Electronic Supplementary Information

Solvent-Promoted Catalyst-Free Regioselective *N*-incorporation Multicomponent Domino Reaction: Rapid Assembly of π -Functionalized [60]Fullerene-Fused Dihydrocarbolines

Tong-Xin Liu,* Shuaishuai Yue, Changgeng Wei, Nana Ma,* Pengling Zhang, Qingfeng Liu, and Guisheng Zhang*

Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China E-mail: liutongxin_0912@126.com, mann076@htu.edu.cn and zgs6668@yahoo.com

Table of Contents

1. General Information	S2
2. Experimental Procedures	S2
3. Screening of the Reaction Conditions	S 3
4. Mechanism Studies	S5-S9
5. UV-vis Spectra of Representative Compounds	S10-S15
6. Half-Wave Reduction Potentials and CVs of Selected Compounds	S16-S21
7. Spectral Data for Compounds 2	S22-S40
8. Single-Crystal X-Ray Crystallography of 2f	S41-S42
9. ¹ H NMR and ¹³ C NMR Spectra of Compounds 2	S43-S102
10. Optimized Cartesian Coordinates	S103-S150
11. References	S151

1. General Information

Reagents were purchased as reagent grade and used without further purification. 1,2-Dichlorobenzene (ODCB) and dimethyl sulfoxide (DMSO) were treated with CaH₂. ¹H NMR (400 MHz) and ¹³C NMR (100 and 150 MHz) were registered on Bruker 400 and 600 M spectrometers with tetramethylsilane (TMS) as internal standard. HRMS were measured on Bruker Ultraflex II MALDI-TOF/TOF.

All of the DFT calculations were performed with the Gaussian 09 program.^[1] The geometries optimizations were performed at the (U)B3LYP^[2]/6-311++G(d,p) level. The vibrational frequencies were computed at the same level to check whether each optimized structure is an energy minimum or a transition state and to evaluate its thermal corrections at 298 K. Solvation energies were evaluated by a self-consistent reaction field (SCRF) using the SMD model^[3] in dimethylsulfoxide (DMSO) at (U)M06^[4]/6-311++G(d,p) level based on the structures in gas phase at the same basis set. The Gibbs free energies (Δ G) in DMSO solution are used to discuss the reaction.

2. Experimental Procedures and Control Experiments

General Procedure for the Synthesis of Products 2: A dry 15-mL tube equipped with a magnetic stirrer was charged with C_{60} (36.0 mg, 0.05 mmol), **1a** (**1b–1ff**, 0.10 mmol), NaNO₂ (6.9 mg, 0.10 mmol) and CF₃CO₂H (0.10 mmol for **1a–1c**, **1e**, **1m**, **1o**, **1q**, **1s** and **1aa**; 0.15 mmol for **1d**, **1f–1l**, **1n**, **1p**, **1r**, **1t–1z**, **1bb** and **1cc**; 0.25 mmol for **1dd–1ff**). After dissolving the solids in a mixture of anhydrous ODCB (4 mL) and DMSO (1 mL) by sonication, the sealed tube was stirred under room temperature or designated temperature for 1 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM to give product **2a** (**2b–2ff**, for **2h** with CS₂/EtOAc/CH₃OH as eluent).

3. Screening of the Reaction Conditions

 Table S1. Optimization of the reaction conditions ^a

+ + H $\frac{H}{25 ^{\circ}C}$, DMSO/ODCB					
1a 2a					
entry	"N" source	acid	additive	solvent (1:4)	yield $(\%)^b$
1	AgNO ₂	TFA		DMSO/ODCB	31 (97)
2	NaNO ₂	TFA		DMSO/ODCB	64 (88)
3	KNO ₂	TFA		DMSO/ODCB	65 (87)
4	t-BuONO	TFA		DMSO/ODCB	38 (81)
5	Isopentylnitrite	TFA		DMSO/ODCB	49 (86)
6	NaNO ₂	—		DMSO/ODCB	nr
7	NaNO ₂	HOAc		DMSO/ODCB	nr
8	NaNO ₂	TfOH		DMSO/ODCB	18 (60)
9	NaNO ₂	PTSA		DMSO/ODCB	20 (74)
10^c	NaNO ₂	TFA		DMSO/ODCB	63 (71)
11^d	NaNO ₂	TFA		DMSO/ODCB	26 (84)
12^{e}	NaNO ₂	TFA		DMSO/ODCB	60 (89)
13	NaNO ₂	TFA		ODCB	nr
14	NaNO ₂	TFA		DMF/ODCB	61 (88)
15	NaNO ₂	TFA		CH ₃ CN/ODCB	nr
16	NaNO ₂	TFA		DCE/ODCB	trace
17	NaNO ₂	TFA		MeOH/ODCB	trace
18	NaNO ₂	TFA		CH ₃ NO ₂ /ODCB	< 5
19	NaNO ₂	TFA		1,4-dioxane/ODCB	< 5
20	NaNO ₂	TFA		actone/ODCB	13 (84)
21	NaNO ₂	AlCl ₃		DMSO/ODCB	trace
22	NaNO ₂	Cu(OTf) ₂		DMSO/ODCB	nr
23	NaNO ₂	Sc(OTf) ₃		DMSO/ODCB	nr

24^{f}	NaNO ₂	TFA	LiBr	DMSO/ODCB	7 (90)
25 ^f	NaNO ₂	TFA	KBr	DMSO/ODCB	40 (81)
26 ^f	NaNO ₂	TFA	TBAB	DMSO/ODCB	33 (73)
27 ^f	NaNO ₂	TFA	TBAI	DMSO/ODCB	< 5
28 ^f	NaNO ₂	TFA	NHPI	DMSO/ODCB	15 (85)
29	NaN ₃	TFA	—	DMSO/ODCB	nr
30	\mathbf{TMSN}_3	TFA	—	DMSO/ODCB	nr
31	AgNO ₃	TFA	—	DMSO/ODCB	nr
32	$Fe(NO_3) \bullet 9H_2O$	TFA	—	DMSO/ODCB	nr

^{*a*} All reactions were carried out with $C_{60}/1a/$ "N" source /acid = 1:2:2:2 in a designated molar ratio in a mixture of anhydrous ODCB (4 mL) and DMSO (1 mL) for 1 h at 25 °C in air unless specified otherwise. ^{*b*} Isolated yield; that in parentheses was based on consumed C_{60} . ^{*c*} 3 equiv of TFA was used. ^{*d*} 1 equiv of TFA was used. ^{*e*} Under a nitrogen atmosphere. ^{*f*} 0.1 equiv of additive was employed.

