303, 1134 cm⁻¹. MS *m/z* (%): 441/440 (1/4) [M]⁺, 314/313 (18/93) [M-I]⁺, 185 (90), 83 (100). HRMS (APCI) Calcd for C₂₀H₃₁BlO₂⁺: [M+H]⁺ (441.1456), found 441.1446.

(E)-2-(2-(5-lodooct-4-en-4-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and an uncharacterized isomer ((E)-3na) (1 : 0.22 mixture).

Yield: 11%, colorless oil. TLC: R_f 0.42 (hexane/ethyl acetate = 40/1). ¹H NMR (CDCl₃) δ 7.78-7.76 (m, 1H; Ar-H), 7.74-7.73 (m,0.21H), 7.38-7.35 (m,0.21H), 7.25-7.24 (m, 0.21H), 7.38-7.35 (m, 0.21H), 7.25-7.24 (m, 0.21H), 7.23-7.20(m, 1H; Ar-H), 7.08-7.06 (m, 1H; Ar-H), 6.97-6.96 (m, 0.21H), 6.89-6.86 (m, 1H; Ar-H), 2.62-2.35 (m, 0.42H), 2.55-2.23 (m, 2H; CH₂), 2.26-2.10 (m, 2H; CH₂), 2.20-2,10 (m, 0.42H), 1.53-1.45 (m, 2H; CH₂), 1.43-1.34 (m, 2H; CH₂), 1.30 (s, 2.52H), 1.31-1.24 (m, 0.42H), 1.00 (t, J = 7.0 Hz, 3H; CH₃), 0.97 (s, 6H), 0.93 (s, 6H), 0.89 (t, J = 7.5 Hz, 3H; CH₃), 0.89 (t, J = 7.5 Hz, 0.63H; CH₃), 0.70 (t, J = 7.5 Hz, 0.63H; CH₃). ¹³C NMR (CDCI₃) δ 153.7, 149.4, 147.3, 146.9, 138.6, 135.5, 130.5, 130.4, 128.6, 127.8, 127.1, 126.2, 107.9, 100.2, 83.7, 82.8, 47.7, 43.8, 35.5, 32.8, 25.1,

25.0, 24.9, 24.6, 24.5, 23.2, 23.2, 21.2, 20.5, 14.6, 14.6, 14.3, 13.1, 1.2. IR (neat): 2959, 1484, 1352, 1314, 1146 cm⁻¹. MS *m/z* (%): 441/440 (20/92) [M]⁺, 384/383 (9/57) [M-I]⁺, 213 (98), 157 (96, 143 (100). HRMS (APCI) Calcd for C₂₀H₃₁BIO₂⁺: [M+H]⁺ (441.1456), found 441.1454.

(Z)-2-(3-(5-lodooct-4-en-4-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((Z)-30a).

Yield: 62%, pink oil. TLC: $R_f 0.23$ (hexane/ethyl acetate = 40/1). ¹H NMR (CDCl₃) δ 7.74-7.72 (m, 1H; Ar-H), 7.50 (s, 1H; Ar-H), 7.33 (t, J = 7.5 Hz, 2H; Ar-H), 7.19-7.17 (m, 1H; Ar-H), 2.66 (t, J = 7 Hz, 2H; CH₂), 2.46 (dd, $J = 7.5 \text{ Hz}, 2\text{H}; C\text{H}_2$, 1.69-1.62 (m, 2H; CH₂), 1.35 (s, 12H; 4CH₃), 1.33-1.30 (m, 2H; CH₂), 1.00 (t, J = 7.0 Hz, 3H; CH₃), 0.87 (t, J = 7.0 Hz, 3H; CH₃). ¹³C NMR (CDCI₃) δ 147.5, 147.1, 134.2, 133.6, 131.9, 127.5, 106.4, 84.0, 43.2, 36.9, 31.8, 25.1, 23.2, 21.6, 14.0, 13.3. IR (neat): 2960, 1358, 1313, 1145 cm⁻¹. MS m/z (%): 441/440 (11/60) [M]⁺, 101

Yield: 22%, colorless oil. TLC: R_f 0.28 (hexane/ethyl acetate = 40/1). ¹H NMR (CDCl₃) δ 7.71-7.69 (m, 1H; Ar-H), 7.51 (s, 1H; Ar-H), 7.34-7.31 (m, 1H; Ar-H), 7.15-7.14 (m, 1H; Ar-H), 2.54 (dd, J = 7.5 Hz, 2H; CH₂), 2.23 (dd, J = 7.5 Hz, 2H; CH₂), 1.53-1.46 (m, 2H; CH₂), 1.38-1.32 (m, 2H; CH₂), 1.35 (s, 12H; 4CH₃), 0.90 (t, J = 7.5 Hz, 3H; CH₃), 0.75 (t, J = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 146.3, 140.2, 134.4, 133.4, 131.2, 127.8, 108.5, 84.0, 47.1, 43.9, 25.1, 23.6, 20.6, 13.9, 12.9. IR (neat): 2959, 1358, 1314, 1145 cm⁻¹. MS m/z (%): 441/440 (17/73) [M]⁺, 101 (100), 83 (96). HRMS (APCI) Calcd for C₂₀H₃₁BIO₂⁺: [M+H]⁻