4. Mechanism Studies

[*Na*¹⁵*NO*₂]-*Labeled Experiment:* A mixture of C₆₀ (36.0 mg, 0.05 mmol), **1a** (14.5 mg, 0.10 mmol), Na¹⁵NO₂ (98% ¹⁵N specified by Sigma-Aldrich) (7.0 mg, 0.10 mmol) and CF₃CO₂H (7.4 μ L, 0.10 mmol) was dissolved in co-solvent of anhydrous ODCB (4 mL) and DMSO (1 mL) by sonication, and then the sealed mixture was stirred under room temperature for 1 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent was evaporated in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (8.7 mg, 24%), then with CS₂/DCM as the eluent to give product **2a** (28.4 mg, 65%).The ¹⁵N was determined in product **2a** by HRMS. HRMS m/z (ESI) calcd. for C₇₀H₉N¹⁵N [M]⁺ 878.0731, found 878.0712.

Figure S1. ¹⁵N-Labeled mass spectra of 2a

Radical-Trapping Experiments:A mixture of C_{60} (36.0 mg, 0.05 mmol), 1a (14.5 mg, 0.10 mmol), NaNO2 (6.9 mg, 0.10 mmol), CF3CO2H (7.4 μ L, 0.10 mmol) and 2,2,6,6-tetramethylpiperidine-1-oxy(TEMPO)

[2,6-ditert-butyl- α -(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadiene-1-ylidene)-p-tolyloxy (Galvinoxyl) or N-tert-butyl- α -phenylnitrone (PBN)] (0.10 or 0.25 mmol) was dissolved in a mixture solvent of anhydrous *o*-dichlorobenzene (4 mL) and dimethyl sulfoxide (1 mL) by sonication. The sealed tube was stirred under room temperature for 1 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_2 as the eluent to recover unreacted C_{60} , and then the eluent was switched to CS_2/DCM to give product **2a**. The results confirmed that TEMPO, Galvinoxyl and PBN all could retarded the formation of **2a**. Several attempts were made to trap the radical intermediates formed during this transformation, but all of these failed.

Scheme S1. Radical-trapping experiments

Possible reaction pathways

On the basis of experimental observations and literature survey, a possible mechanism involving different pathways for the formation of C_{60} -fused dihydrocarbolines **2** is depicted in Scheme S2. Under the applied reaction conditions, the unstable nitrous acid generated *in situ* could decompose into a nitrosonium ion⁵ or a nitro radical.⁶ In proposed reaction **path a**, the reaction is triggered by electrophilic addition of the nitrosonium ion to indole **1**, and the corresponding intermediate **I** is generated. Then, **I** aromatized into the species **II**, which further undergoes 1,5-hydrogen migration to form the key intermediate **III**. The subsequent electrocyclic reaction of **III** with C₆₀ affords the cyclic intermediate **IV**,⁷ followed by an elimination process access to the final product **2**. Different from reaction **path a**, the reaction **path b** involves a free radical process. Indole **1** first undergoes a

hydrogen-atom abstraction from the hydroxyl radical to generate radical species VI.⁸ Species VI then reacts with a nitroso radical to form intermediate VII, which further converts into the active radical VIII through a hydrogen-atom abstraction process. Radical VIII is next captured by C₆₀ to produce fullerenyl radical IX, followed by a rapid intramolecular radical cyclization to give intermediate X. Coupling of the nitroso radical with X results in the unstable species XI, which undergoes elimination process to afford product 2. Compared with reaction path b, in reaction path c, indole 1 encounters the direct attack from nitroso radical to generate the corresponding radical XII, which further transforms into intermediate II or VI via hydrogen-atom abstraction and thus leads to the final product.

Scheme S2. Possible reaction pathways

Theoretical calculation

To better understand the mechanism of this transformation, the nitrogen incorporation reaction of indole **1a** with C₆₀, as a model reaction, was studied by density functional theory (DFT) calculations. The free energy profiles of three paths are presented in Figure S2. In reaction **path a**, a π -complex **I** was initially formed from the electrophilic addition of nitrosonium ion to indole **1a**, which is an exothermic process by 30.0 kcal/mol. The subsequent aromatization from **I** to species **II** readily proceeds by requiring 5.3 kcal/mol. Before the formation of the key intermediate **III** through 1,5-hydrogen migration, species **II** first undergoes a N=O

group rotating by overcoming 20.9 kcal/mol. Then, the 1,5-hydrogen migration climbs free energy barriers of 24.4 kcal/mol access to **III**. In radical **path b**, indole **1a** undergoes a hydrogen-atom abstraction from the hydroxyl radical to generate radical species **VI** by requiring 1.6 kcal/mol. Moreover, the next coupling of species **I** with nitroso radical delivers nitrosomethyl intermediate **VII'** rather than **VII** due to 9.2 kcal/mol priority. In another reaction **path c**, the direct addition of nitroso radical to indole **1a** forms the radical species **XII** and is endothermic by 6.5 kcal/mol. And then hydroxyl radical abstracts a hydrogen-atom of **XII** to form **II'** or **VII** by overcoming 31.3 and 22.0 kcal/mol, respectively.

Thus, in proposed three reaction paths, the reaction is most likely to happen via reaction **path a**. However, the energy barrier of 33.0 kcal/mol seems to be high in room temperature. On the other hand, based on the results of the optimization experiment, we think that the solvent DMSO may also play a crucial role in this transformation.

Figure S2. Energy profile of proposed mechanism

I-D2)

Figure S3. DMF-promoted DFT energy profiles for from I to I-D2

Seen from energy profiles for from **I** to **I-D2**: 1) like DMSO, DMF-aided deprotonation could also occur; 2) **I** could very readily proceed through **TS1'** with an activation free energy of only 7.5 kcal/mol to produce **I-D2** at room temperature. The above all indicates that **DMF** and **DMSO** play the same role in this nitrogen incorporation transformation.

5. UV-vis Spectra of Representative Compounds

UV-vis spectrum of compound **2a** in CHCl₃ $(1.4 \times 10^{-5} \text{ mol/L})$

UV–vis spectrum of compound 2e in CHCl₃ (1.8×10⁻⁵ mol/L)

UV-vis spectrum of compound 2m in CHCl₃ (1.4×10⁻⁵ mol/L)

UV-vis spectrum of compound **2s** in CHCl₃ (1.8×10^{-5} mol/L)

UV-vis spectrum of compound 2t in CHCl₃ (1.5×10⁻⁵ mol/L)

UV–vis spectrum of compound 2y in CHCl₃ (1.2×10⁻⁵ mol/L)

UV-vis spectrum of compound 2z in CHCl₃ (1.3×10⁻⁵ mol/L)

UV-vis spectrum of compound **2cc** in CHCl₃ (1.2×10^{-5} mol/L)

UV-vis spectrum of compound **2dd** in CHCl₃ (1.3×10^{-5} mol/L)

UV-vis spectrum of compound **2ee** in CHCl₃ $(1.2 \times 10^{-5} \text{ mol/L})$

UV-vis spectrum of compound **2ff** in CHCl₃ (1.2×10^{-5} mol/L)

		L	,		00			
compound	$\Delta E_{(Fc/Fc+)}^{b}$	E_1	$\Delta E_{I}^{\ b}$	E_2	$\Delta E_2^{\ b}$	E_3	$\Delta E_3^{\ b}$	
2a	0.17	-1.17	0.22	-1.56	0.21	-2.06	0.19	
2e	0.12	-1.16	0.12	-1.53	0.12		—	
2m	0.12	-1.16	0.12	-1.53	0.12		_	
20	0.13	-1.17	0.12	-1.55	0.14	—	_	
2 r	0.12	-1.16	0.11	-1.53	0.12	—	_	
2x	0.12	-1.16	0.13	-1.53	0.13	—	_	
2 y	0.13	-1.19	0.14	-1.59	0.14	—	—	
2 z	0.13	-1.18	0.13	-1.56	0.14	—		
PCBM	0.13	-1.18	0.17	-1.58	0.17	-2.10	0.15	
C ₆₀	0.13	-1.08	0.15	-1.47	0.14	-1.94	0.14	

6. Table S2. Half-Wave Reduction Potentials (V) and Related Parameters of Selected Compounds, PCBM and C_{60}^{a}

^{*a*} Versus ferrocene/ferrocenium; experimental conditions: 1 mM of compound **2** and 0.1 M of $(n-Bu)_4NClO_4$ in anhydrous *o*-dichlorobenzene; reference electrode: SCE; working electrode: Pt; auxiliary electrode: Pt wire; scanning rate: 20 mV s⁻¹. ^{*b*} The distance between anodic and cathodic peaks.

CVs of Representative Compounds

Cyclic voltammogram of compound **2a** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **2e** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 2m (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 20 (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **2r** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 2x (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **2y** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 2z (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **PCBM** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound $C_{60}~({\rm scanning\ rate:\ }20~mV~s^{\text{--}1})$

7. Spectral data for Compounds 2

Spectral data of **2a**: ¹H NMR (400 MHz, CD₂Cl₂/CS₂) δ 7.88 (d, J = 7.2 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 5.90 (s, 1H), 3.45 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6 /CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.51 (1C), 151.27 (1C), 150.34, 148.68, 148.33 (1C), 148.08 (1C), 146.62, 146.61, 146.46, 146.44, 146.38, 146.30, 145.57, 145.52, 145.41, 145.05, 144.75(4C), 144.50, 143.27, 143.21, 142.81, 142.69, 142.63, 142.27 (4C), 141.67, 141.32, 140.60, 140.54, 134.53, 134.46, 134.38 (1C), 133.44 (1C), 124.15 (1C), 123.28 (1C), 120.51 (1C), 108.26 (1C), 99.22 (1C), 84.16 (1C), 58.41 (1C), 29.06 (1C); FT-IR ν /cm⁻¹ (KBr) 1632, 1605, 1510, 1469, 1427, 1383, 1331, 1258, 1137, 1108, 851, 806, 768, 742, 698, 648, 551, 525; UV-vis (CHCl₃) λ_{max} /nm 256, 431, 702; MALDI-TOF MS m/z calcd for C₇₀H₈N₂ [M]⁺ 876.0682, found 876.0676.

Spectral data of **2b**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.94 (d, J = 6.6 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 6.96 (t, J = 6.6 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 5.84 (s, 1H), 3.82 (t, J = 7.2 Hz, 2H), 1.92 (t, J = 7.2 Hz, 2H), 1.53–1.49 (m, 4H), 0.99 (t, J = 7.2Hz, 3H); ¹³C NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.73 (1C), 150.68 (1C), 149.83, 148.16, 148.11 (1C), 147.88 (1C), 146.38, 146.21 (6C), 146.15, 146.07, 145.34, 145.29, 145.21, 144.81, 144.49, 144.27, 144.23, 143.02, 142.92, 142.57, 142.45, 142.37, 142.00, 141.97, 141.41, 141.06, 140.45, 140.31, 134.43, 134.30, 133.96 (1C), 132.47 (1C), 124.07 (1C), 122.95 (1C), 119.97 (1C), 107.66 (1C), 98.78 (1C), 83.84 (1C), 58.11 (1C), 42.91 (1C), 29.68 (1C), 27.40 (1C), 22.86 (1C), 14.23 (1C); FT-IR ν/cm^{-1} (KBr) 2923, 2865, 1633, 1605, 1511, 1466, 1428, 1350, 1311, 1188, 1140, 1107, 807, 768, 742, 526; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 206, 256, 431, 705; MALDI-TOF MS *m/z* calcd for C₇₄H₁₆N₂ [M]⁺ 932.1308, found 932.1319.

Spectral data of **2c**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.98 (d, J = 7.2 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 6.99 (t, J = 7.2 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 5.92 (s, 1H), 3.79 (d, J = 6.0 Hz, 2H), 1.40 (br, 1H), 0.72 (d, J = 4.2 Hz, 2H), 0.50 (d, J = 4.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.66 (1C), 150.82 (1C), 149.83, 148.17, 148.12 (1C), 147.89 (1C), 146.40, 146.24 (6C), 146.17, 146.08, 145.35, 145.31, 145.24, 144.84, 144.52, 144.27, 144.24, 143.04, 142.93, 142.59, 142.46, 142.39, 142.00 (4C), 141.43, 141.08, 140.47, 140.35, 134.43, 134.36, 133.95 (1C), 132.81 (1C), 124.11 (1C), 123.05 (1C), 120.11 (1C), 107.92 (1C), 99.23 (1C), 83.86 (1C), 58.11 (1C), 46.99 (1C), 9.98 (1C), 4.46; FT-IR ν /cm⁻¹ (KBr) 1632, 1605, 1511, 1466, 1426, 1381, 1346, 1215, 1107, 1017, 807, 768, 742, 526; UV-vis (CHCl₃) λ_{max} /nm 256, 431, 697; MALDI-TOF MS m/z calcd for C₇₃H₁₂N₂ [M]⁺ 916.0995, found 916.0987.

Spectral data of **2d**: ¹H NMR (600 MHz, $CDCl_3/CS_2$) δ 7.98 (d, J = 7.8 Hz, 1H), 7.46–7.40 (m, 5H), 7.33–7.32 (m, 1H), 7.01 (t, J = 7.2 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 5.88 (s, 1H), 5.06 (s, 2H); ¹³C NMR (150 MHz, $CDCl_3/CS_2$ with $Cr(acac)_3$ as

relaxation reagent, all 2C unless indicated) δ 158.52 (1C), 150.65 (1C), 149.71, 148.13, 148.10 (1C), 147.85 (1C), 146.38, 146.20, 146.18 (4C), 146.14, 146.06, 145.33, 145.28, 145.22, 144.82, 144.46, 144.22, 144.20, 143.00, 142.85, 142.55, 142.42, 142.34, 141.98, 141.94, 141.40, 141.03, 140.44, 140.27, 135.94 (1C), 134.43, 134.28, 134.07 (1C), 132.86 (1C), 129.07, 127.78 (1C), 126.46, 124.07 (1C), 123.00 (1C), 120.50 (1C), 108.14 (1C), 99.69 (1C), 83.85 (1C), 58.04 (1C), 46.69 (1C); FT-IR ν /cm⁻¹ (KBr) 1633, 1607, 1511, 1466, 1384, 1346, 1196, 1008, 845, 808, 768, 744, 693, 526; UV-vis (CHCl₃) λ_{max} /nm 220, 256, 431, 706; MALDI-TOF MS *m*/*z* calcd for C₇₆H₁₂N₂ [M]⁺ 952.0995, found 952.0985.