(100), 83 (98). HRMS (APCI) Calcd for $C_{20}H_{31}BIO_2^+$: $[M+H]^+$ (441.1456), found 441.1455.

(E)-2-(3-(5-lodooct-4-en-4-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((E)-3oa).

(441.1456), found 441.1454.

(Z)-2-(4-(5-lodooct-4-en-4-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((Z)-3pa).

Yield: 70%, colorless oil. TLC: R_f 0.41 (hexane/ethyl acetate = 40/1). ¹H NMR (CDCl₃) δ 7.80-7.78 (m, 2H; Ar-H), 7.09-7.08 (m, 2H; Ar-H), 2.66 (dd, J = 7.5 Hz, 2H; CH₂), 2.43 (dd, J = 7.5 Hz, 2H; CH₂), 1.69-1.62 (m, 2H; CH₂), 1.32-1.26 (m, 2H; CH₂), 1.34 (s, 12H; 4CH₃), 1.00 (t, J = 7.5 Hz, 3H; CH₃), 0.85 (t, J = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 150.6, 147.5, 134.8, 127.8, 106.1, 83.9, 43.1, 36.8, 25.1, 23.2, 21.5, 13.9, 13.2. IR (neat): 2962, 1609, 1361, 1144 cm⁻¹. MS *m/z* (%): 441/440 (14/81) [M]⁺, 101 (100), 83 (92). HRMS (APCI) Calcd for C₂₀H₃₁BIO₂⁺: [M+H]⁺ (441.1456), found 441.1447.

(E)-2-(4-(5-lodooct-4-en-4-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((E)-3pa).

Yield: 26%, white solid. Mp. 77 °C (hexane/ethyl acetate), TLC: R_f 0.44 (hexane/ethyl acetate = 40/1). ¹H NMR (CDCl₃) δ 7.78-7.76 (m, 2H; Ar-H), 7.09-7.07 (m, 2H; Ar-H), 2.52 (dd, *J* = 7.5 Hz, 2H; CH₂), 2.24 (dd, *J* = 7.5 Hz, 2H; CH₂), 1.52-1.44 (m, 2H; CH₂), 1.35 (s, 12H; 4CH₃), 1.34-1.29 (m, 2H; CH₂), 0.89 (t, *J* = 7.5 Hz, 3H; CH₃), 0.72 (t, *J* = 7.5 Hz, 3H; CH₃). ¹³C NMR (CDCl₃) δ 146.3, 144.0, 134.9, 127.7, 108.5, 84.0, 47.0, 43.9, 25.1, 23.6, 20.6, 13.9, 12.9. IR (neat): 2959, 1608, 1359, 1145 cm⁻¹. MS *m/z* (%): 441/440 (13/70) [M]⁺, 101 (100), 83 (96). HRMS (APCI) Calcd for C₂₀H₃₁BIO₂⁺: [M+H]⁺ (441.1456), found 441.1456.

(Z)-1-(4-(4-lodo-1,6-dimethoxyhex-3-en-3-yl)phenyl)ethan-1-one ((Z)-3jb).

Yield: 43%, colorless oil. TLC: R_f 0.08 (hexane/ethyl acetate =10/1). ¹H NMR (CDCl₃) δ 7.96-7.95 (m, 2H; Ar-H), 7.20-7.18 (m, 2H; Ar-H), 3.61 (t, J = 7.0 Hz, 2H; CH₂), 3.40 (s, 3H; OCH₃), 3.27 (t, J = 7.5 Hz, 2H; CH₂), 3.24 (s, 3H; OCH₃), 3.02 (t, J = 7.0 Hz, 2H; CH₂), 2.78 (t, J = 7.0 Hz, 2H; CH₂), 2.61 (s, 3H;C(O)CH₃). ¹³C NMR (CDCl₃) δ 197.8, 151.8, 145.3, 136.2, 128.8, 102.6, 71.6, 70.1, 59.1, 58.7, 41.8, 34.9, 26.7. IR (neat): 2925, 2875, 1683, 1603, 1265, 1116 cm⁻¹. MS *m*/z (%): 262/261 (8/46) [M-I]⁺, 45 (100). HRMS (APCI) Calcd for C₁₆H₂₂IO₃⁺: [M+H]⁺ (389.0608), found 389.0604.