Spectral data of **2e**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 8.01 (d, J = 7.2 Hz, 1H), 7.64 (d, J = 7.8 Hz, 2H), 7.61 (d, J = 7.8 Hz, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.43–7.41 (m, 2H), 7.06 (t, J = 7.8 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.04 (s, 1H); ¹³C NMR (150 MHz, DMSO- d_6 /CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.19 (1C), 150.53 (1C), 149.96, 148.60, 148.32 (1C), 148.08 (1C), 146.62, 146.60, 146.46, 146.42, 146.38, 146.31, 145.57, 145.55, 145.46, 145.14, 144.74, 144.63, 144.48, 143.27, 143.12, 142.83, 142.68, 142.63, 142.29, 142.26, 141.69, 141.31, 140.63, 140.54, 136.99 (1C), 134.56, 134.49, 134.28 (1C), 133.03 (1C), 130.64, 127.92 (1C), 126.66, 124.41(1C), 123.61 (1C), 121.73 (1C), 109.43 (1C), 100.92 (1C), 84.03 (1C), 58.24 (1C); FT-IR ν /cm⁻¹ (KBr) 1670, 1609, 1593, 1498, 1463, 1398, 1314, 1209, 1093, 1029, 936, 748, 695, 551, 527; UV-vis (CHCl₃) λ_{max} /nm 249, 262, 431, 690; MALDI-TOF MS m/z calcd for C₇₅H₁₀N₂ [M]⁺ 938.0838, found 938.0836.

Spectral data of **2f**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.97 (d, J = 7.2 Hz, 1H), 7.51–7.47 (m, 1H), 7.00 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 5.88 (s, 1H), 3.90 (t, J = 6.0 Hz, 2H), 3.54 (t, J = 6.0 Hz, 2H), 2.13–2.11 (m, 4H); ¹³C NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.54 (1C), 150.45 (1C), 149.75, 148.14, 148.10 (1C), 147.91 (1C), 146.42, 146.25, 146.21 (4C), 146.19, 146.11, 145.38, 145.33, 145.26, 144.88, 144.51, 144.25 (4C), 143.06, 142.91, 142.60, 142.48, 142.39, 142.03, 141.98, 141.44, 141.10, 140.48, 140.36, 134.46, 134.35, 134.09 (1C), 132.39 (1C), 124.21 (1C), 123.04 (1C), 120.30 (1C), 107.65 (1C), 99.10 (1C), 83.86 (1C), 58.04 (1C), 42.17 (1C), 32.97 (1C), 30.44 (1C), 26.44 (1C); FT-IR ν /cm⁻¹ (KBr) 2944, 1634, 1606, 1510, 1467, 1428, 1350, 1311, 1181, 1108, 847, 807, 768, 741, 699, 526; UV-vis (CHCl₃) λ_{max} /nm 256, 431, 704; MALDI-TOF MS m/z calcd for C₇₃H₁₃BrN₂ [M]⁺ 996.0257, found 998.0234.

Spectral data of **2g**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.95 (d, J = 6.6 Hz, 1H), 7.48 (t, J = 7.2 Hz, 1H), 7.00 (t, J = 7.2 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 5.87 (s, 1H), 3.93 (t, J = 6.0 Hz, 2H), 2.51 (t, J = 6.6 Hz, 2H), 2.15–2.11 (m, 2H), 1.95–1.84 (m, 2H); ¹³C NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.10 (1C), 150.13 (1C), 149.57, 148.00, 147.94 (1C), 147.78 (1C), 146.29, 146.14, 146.07 (6C), 145.99, 145.25, 145.21, 145.14, 144.77, 144.39, 144.11, 144.07, 142.94, 142.77, 142.49, 142.37, 142.28, 141.89, 141.86, 141.32, 140.97, 140.36, 140.23, 134.20 (4C), 133.96 (1C), 132.22 (1C), 124.15 (1C), 122.96 (1C), 120.43 (1C), 118.15 (1C), 107.43 (1C), 99.02 (1C), 83.73 (1C), 57.78 (1C), 42.06 (1C), 26.98 (1C), 23.56 (1C), 17.24 (1C); FT-IR ν /cm⁻¹ (KBr) 1633, 1605, 1510, 1466, 1426, 1348, 1312, 1173, 1108, 807, 768, 742, 526; UV-vis (CHCl₃) λ max/nm 231, 256, 431, 703; MALDI-TOF MS *m*/*z* calcd for C₇₄H₁₃N₃ [M]⁺ 943.1104, found 943.1095.

Spectral data of **2h**: ¹H NMR (400 MHz, DMSO- d_6 /CS₂) δ 12.23 (s, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.91 (t, J = 7.6 Hz, 1H), 6.17 (s, 1H), 4.09 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 6.8 Hz, 2H); the ¹³C NMR spectrum of **2h** could not be obtained because of poor solubility of the product; FT-IR v/cm⁻¹ (KBr) 1711, 1633, 1607, 1512, 1468, 1428, 1388, 1351, 1313, 1182, 1110, 810, 769, 745, 526; UV-vis (CHCl₃) λ_{max} /nm 215, 224, 257, 431, 702; MALDI-TOF MS m/z calcd for C₇₂H₁₀N₂O₂ [M]⁺ 934.0737, found 934.0739.

Spectral data of **2i**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.98 (d, J = 7.2 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.00 (t, J = 7.2 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.08–6.05 (m, 1H), 5.89 (s, 1H), 5.49 (d, J = 17.4 Hz, 1H), 5.38 (d, J = 10.2 Hz, 1H), 4.47 (s, 2H); ¹³C NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.56 (1C), 150.40 (1C), 149.76, 148.12, 148.08 (1C), 147.84 (1C), 146.36, 146.19, 146.17 (4C), 146.12, 146.04, 145.31, 145.26, 145.20, 144.80, 144.45, 144.24, 144.20, 143.00, 142.85, 142.53, 142.41, 142.33, 141.97, 141.92, 141.38, 141.02, 140.42, 140.28, 134.43, 134.29, 133.99 (1C), 132.41 (1C), 131.18 (1C), 124.05 (1C), 122.97 (1C), 120.30 (1C), 117.57 (1C), 108.02 (1C), 99.54 (1C), 83.79 (1C), 58.06 (1C), 45.24 (1C); FT-IR ν/cm^{-1} (KBr) 3051, 1632, 1605, 1511, 1466, 1428, 1381, 1345, 1198, 1108, 922, 845, 807, 768, 742, 700, 526; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 225, 257, 431, 703; MALDI-TOF MS m/z calcd for C₇₂H₁₀N₂ [M]⁺ 902.0838, found 902.0831.

Spectral data of **2j**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.93 (d, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.01 (t, *J* = 7.2 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 5.99 (s, 1H), 4.53 (s, 2H), 1.88 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.33 (1C), 150.26, 150.01 (1C), 148.73, 148.33 (1C), 148.09 (1C), 146.64, 146.61, 146.46 (4C), 146.38, 146.31, 145.57, 145.53, 145.44, 145.10, 144.76 (4C), 144.50, 143.28, 143.20, 142.82, 142.70, 142.64, 142.29 (4C), 141.69, 141.34, 140.61, 140.55, 134.54, 134.52, 134.19 (1C), 131.18 (1C), 124.15 (1C), 123.56 (1C), 120.98 (1C), 109.07 (1C), 100.21 (1C), 84.05 (1C), 80.72 (1C), 73.96 (1C), 58.35 (1C), 32.74 (1C), 4.15 (1C); FT-IR *v*/cm⁻¹ (KBr) 2960, 2923, 2853, 1636, 1607, 1466, 1428, 1352, 1261, 1200, 1104, 1021, 806, 744, 699, 660, 526; UV-vis (CHCl₃) λ_{max} /nm 209, 222, 257, 431, 703; MALDI-TOF MS *m*/z calcd for C₇₃H₁₀N₂ [M]⁺ 914.0838, found 914.0836.

Spectral data of **2k**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.97 (d, J = 7.2 Hz, 1H), 7.51–7.48 (m, 1H), 7.03 (t, J = 7.2 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 6.05 (s, 1H), 4.28 (dd, J = 16.2, 1.6 Hz, 1H), 3.83 (dd, J = 16.2, 4.8 Hz, 1H), 3.42–3.40 (m, 1H), 2.95 (t, J = 4.8 Hz, 1H), 2.81 (dd, J = 4.8, 1.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 157.95 (1C), 150.36 (1C), 149.69 (1C), 149.64 (1C), 148.08, 148.00 (1C), 147.77 (1C), 146.29, 146.14 (4C), 146.06 (4C), 145.98, 145.25, 145.21, 145.14, 144.79 (1C), 144.78 (1C), 144.40, 144.15, 144.12, 142.94, 142.78, 142.48, 142.36, 142.28, 141.91, 141.89, 141.33, 140.98, 140.34, 140.24, 134.21, 134.19, 133.89 (1C), 132.84 (1C), 123.98 (1C), 123.01 (1C), 120.70 (1C), 108.08 (1C), 100.00 (1C), 83.70 (1C), 57.86 (1C), 49.97 (1C), 45.22 (1C), 44.68 (1C); FT-IR ν /cm⁻¹ (KBr) 2920, 1635, 1605, 1467, 1429, 1387, 1348, 1312, 1203, 1109, 1055, 851, 809, 769, 745, 699, 668, 526; UV-vis (CHCl₃) λ_{max} /nm 207, 225, 256, 431, 699; MALDI-TOF MS *m*/*z* calcd for C₇₂H₁₀N₂O [M]⁺ 918.0788, found 918.0792.

Spectral data of **21**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.93 (d, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.00 (t, *J* = 7.2 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 5.92 (s, 1H), 3.97 (t, *J* = 6.4 Hz, 2H), 3.61 (t, *J* = 6.4 Hz, 2H), 2.19–2.13 (m, 2H); ¹³C NMR (150 MHz, DMSO-*d*₆/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.47 (1C), 150.74 (1C), 150.26, 148.63, 148.32 (1C), 148.08 (1C), 146.62, 146.61, 146.46 (4C), 146.37, 146.30, 145.56, 145.52, 145.41, 145.06, 144.82, 144.74, 144.50, 143.27, 143.19, 142.81, 142.70, 142.63, 142.27 (4C), 141.67, 141.32, 140.60, 140.49, 134.53, 134.49, 134.44 (1C), 132.56 (1C), 124.23 (1C), 123.30 (1C), 120.62 (1C), 108.40 (1C), 99.29 (1C), 84.02 (1C), 58.36 (1C), 49.24 (1C), 40.02 (1C), 27.52 (1C); FT-IR *v*/cm⁻¹ (KBr) 2925, 1635, 1608, 1467, 1429, 1350, 1312, 1259, 1187, 1145, 1109, 808, 769, 744, 526; UV-vis (CHCl₃) λ_{max} /nm 255, 426, 568, 700; MALDI-TOF MS *m*/*z* calcd for C₇₂H₁₁N₅ [M]⁻ 945.1020, found 945.1048.

Spectral data of **2m**: ¹H NMR (400 MHz, DMSO- d_6/CS_2) δ 9.46 (s, 1H), 7.71 (d, J = 7.2 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.83 (t, J = 7.2 Hz, 1H), 5.93 (s, 1H); ¹³C NMR (150 MHz, DMSO- d_6/CS_2 with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 159.67 (1C), 151.12 (1C), 150.40, 148.98, 148.31 (1C), 148.06 (1C), 146.74, 146.57, 146.52, 146.41, 146.34, 146.26, 145.52, 145.48, 145.35, 144.98, 144.80, 144.77, 144.50, 143.26 (4C), 142.78, 142.66, 142.63, 142.33, 142.26, 141.67, 141.30, 140.57, 140.54, 134.51 (4C), 134.08 (1C), 132.06 (1C), 124.14 (1C), 123.10 (1C), 119.86 (1C), 110.93 (1C), 100.39 (1C), 83.95 (1C), 58.57 (1C); FT-IR ν/cm^{-1} (KBr) 1610, 1509, 1460, 1428, 1337, 1253, 1215, 1182, 1047, 1025, 1005, 819, 744, 707, 576, 526; UV-vis (CHCl₃) λ_{max}/nm 212, 258, 329, 454, 786; MALDI-TOF MS m/z calcd for C₆₉H₆N₂ [M]⁺ 862.0525, found 862.0516.

Spectral data of **2n**: ¹H NMR (400 MHz, DMSO-*d*₆/CS₂) δ 9.28 (s, 1H), 7.54 (s, 1H), 7.12 (d, *J* = 7.2 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 5.88 (s, 1H), 2.36 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 159.73 (1C), 150.41, 149.25 (1C), 148.99, 148.29 (1C), 148.04 (1C), 146.70, 146.55, 146.52, 146.38, 146.32, 146.24, 145.50, 145.46, 145.31, 144.94, 144.79, 144.74, 144.50, 143.26, 143.24, 142.76, 142.64, 142.61, 142.32, 142.25, 141.64, 141.28, 140.55, 140.52, 135.02 (1C), 134.53, 134.49, 132.40 (1C), 128.58 (1C), 124.42 (1C), 123.27 (1C), 110.74 (1C), 100.03 (1C), 83.93 (1C), 58.61 (1C), 21.38 (1C); FT-IR *v*/cm⁻¹ (KBr) 1699, 1617, 1511, 1486, 1428, 1327, 1289, 1208, 1187, 1130, 839, 807, 767, 552, 526; UV-vis (CHCl₃) λ_{max}/nm 205, 214, 257, 435,

699; MALDI-TOF MS m/z calcd for $C_{70}H_8N_2$ [M]⁺ 876.0682, found 876.0671.