(E)-1-(4-(4-lodo-1,6-dimethoxyhex-3-en-3-yl)phenyl)ethan-1-one ((E)-3jb).

Yield: 10%, colorless oil. TLC: R_f 0.10 (hexane/ethyl acetate =10/1). ¹H NMR (CDCl₃) δ 7.94-7.92 (m, 2H; Ar-H), 7.25-7.23 (m, 2H; Ar-H), 3.46 (t, *J* = 7.0 Hz, 2H; CH₂), 3.32 (t, *J* = 7.5 Hz, 2H; CH₂), 3.25 (s, 3H; OCH₃), 3.24 (s, 3H; OCH₃), 2.88 (t, *J* = 7.0 Hz, 2H; CH₂), 2.60 (s, 3H; C(O)CH₃). ¹³C NMR (CDCl₃) δ 197.7, 145.1, 144.4, 136.3, 128.7, 128.6, 105.0, 71.9, 69.7, 58.9, 58.7, 44.8, 42.1. IR (neat): 2925, 2875, 1683, 1602, 1265, 1116 cm⁻¹. MS *m*/*z* (%): 262/261 (10/52) [M-I]⁺, 45 (100). HRMS (APCI) Calcd for C₁₆H₂₂IO₃⁺: [M+H]⁺ (389.0608), found 389.0605.

(Z)-3-(4-Acetylphenyl)-4-iodohex-3-ene-1,6-diyl diacetate ((Z)-3jc).

Yield: 74%, colorless oil. TLC: R_f 0.25 (hexane/ethyl acetate =2/1). ¹H NMR (CDCl₃) δ 7.98-7.96 (m, 2H; Ar-H), 7.19-7.17 (m, 2H; Ar-H), 4.31 (t, *J* = 7.0 Hz, 2H; OCH₂), 4.00 (t, *J* = 6.5 Hz, 2H; OCH₂), 3.10 (t, *J* = 7.0 Hz, 2H; CH₂), 2.86 (t, *J* = 6.5 Hz, 2H; CH₂), 2.62 (s, 3H; C(O)CH₃), 2.11 (s, 3H; OC(O)CH₃), 2.00 (s, 3H; OC(O)CH₃). ¹³C NMR (CDCl₃) δ 197.7, 171.1, 170.9, 150.9, 145.1, 136.4, 128.8, 128.6, 101.9, 63.1, 40.7, 33.5, 26.8, 21.1, 21.0. IR (neat): 2959, 1738, 1683, 1603, 1385, 1362, 1266, 1042 cm⁻¹. MS *m/z* (%): 318/317 (4/30) [M-I]⁺, 43 (100). HRMS (APCI) Calcd for C₁₈H₂₂IO₅⁺: [M+H]⁺ (445.0506), found 445.0496.

(E)-3-(4-Acetylphenyl)-4-iodohex-3-ene-1,6-diyl diacetate ((E)-3jc).

Yield: 25%, colorless oil. TLC: R_f 0.29 (hexane/ethyl acetate =2/1). ¹H NMR (CDCl₃) δ 7.96-7.94 (m, 2H; Ar-H), 7.24-7.21 (m, 2H; Ar-H), 4.14 (t, *J* = 6.5 Hz, 2H; OCH₂), 4.05 (t, *J* = 6.5 Hz, 2H; OCH₂), 2.95 (t, *J* = 6.5 Hz, 2H; CH₂), 2.61 (s, 3H; C(O)CH₃), 2.01 (s, 3H; OC(O)CH₃), 1.98 (s, 3H; OC(O)CH₃). ¹³C NMR (CDCl₃) δ 197.6, 171.0, 170.8, 144.6, 144.5, 136.5, 128.8, 128.6, 104.2, 63.4, 61.3, 43.9, 41.2, 26.8, 21.1, 21.0. IR (neat): 2958, 1738, 1683, 1602, 1384, 1363, 1265, 1043 cm⁻¹. MS *m/z* (%): 318/317 (3/18) [M-I]⁺, 43 (100). HRMS (APCI) Calcd for C₁₈H₂₂IO₅⁺: [M+H]⁺ (445.0506), found 445.0504.

(Z)-1-(4-(1,6-Bis(benzyloxy)-4-iodohex-3-en-3-yl)phenyl)ethan-1-one ((Z)-3jd) and (E)-1-(4-(1,6-Bis(benzyloxy)-4-iodohex-3-en-3-yl)phenyl)ethan-1-one ((E)-3jd) (6.1 : 1 mixture).