Spectral data of **20**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.44 (d, J = 2.0 Hz, 1H), 7.01 (dd, J = 8.4, 2.4 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 6.36 (s, 1H), 6.02 (s, 1H), 3.82 (s, 3H); the ¹³C NMR spectrum of **20** could not be obtained because of poor solubility of the product; FT-IR ν /cm⁻¹ (KBr) 1616, 1510, 1485, 1434, 1330, 1292, 1273, 1199, 1171, 1151, 1029, 840, 812, 768, 747, 552, 526; UV-vis (CHCl₃) λ_{max} /nm 258, 329, 786; MALDI-TOF MS m/z calcd for C₇₀H₈N₂O [M]⁺ 892.0631, found 892.0619.

Spectral data of **2p**: ¹H NMR (400 MHz, DMSO-*d*₆/CS₂) δ 9.70 (s, 1H), 7.71 (dd, *J* = 8.4, 6.0 Hz, 1H), 6.59 (dd, *J* = 9.6, 2.0 Hz, 1H), 6.55–6.50 (m, 1H), 5.98 (s, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.36 (1C), 152.84 (1C), 152.76 (1C), 150.32, 148.97, 148.31 (1C), 148.06 (1C), 146.67, 146.57, 146.49, 146.42, 146.34, 146.27, 145.52, 145.49, 145.36, 145.01, 144.79, 144.75, 144.49, 143.25, 143.20, 142.78, 142.66, 142.61, 142.32, 142.25, 141.66, 141.29, 140.56, 140.52, 134.52, 134.44, 132.30 (1C), 125.63 (1C), 119.32 (1C), 107.17 (1C), 101.12 (1C), 98.51 (1C), 83.79 (1C), 58.35 (1C); FT-IR ν /cm⁻¹ (KBr) 1612, 1596, 1496, 1451, 1320, 1282, 1211, 1143, 1099, 956, 840, 807, 766, 526; UV-vis (CHCl₃) λ_{max} /nm 256, 314, 430, 698; MALDI-TOF MS *m*/*z* calcd for C₆₉H₅FN₂ [M]⁺ 880.0431, found 880.0439.

Spectral data of **2q**: ¹H NMR (400 MHz, DMSO-*d*₆/CS₂) δ 9.63 (s, 1H), 7.67 (d, *J* = 3.6 Hz, 1H), 7.26 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 5.98 (s, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 159.00 (1C), 150.05, 149.64 (1C), 148.59, 148.31 (1C), 148.07 (1C), 146.65, 146.58, 146.48, 146.42, 146.36, 146.27, 145.55, 145.49, 145.39, 145.01, 144.76, 144.74, 144.48, 143.26, 143.23, 142.79, 142.67, 142.63, 142.27, 142.25, 141.66, 141.29, 140.59, 140.54, 134.54, 134.48, 133.78 (1C), 132.09 (1C), 124.98 (1C), 124.51 (1C), 123.73 (1C), 112.07 (1C), 101.20 (1C), 83.94 (1C), 58.52 (1C); FT-IR *v*/cm⁻¹ (KBr) 1610, 1513, 1462, 1326, 1271, 1215, 1049, 1024, 1006, 814, 767, 704, 672, 552, 526; UV-vis (CHCl₃) λ_{max}/nm 257, 314, 698; MALDI-TOF MS *m*/*z* calcd for C₆₉H₅N₂CI [M]⁺ 896.0136, found 896.0141.

Spectral data of **2r**: ¹H NMR (400 MHz, DMSO-*d*₆/CS₂) δ 9.65 (s, 1H), 7.82 (d, *J* = 2.0 Hz, 1H), 7.39 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 5.98 (s, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.83 (1C), 150.04, 149.97 (1C), 148.58, 148.30 (1C), 148.07 (1C), 146.65, 146.58, 146.47, 146.42, 146.36, 146.27, 145.55, 145.49, 145.39, 145.01, 144.74 (4C), 144.47, 143.21 (4C), 142.79, 142.67, 142.63, 142.27, 142.24, 141.66, 141.28, 140.60, 140.54, 136.49 (1C), 134.52, 134.48, 131.93 (1C), 126.72 (1C), 125.06 (1C), 112.59 (1C), 112.33 (1C), 101.28 (1C), 83.94 (1C), 58.50 (1C); FT-IR ν /cm⁻¹ (KBr) 1700, 1608, 1460, 1443, 1358, 1325, 1274, 1214, 814, 552, 526; UV-vis (CHCl₃) λ_{max} /nm 213, 256, 430, 698; MALDI-TOF MS *m*/*z* calcd for C₆₉H₅N₂Br [M]⁺ 936.9631, found 936.9637.

Spectral data of **2s**: ¹H NMR (600 MHz, DMSO-*d*₆/CS₂) δ 9.75 (s, 1H), 8.06 (s, 1H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.02 (s, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 159.43 (1C), 151.20 (1C), 150.16, 148.76, 148.31 (1C), 148.06 (1C), 146.62, 146.58, 146.48, 146.42, 146.35, 146.28, 145.54, 145.49, 145.36, 145.01, 144.77, 144.74, 144.49, 144.44 (1C), 143.26, 143.23, 142.79, 142.67, 142.61, 142.29, 142.26, 141.66, 141.30, 140.60, 140.55, 134.54, 134.50, 133.30 (1C), 132.21 (1C), 130.95 (1C), 126.93 (3C), 126.03, 123.96 (1C), 122.70 (1C), 111.54 (1C), 101.25 (1C), 83.96 (1C), 58.57 (1C); FT-IR *v*/cm⁻¹ (KBr) 1611, 1477, 1428, 1324, 1263, 1211, 1165, 1125, 1069, 1016, 843, 814, 526; UV-vis (CHCl₃) λ_{max} /nm 216, 256, 434, 698; MALDI-TOF MS *m*/*z* calcd for C₇₆H₉F₃N₂[M]⁺ 1006.0712, found 1006.0715.

Spectral data of **2t**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 8.20 (s, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.41–7.39 (m, 2H), 7.36–7.35 (m, 1H), 6.99 (d, J = 8.4 Hz, 1H), 6.62 (s, 1H), 6.10 (s, 1H); ¹³C NMR (150 MHz, DMSO- d_6 /CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 159.64 (1C), 150.29, 150.23 (1C), 148.89, 148.31 (1C), 148.06 (1C), 146.68, 146.57, 146.51, 146.41, 146.35, 146.27, 145.53, 145.49, 145.35, 144.99, 144.80, 144.76, 144.50, 143.26 (4C), 142.79, 142.66, 142.63, 142.32, 142.26,

142.06 (1C), 141.67, 141.30, 140.59, 140.55, 134.54, 134.51, 132.60 (1C), 132.33 (1C), 127.94 (1C), 126.68 (1C), 126.36 (1C), 125.10 (1C), 121.81 (1C), 119.36 (1C), 111.18 (1C), 100.74 (1C), 83.97 (1C), 58.60 (1C); FT-IR ν/cm^{-1} (KBr) 1700, 1615, 1481, 1456, 1429, 1361, 1329, 1262, 1210, 1187, 1099, 1025, 815, 775, 526; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 210, 225, 257, 433, 692; MALDI-TOF MS m/z calcd for C₇₃H₈N₂S [M]⁺ 944.0403, found 944.0404.

Spectral data of **2u**: ¹H NMR (400 MHz, DMSO- d_6 /CS₂) δ 9.37 (s, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.29 (t, J = 7.2Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.82 (t, J = 7.6 Hz, 1H), 2.83 (t, J = 8.0 Hz, 2H), 1.74–1.68 (m, 2H), 1.01 (t, J = 7.6 Hz, 3H); ¹³C NMR (150 MHz, DMSO- d_6 /CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.71 (1C), 151.81, 150.90 (1C), 148.26 (1C), 148.08 (1C), 147.79, 146.73, 146.55 (6C), 146.28, 146.27, 146.21, 145.48, 145.44, 145.26, 145.14, 144.97, 144.42, 143.26, 142.90, 142.86, 142.70 (4C), 142.39, 142.24, 141.79, 140.97, 140.57, 139.16, 134.85, 133.93, 133.74 (1C), 130.55 (1C), 123.98 (1C), 123.60 (1C), 119.61 (1C), 110.99 (1C), 108.15 (1C), 84.75 (1C), 61.60 (1C), 30.37 (1C), 22.80 (1C), 15.21 (1C); FT-IR v/cm⁻¹ (KBr) 2957, 1636, 1614, 1464, 1430, 1335, 1307, 1232, 1146, 1049, 1024, 1005, 814, 747, 715, 574, 552, 526; UV-vis (CHCl₃) λ_{max} /nm 218, 259, 431, 699; MALDI-TOF MS *m*/*z* calcd for C₇₂H₁₂N₂ [M]⁺ 904.0995, found 904.0987.

Spectral data of **2v**: ¹H NMR (600 MHz, DMSO- d_6 /CS₂) δ 9.09 (s, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.02 (d, J = 7.8 Hz, 1H), 6.85 (t, J = 7.2 Hz, 1H),

S-33

1.80–1.76 (m, 1H), 1.07–1.05 (m, 2H), 1.03–1.01 (m, 2H); ¹³C NMR (150 MHz, DMSO- d_6 /CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 159.13 (1C), 152.98, 152.36 (1C), 148.71, 148.24 (1C), 148.07 (1C), 146.95, 146.87, 146.59, 146.55, 146.41 146.29, 146.28, 145.45 (4C), 145.39, 145.23, 144.91, 144.50, 143.20, 142.84, 142.82, 142.73, 142.59, 142.48, 141.18, 141.90, 141.03, 140.63, 138.82, 134.11, 134.03, 133.73 (1C), 130.67 (1C), 123.82 (1C), 123.21 (1C), 119.81 (1C), 111.56 (1C), 107.16 (1C), 84.38 (1C), 62.66 (1C), 13.19 (1C), 10.56; FT-IR ν /cm⁻¹ (KBr) 2960, 2923, 1630, 1611, 1514, 1464, 1328, 1262, 1230, 1099, 1027, 868, 803, 742, 526; UV-vis (CHCl₃) λ_{max} /nm 257, 323, 518; MALDI-TOF MS *m*/*z* calcd for C₇₂H₁₀N₂ [M]⁺ 902.0838, found 902.0845.

Spectral data of **2w**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.93 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.01 (t, J = 7.2 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H), 6.55 (s, 1H), 5.81 (s, 2H), 3.94–3.89 (m, 1H), 2.80–2.75 (m, 1H), 2.36–2.33 (m, 1H), 2.25 (d, J = 16.2 Hz, 1H), 2.21–2.09 (m, 2H), 2.07–2.05 (m, 1H); ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.44 (1C), 151.08, 148.62 (1C), 148.00 (1C), 147.89 (1C), 146.58 (1C), 146.41 (5C), 146.26, 146.06 (5C), 145.96, 145.93 (1C), 145.29, 145.22, 145.06 (3C), 145.02 (1C), 144.76, 144.06, 143.03, 142.67, 142.50, 142.46 (4C), 142.10, 141.84, 141.47, 140.53, 140.46, 138.56, 135.07 (1C), 135.00 (1C), 133.74 (1C), 133.61 (1C), 133.59 (1C), 129.00 (1C), 127.44 (1C), 126.17 (1C), 123.87 (1C), 120.58 (1C), 113.06 (1C), 110.40 (1C), 84.47 (1C), 61.13 (1C), 33.58 (1C), 28.27 (1C), 26.54 (1C), 25.78 (1C); FT-IR ν /cm⁻¹ (KBr) 2922, 1707, 1636, 1613, 1466, 1433, 1330, 1260, 1227, 1097, 1027, 802, 745, 669, 650, 526; UV-vis (CHCl₃) λ_{max} /nm 218, 257, 431, 698; MALDI-TOF MS *m*/*z* calcd for C₇₅H₁₄N₂ [M]⁺ 942.1151, found 942.1152.

Spectral data of **2x**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.90 (d, *J* = 7.2 Hz, 1H), 7.40–7.36 (m, 1H), 7.32 (d, *J* = 4.0 Hz, 4H), 7.23–7.19 (m, 1H), 6.98 (t, *J* = 7.2 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 5.65 (s, 1H), 3.29 (t, *J* = 7.6 Hz, 2H), 3.06 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 157.74 (1C), 151.14, 149.27 (1C), 148.01 (1C), 147.88 (1C), 147.10, 146.37, 146.34, 146.16 (4C), 146.09, 146.06, 145.64, 145.29, 145.24, 145.14, 145.04, 144.70, 144.09, 143.02, 142.64, 142.56, 142.48, 142.43, 142.08, 141.85, 141.54, 141.03 (1C), 140.73, 140.46, 138.96, 134.62, 133.60, 133.56 (1C), 130.94 (1C), 128.91, 128.68, 126.79 (1C), 123.86 (1C), 123.63 (1C), 120.74 (1C), 110.95 (1C), 108.22 (1C), 84.50 (1C), 60.92 (1C), 58.44 (1C), 34.98 (1C); FT-IR *v*/cm⁻¹ (KBr) 2960, 2921, 2851, 1701, 1637, 1613, 1493, 1464, 1333, 1261, 1231, 1187, 1096, 1027, 802, 746, 698, 526; UV-vis (CHCl₃) λ_{max} /nm 232, 257, 315, 429; MALDI-TOF MS *m*/*z* calcd for C₇₇H₁₄N₂ [M]⁺ 966.1151, found 966.1149.