Yield: 90%, colorless oil. TLC: R_f 0.74 (hexane/ethyl acetate =3/1). ¹H NMR (CDCl₃) δ 7.94-7.92 (m, 2H; Ar-H), 7.88-7.86 (m, 0.33H; Ar-H), 7.37-7.24 (m, 10H; Ph-H), 7.37-7.24 (m, 1.6H; Ph-H), 7.15-7.13 (m, 2H; Ar-H), 7.21-7.20 (m, 0.33H; Ar-H), 4.54 (s, 2H; Ph-CH₂), 4.43 (s, 0.33H; Ph-CH₂), 4.42 (s, 0.33H; Ph-CH₂), 4.45 (s, 2H; Ph-CH₂), 3.71 (t,

 $J = 7.0 \text{ Hz}, 2\text{H}; C\text{H}_2\text{)}, 3.57 \text{ (t, } J = 7.0 \text{ Hz}, 0.33\text{H}; C\text{H}_2\text{)}, 3.44 \text{ (t, } J = 7.0 \text{ Hz}, 0.33\text{H}; C\text{H}_2\text{)}, 3.36 \text{ (t, } J = 7.5 \text{ Hz}, 2\text{ H}; C\text{H}_2\text{)}, 3.08 \text{ (t, } J = 7.0 \text{ Hz}, 2\text{H}; C\text{H}_2\text{)}, 2.94 \text{ (t, } J = 7.5 \text{ Hz}, 0.33\text{H}; C\text{H}_2\text{)}, 2.83 \text{ (t, } J = 7.5 \text{ Hz}, 2\text{H}; C\text{H}_2\text{)}, 2.62 \text{ (s, } 3\text{H}; C\text{(O)CH}_3\text{)}, 2.61 \text{ (t, } J = 7.0 \text{ Hz}, 0.33\text{H}; C\text{H}_2\text{)}, 2.60 \text{ (s, } 0.49\text{H}; C(\text{O)CH}_3\text{)}. ^{13}\text{C} \text{ NMR} (CDCI_3) \delta 198.1, 152.0, 145.4, 145.2, 144.5, 138.7, 138.6, 138.5, 138.4, 136.2, 136.1, 128.9, 128.8, 128.7, 128.7, 128.0, 128.0, 127.9, 127.9, 127.8, 105.4, 103.0, 73.5, 73.2, 73.1, 69.5, 69.2, 69.0, 67.8, 67.5, 45.1, 42.5, 42.2, 35.2, 27.0, 20.5. \text{ IR (neat)}: 2858, 1682, 1601, 1453, 1358, 1265, 1104 \text{ cm}^{-1}. \text{ MS } m/z \text{ (\%):}413 \text{ (13)}, 307 \text{ (42)}, 91 \text{ (100)}. \text{ HRMS (ESI) Calcd for } C_{28}H_{30}\text{IO}_3^+: \text{ [M+H]}^+ \text{ (541.1228)}, \text{ found 541.1234}.$

6 X-ray Single Crystal Analysis of (Z)-3pa

ORTEP Drawing of (Z)-3pa (CCDC: 1847371)

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters $C_{20}H_{30}BIO_2$ 440.17 colorless, prism 0.440 X 0.410 X 0.220 mm monoclinic Primitive a = 13.66(2) Å b = 10.672(8) Å c = 15.64(2) Å $\beta = 105.433(7)^{\circ}$ V = 2198(4) Å³ P2₁/c (#14) 4 1.330 g/cm³ 896.00 14.655 cm⁻¹

 $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ \text{D}_{\text{calc}} \\ \text{F}_{000} \\ \mu(\text{MoK}\alpha) \end{array}$

7 Computational Details

General Methods. Calculations were performed on Gaussian 09 E.01.^[3] For all calculations M06 was used. Geometry optimization and frequency calculations were carried out using 6-31G(d) (H, C, N) and Lanl2dz (I) and f polarization function added Lanl2dz(f)^[4] (Ni) basis sets. Single-point calculations were performed with 6-311+G(2d,p) (H, C, N) and SDD (I) and 2f polarization functions added SDD(2f)^[5] (Ni). Solvation effects of toluene were added all calculations using CPCM. EPR parameter calculations were performed with ORCA 4.0.1.2.^[6,7] Single-point calculations were carried out at the B3LYP level with Alrichs' all-electron Gaussian triple- ζ basis sets def2-TZVP for all atoms.^[8,9] The EPR spectra were simulated using EasySpin for MATLAB with calculated *g*-value and *A*-value.^[10]

- [3] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [4] A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. A. Frenking, *Chem. Phys. Lett.* 1993, 208, 111–114.
- [5] J. M. L. Martin, A. Sundermann, J. Chem. Phys. 2001, 114, 3408–3420.
- [6] ORCA, Revision 4.0.1.2, D. Aravena, M. Atanasov, U. Becker, D. Bykov, V. G. Chilkuri, D. Datta, A. K. Dutta, D. Ganyushin, Y. Guo, A. Hansen, L. Huntington, R. Izsák, C. Kollmar, S. Kossmann, M. Krupi^{*}cka, D. Lenk, D. G. Liakos, D. Manganas, D. A. Pantazis, T. Petrenko, P. Pinski, C. Reimann, M. Retegan, C. Riplinger, T. Risthaus, M. Roemelt, M. Saitow, B. Sandhöfer, I. Schapiro, K. Sivalingam, G. Stoychev, B. Wezisla, M. Kállay, S. Grimme, E. Valeev, G. Chan, J.

Pittner, and M. Brehm, Max Planck Institute for Chemical Energy Conversion, Muelheim/Ruhr, 2017.

- [7] F. Neese, ORCA: an ab initio, DFT and Semiempirical Electronic Structure *Package*, Version 2.8, Revision 2287; Institut für Physikalische und Theoretische Chemie, Universität Bonn: Bonn, Germany, 2010.
- [8] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571–2577.
- [9] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.
- [10] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42–55.

Cartesian coordinates for Ni(I)I/dtbpy 4

С	-0.210714	1.321534	1.911155	С	0.455218	5.351061	4.703014
С	1.912814	2.041294	2.449087	Н	-0.827891	5.715172	2.297951
С	1.416073	3.113620	3.178949	Н	-2.254273	4.715258	2.645552
С	0.038176	3.301444	3.281589	Н	-1.900349	6.128691	3.654372
С	-0.773535	2.370483	2.623653	Н	-0.896555	3.256776	5.864524
С	-0.990065	0.294157	1.187602	Н	-1.941244	4.690072	5.740065
С	-0.867508	-1.603661	-0.115010	Н	-2.294581	3.250405	4.768811
С	-2.250089	-1.690033	-0.206164	Н	-0.046385	6.160343	5.249228
С	-3.046238	-0.738610	0.430135	Н	1.080791	4.805813	5.422768
С	-2.376048	0.265764	1.136659	Н	1.111069	5.815693	3.954230
н	2.984343	1.868341	2.350721	С	-4.567479	-0.755728	0.384351
н	2.118758	3.788816	3.658357	С	-5.110844	-0.879801	1.812735
н	-1.855882	2.470019	2.671726	С	-5.066283	0.550008	-0.245834
н	-0.225960	-2.335531	-0.603841	C	-5.103253	-1.924113	-0.439014
н	-2.685148	-2.505017	-0.777111	H	-4.764511	-1.807932	2.287092
н	-2.947255	1.034853	1.652372	Н	-4.803425	-0.039429	2,448390
N	1 125851	1 164472	1 829030	н	-6 209130	-0 896937	1 792803
N	-0 241867	-0.640385	0.561790	н	-4 684346	0.665122	-1 269192
Ni	1 722877	-0 416997	0 753221	н	-6 163950	0 545738	-0 290674
1	4 103412	-1 076050	0 335885	н	-4 761500	1 432833	0 330778
Ċ	-0 593398	4 447356	4 059807	н	-6 200465	-1 893491	-0 444528
c	-1.442908	5 294538	3 104942	н	-4 766798	-1.878042	-1 483745
c	-1.492648	3 871709	5 168200	н	-4.802884	-2 803817	-0.010245
Ũ	1.102010	0.011100	0.100200		1.002001	2.000011	0.010210
Ca	artesian co	ordinates f	for O1				
С	-0.978701	3.057946	0.528915	I	1.749426	0.578854	2.056917
С	1.078293	4.016355	0.046274	С	2.060889	-0.481370	-0.917977
С	0.626020	5.282224	0.391936	С	1.372794	-1.795340	-0.940147
С	-0.688465	5.417949	0.822060	Н	1.015948	-2.069102	0.063597
С	-1.502736	4.296093	0.893367	Н	0.510403	-1.785013	-1.621718
С	-1.738779	1.794965	0.567137	Н	2.045962	-2.597740	-1.274609
С	-1.662815	-0.490428	0.219196	С	3.878526	1.207423	-1.088363
С	-2.993163	-0.644324	0.583699	С	3.693955	2.151699	-2.102536
С	-3.711333	0.486035	0.950663	С	4.664856	1.554848	0.016698
С	-3.077934	1.720218	0.943388	С	4.251980	3.424580	-1.999371
н	2.100243	3.844970	-0.299272	Н	3.106003	1.881100	-2.978539
н	1.293257	6.136666	0.324838	С	5.217780	2.825308	0.123894
н	-1.080088	6.392751	1.103272	н	4.828131	0.818907	0.803886
н	-2.530556	4.390060	1.232297	С	5.009122	3.766221	-0.883122
н	-1.059701	-1.344964	-0.079199	H	4.098464	4,146706	-2.799934
н	-3.448091	-1.630622	0.575147	Н	5.818048	3.081606	0.995321
н	-4.756778	0.410388	1.240154	Н	5 446829	4 759924	-0.801265
н	-3 625306	2 615166	1 225813	C	4 348252	-1 182510	-1 677689
N	0 292198	2 942144	0 114065	ч	4 745424	-0.887624	-2 659877
N	-1 052416	0 693452	0 209377	н	5 202470	-1 205395	-0 984834
Ni	0 944646	1 058440	-0 367800	н	3 950990	-2 198794	-1 761428
С	3.325256	-0.175580	-1.208208	 I	0.154247	1.256713	-2.853375
C		1					
Ca	artesian co	ordinates f	tor 02	2	4 700700	0 450 47 4	0.074000
C	-0.996171	3.083461	0.505507	C	-1./69730	-0.456474	0.271086
C	1.061503	3.997978	-0.038396	C	-3.111569	-0.567553	0.606059
C	0.642699	5.276511	0.306699	C	-3.804901	0.590568	0.934762
C	-0.656615	5.440813	0.770054	C	-3.138721	1.807360	0.915700
C	-1.488515	4.333990	0.8/3378	H	2.071345	3.806012	-0.407661
С	-1.788091	1.838097	0.573641	Н	1.323761	6.117898	0.214979

н	-1.022899	6.424848	1.053711	С	3.895580	1.284712	-0.871057
Н	-2.503783	4.449102	1.242961	С	3.737724	2.201936	-1.917334
н	-1.185146	-1.329620	-0.015325	С	4.689608	1.641435	0.222912
Н	-3.596415	-1.539528	0.599870	С	4.335112	3.457927	-1.854439
н	-4.859463	0.549971	1.197272	Н	3.122941	1.929074	-2.776241
н	-3.671707	2.723421	1.154747	С	5.283108	2.897807	0.286539
Ν	0.261019	2.937205	0.056489	Н	4.843530	0.923456	1.027277
Ν	-1.124989	0.709557	0.262232	С	5,105764	3.810571	-0.749982
Ni	0.839138	0.967081	-0.338013	H	4 197025	4.161509	-2.673981
С	3.309623	-0.079382	-0.996208	Н	5.895901	3,160950	1.147083
Ĩ	1.850171	0.357685	1.971000	Н	5.575882	4,791356	-0.700845
Ċ	2 192572	-0.522063	-0.389766	C	3 992583	-0.934655	-2 032493
c	1 619360	-1 898233	-0 480243	о Н	3 784332	-0 541145	-3 039346
н	0 839497	-2 064623	0.270152	н	5 082564	-0.901542	-1 894407
н	1 16/80/	-2.004020	-1 472764	н	3 666170	-1 078880	-2 010023
н	2 38/060	-2.042412	-0.325448	1	0 103000	0.846510	-2.010023
	2.304300	-2.07 1700	-0.323440		0.105500	0.040310	-2.347432
Са	artesian co	ordinates t	for O3				
С	-0.898824	2.847066	0.471015	I	2.049042	1.122646	2.228889
С	1.083673	3.873127	-0.134299	С	2.038754	0.039701	0.367796
С	0.742750	5.043850	0.529143	С	1.515248	-1.354381	0.603619
С	-0.471061	5.091766	1.201715	Н	0.612304	-1.340267	1.224594
С	-1.304380	3.982811	1.168370	н	1.263343	-1.856626	-0.339715
С	-1.730288	1.630529	0.365875	н	2.266696	-1.971617	1.119131
C	-1.847368	-0.528629	-0.456152	C	3.736888	1.578389	-0.797463
C	-3.147834	-0.692082	-0.000140	C	3.687161	2.435141	-1.904550
Ċ	-3.747616	0.369168	0.667069	C	4.736916	1.782010	0.157556
Ċ	-3.035975	1.546424	0.848532	C	4.571885	3,500669	-2.019857
н	2 035027	3 779587	-0.657569	н Н	2 924319	2 269077	-2 668023
н	1 423303	5 890480	0.521041	C	5 626016	2.200077	0.040583
н	-0 770785	5 984320	1 746168	н	4 828455	1 092828	0.040000
н	-2 257930	4 004280	1.688358	C	5 539492	3 716109	-1 041406
н	-2.207950	-1 318350	-1 005981	U H	4 505624	1 164292	-2 880358
ц	3 675554	1 625507	0 174607	н Ц	6 305387	2 080731	0 707571
ц	4 767610	0.286012	1 035422	н Ц	6 233465	2.909731	1 130565
	2 502514	0.200912	1.000422		0.200400	4.330072	1 770474
	-3.502514	2.390208	1.349347		3.185372	-0.646037	-1.770474
	0.292707	2.798070	-0.156589	п	2.414530	-1.406634	-1.925040
IN N	-1.154915	0.595106	-0.268169	н	3.369364	-0.167032	-2.738092
NI	0.771514	0.951981	-0.976655	н	4.115370	-1.152490	-1.465462
C	2.827054	0.396595	-0.727560	I	0.239370	0.970918	-3.556322
Ca	artesian co	ordinates	for E1				
С	-1.180274	2.066716	-0.063525	н	-3.701574	-2.577877	0.192048
Ċ	0.773642	3.017470	-0.848722	Н	-4.931148	-0.517757	0.947266
C.	0.337050	4 296656	-0 528841	н	-3 765840	1 668434	0.846065
c	-0.908368	4 444160	0.064256	N	0.040740	1 924929	-0.621109
c	-1 679548	3 313842	0.299190	N	-1 264867	-0.306168	-0.260066
c	-1 932569	0.812523	0.098124	Ni	0.620687	-0.024556	-0 696574
c	-1.002000	-1 479150	-0 227730	C	0.020007	-2 323340	0.836053
ĉ	3 226203	1 601080	0.187613		2 087053	-2.3233-0	1 506564
c	-3.220293	-0.461397	0.107013		1 039615	_1 83/710	-0.410061
c	3 340600	0.401307	0.539709		1.000010	2 707479	1 607207
С Ц	-J.24009U	0.700903	0.04/001		1.2234/0	-2.101410	-1.02/39/
п	1./ 0040/	2.040001	-1.23033/	н	0.090002	-2.204009	-2.040202
н	0.972388	5.152540	-0./38/84	н	2.283198	-2.90/220	-1.//0492
П	-1.201231	0.427409	0.34159/	H	0.003948	-3.033/60	-1.044/18
н	-2.000912	3.408374	0.703831	C	0.042/4/	-1.453456	1.982920
Н	-1.32/598	-2.349789	-0.521349	C	1.191719	-0.1/2/28	2.1448/6

С	-0.320038	-1.870113	2.913803	
С	0.761111	0.671748	3.163657	
н	1.982184	0.153803	1.468575	
С	-0.755392	-1.026513	3.929979	
н	-0.759825	-2.863852	2.816977	
С	-0.222782	0.254451	4.056148	
н	1.209196	1.659866	3.266373	
C	rtesian co	ordinates	for E2	
\sim				
C	-2.207240	2.492160	0.753245	
C	-0.524244	3.049504	2.243923	
C	-1.186268	4.203663	2.637805	
С	-2.418195	4.491115	2.062218	
С	-2.932154	3.628594	1.104587	
С	-2.629842	1.548439	-0.297895	
С	-2.001689	-0.286199	-1.556400	
С	-3.180324	-0.256702	-2.287815	
С	-4.118779	0.724145	-1.986954	
С	-3.840607	1.640498	-0.983131	
Н	0.446710	2.779551	2.661212	
Н	-0.738773	4.859735	3.379294	
н	-2.969747	5.384501	2.346029	
н	-3.882362	3.849887	0.625839	
н	-1.231390	-1.030696	-1.753925	
н	-3 354070	-0.987163	-3.073187	
н	-5.058409	0 779248	-2 531914	
н	-4 561317	2 416607	-0 739045	
N	-1 024121	2 203904	1.336988	
N	1 733/37	0.583704	0.580062	
	0.002005	0.505794	-0.300902	
	1 169645	0.379309	1 9/5590	
C	1.100045	-0.424299	1.040009	
Ca	artesian co	ordinates	for E3	
c c	-2 760035	1 150385	0 521853	
c c	-2.100900	1 222057	2 485060	
c c	-1.000040	2 000304	2.400900	
c c	-2.442203	2.030304	0.001999	
C C	-3.553603	2.4913/3	2.330071	
	-3.1 15032	2.022125	1.0530/9	
	-2.010583	0.009463	-0.840610	
	-1./62188	-0.//6/85	-2.3/1352	
C C	-2./04174	-0.49/064	-3.352699	
C	-3.742241	0.373678	-3.045459	
С	-3.799646	0.937860	-1.777533	
Н	-0.644304	0.881371	3.010135	
Н	-2.275164	2.438154	4.097705	
Н	-4.289434	3.165228	2.783470	
Н	-4.578287	2.325637	0.466952	
Н	-0.919878	-1.442658	-2.560184	
Н	-2.618585	-0.954125	-4.334689	
Н	-4.499626	0.618220	-3.786711	
Н	-4.598785	1.629707	-1.523849	
Ν	-1.687959	0.762987	1.240541	
Ν	-1.817886	-0.245785	-1.147066	
Ni	-0.570467	-0.609800	0.350358	
С	0.829351	-1.425812	1.409401	

Н Н С Н Н Н	-1.517985	-1.371359	4.627490
	-0.559507	0.914509	4.854025
	1.110166	-3.804497	1.117428
	1.447870	-3.990784	2.145091
	0.148507	-4.332658	0.993162
	1.826491	-4.286546	0.441444
- ССНННССССНСНСННСННН	1.825765	1.301070	-1.221299
	1.022475	-0.757941	0.482881
	1.320950	-1.956992	-0.320264
	0.849403	-1.947642	-1.309302
	2.404179	-2.092209	-0.453618
	0.962577	-2.835450	0.241273
	2.219798	0.434569	2.443314
	3.488350	0.575078	1.865522
	1.987769	1.071668	3.671960
	4.469932	1.350796	2.471003
	3.706221	0.062794	0.929904
	2.968703	1.848055	4.278583
	1.015688	0.961036	4.155090
	4.215531	1.996841	3.677337
	5.447114	1.441499	1.998772
	2.757595	2.336966	5.228839
	4.986186	2.602514	4.150909
	0.580094	-1.450418	2.809546
	1.368745	-2.052325	3.287523
	0.012246	-0.955900	3.609035
	-0.119000	-2.127320	2.302569
- СОНННОСОСНОНСНОННИ	2.124144	-1.529596	-1.465417
	0.640254	-1.999326	0.095930
	0.128600	-3.397713	-0.137756
	-0.286581	-3.513686	-1.147551
	0.918049	-4.157982	-0.016190
	-0.674280	-3.634219	0.573465
	2.003034	-0.550620	1.725341
	3.137639	-1.103340	2.334599
	2.024048	0.817212	1.435451
	4.252167	-0.325746	2.627059
	3.152361	-2.169524	2.563750
	3.136631	1.601592	1.725605
	1.150503	1.261476	0.954453
	4.256833	1.033459	2.323502
	5.124766	-0.784413	3.090809
	3.126783	2.663384	1.482141
	5.128774	1.644577	2.551573
	0.360152	-2.236180	2.610341
	1.036615	-3.074547	2.850324
	0.310898	-1.597513	3.503466
	-0.639821	2.660869	2.460093

Cartesian coordinates for **O1**

С	-1 695500	1 950659	0 960979
c.	0 172284	3 104245	0 229225
ĉ	0.172204	4 220075	0.640996
0	-0.355662	4.320975	0.040880
С	-1.601597	4.327260	1.253051
С	-2.283769	3.128660	1.412376
С	-2.357151	0.635497	1.032852
С	-2.169200	-1.626910	0.566012
С	-3.477820	-1.869151	0.953297
С	-4.238835	-0.802517	1.414692
С	-3.675390	0.464077	1.449728
Н	1.150284	3.036836	-0.247301
Н	0.206159	5.237244	0.484325
Н	-2.045452	5.257373	1.600380
Н	-3.261704	3.117886	1.885167
Н	-1.523699	-2.427040	0.207511
Н	-3.885208	-2.873937	0.888931
Н	-5.268343	-0.950775	1.731892
Н	-4.265344	1.313107	1.782389
Ν	-0.474239	1.950491	0.393402
Ν	-1.619604	-0.412386	0.621067
Ni	0.253536	0.039241	0.030331
С	0.842172	-2.188859	1.549081

Ι	2.693182	0.580816	-0.417654
С	0.943554	-1.756505	0.279666
С	1.329603	-2.599553	-0.888915
Н	1.451942	-2.018116	-1.806342
Н	2.274750	-3.130252	-0.695470
Н	0.556063	-3.359818	-1.088394
С	0.388817	-1.327780	2.666072
С	0.876621	-0.028670	2.858853
С	-0.607435	-1.790901	3.539580
С	0.351712	0.796863	3.851400
Н	1.702171	0.330212	2.245929
С	-1.131420	-0.968777	4.528198
Н	-0.997919	-2.801827	3.418906
С	-0.661105	0.335443	4.683552
Н	0.751540	1.802704	3.976808
Н	-1.914856	-1.346793	5.183440
Н	-1.071085	0.977289	5.461278
С	1.029822	-3.658188	1.857647
Н	1.306523	-3.808306	2.908326
Н	0.107332	-4.232724	1.672924
Н	1.812455	-4.105144	1.234137
I	-0.661177	0.069592	-2.534605

8. NMR Spectra of Products

Pr

S28

S47

S92