Spectral data of **2y**: ¹H NMR (400 MHz, DMSO- d_6 /CS₂) δ 8.77 (s, 1H), 7.21 (d, J = 7.2 Hz, 1H), 7.29–7.23 (m, 3H), 6.88 (d, J = 8.0 Hz, 2H), 6.83–6.81 (m, 2H), 3.73 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6 /CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 159.55, 151.24, 148.36 (1C), 148.15 (1C), 148.00, 146.72 (4C), 146.61 (6C), 146.39 (4C), 145.57 (4C), 145.45, 145.23, 144.97, 144.54, 143.31,

143.17 (4C), 142.95, 142.81, 142.74, 142.42 (4C), 141.94, 141.07, 140.68, 139.01, 134.69, 134.34, 134.08, 133.27, 130.97 (1C), 126.52 (1C), 124.01 (1C), 123.35 (1C), 119.94 (1C), 114.70, 111.63 (1C), 108.69 (1C), 85.10 (1C), 62.01 (1C), 55.35 (1C); FT-IR ν /cm⁻¹ (KBr) 1605, 1508, 1463, 1334, 1285, 1245, 1173, 1052, 1027, 1006, 834, 747, 526; UV-vis (CHCl₃) λ_{max} /nm 258, 431, 702; MALDI-TOF MS *m*/*z* calcd for C₇₆H₁₂N₂O [M]⁺ 968.0944, found 968.0936.

Spectral data of 2z: ¹H NMR (400 MHz, DMSO- d_6/CS_2) δ 8.88 (s, 1H), 7.89 (s, 1H), 7.84–7.73 (m, 4H), 7.51 (d, J = 8.4 Hz, 1H), 7.43–7.41 (m, 2H), 7.24 (t, J = 7.2 Hz, 1H), 6.82 (t, J = 7.2 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H); ¹³C NMR (150 MHz, DMSO- d_6/CS_2 with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 159.53 (1C), 151.19, 150.93 (1C), 148.24 (1C), 148.03 (1C), 147.78, 146.74 (1C), 146.61, 146.51 (4C), 146.27 (5C), 146.17 (1C), 145.49, 145.43, 145.15, 144.86, 144.40, 143.19 (3C), 142.85 (4C), 142.68, 142.59, 142.30 (4C), 141.87, 140.91, 140.61, 138.98 (1C), 138.86 (1C), 134.61, 134.32 (1C), 134.22 (1C), 133.98, 133.63 (1C), 133.08 (1C), 132.31 (1C), 131.64 (1C), 130.83 (1C), 129.56 (1C), 128.67 (1C), 128.64 (1C), 128.09 (1C), 126.94 (1C), 126.51 (1C), 123.92 (1C), 123.17 (1C), 119.89 (1C), 111.42 (1C), 108.54 (1C), 85.05 (1C), 61.62 (1C), 30.39 (1C); FT-IR ν/cm^{-1} (KBr) 1615, 1464, 1431, 1334, 1262, 1230, 1097, 1033, 857, 799, 745, 699, 526; UV-vis (CHCl₃) λ_{max}/nm 231, 257, 323, 527; MALDI-TOF MS m/z calcd for $C_79H_{12}N_2$ [M]⁺ 988.0995, found 988.0993.

Spectral data of **2aa**: ¹H NMR (600 MHz, DMSO-*d*₆/CS₂) δ 7.81 (d, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 6.93–6.89 (m, 2H), 3.87 (t, *J* = 6.0 Hz, 2H), 2.90 (t, *J* = 6.0 Hz, 2H), 2.46–2.42 (m, 2H); the ¹³C NMR spectrum of **2aa** could not be obtained because of poor solubility of the product; FT-IR *v*/cm⁻¹ (KBr) 2925, 1710, 1637, 1610, 1509, 1471, 1456, 1423, 1389, 1367, 1323, 1279, 1247, 1200, 1144, 969, 839, 742, 551, 526; UV-vis (CHCl₃) λ_{max} /nm 226, 259, 431, 464; MALDI-TOF MS *m*/*z* calcd for C₇₂H₁₀N₂ [M]⁺ 902.0838, found 902.0837.

Spectral data of **2bb**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.97 (d, J = 7.2 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.12 (t, J = 8.0 Hz, 1H), 7.05–7.01 (m, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 4.22 (t, J = 6.8 Hz, 2H), 3.74 (t, J = 6.8 Hz, 2H), 2.47 (s, 3H), 2.05–2.02 (m, 2H), 1.99–1.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.61 (1C), 150.44 (1C), 149.57, 148.04 (1C), 147.97, 147.79 (1C), 146.30, 146.14 (4C), 146.08 (4C), 146.00, 145.26, 145.20, 145.15, 144.76, 144.39, 144.25, 144.15, 142.96, 142.79, 142.48, 142.37, 142.26, 141.92, 141.84, 141.31, 140.98, 140.37, 140.20, 136.44 (1C), 135.74 (1C), 134.49, 134.31, 134.10 (1C), 132.26 (1C), 128.03 (1C), 124.07 (1C), 122.86 (1C), 120.60 (1C), 120.09 (1C), 119.87 (1C), 119.41 (1C), 108.72 (1C), 107.67 (1C), 100.65 (1C), 98.94 (1C), 83.71 (1C), 57.99 (1C), 42.74 (1C), 42.66 (1C), 28.01 (1C), 25.20 (1C), 12.97 (1C); FT-IR v/cm⁻¹ (KBr) 2924, 1708, 1634, 1606, 1466, 1397, 1349, 1311, 1217, 1184, 808, 769, 744, 526; UV-vis (CHCl₃) λ_{max}/nm 226, 259, 431, 464; MALDI-TOF MS *m*/*z* calcd for C₈₂H₂₁N₃ [M]⁺ 1047.1730, found 1047.1736.

Spectral data of **2cc**: ¹H NMR (400 MHz, DMSO- d_6 /CS₂) δ 9.75 (s, 1H), 8.10 (s, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 1H), 6.02 (s, 1H), 4.78 (s, 2H), 4.47 (s, 2H), 4.10 (s, 5H); the ¹³C NMR spectrum of **2cc** could not be obtained because of poor solubility of the product; FT-IR ν /cm⁻¹ (KBr) 1617, 1599, 1512, 1475, 1444, 1375, 1333, 1284, 1212, 1134, 1026, 817, 770, 669, 526; UV-vis (CHCl₃) λ_{max} /nm 258, 329, 430, 482, 702; MALDI-TOF MS *m*/*z* calcd for C₈₆H₁₈N₂OFe [M]⁺ 1150.0763, found 1150.0789.

Spectral data of **2dd**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.07 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.63–7.57 (m, 3H), 7.48–7.42 (m, 3H), 7.09 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.06 (s, 1H), 2.01 (t, J = 6.8 Hz, 2H), 1.98 (t, J = 6.8 Hz, 2H), 1.18–1.03 (m, 20H), 0.80 (t, J = 7.2 Hz, 6H), 0.72 (br, 4H); ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.31 (1C), 152.89 (1C), 152.36 (1C), 150.33 (1C), 149.58, 148.13, 147.89 (1C), 146.42, 146.26, 146.22, 146.18 (5C), 146.10, 145.37, 145.34, 145.29, 144.88, 144.51, 144.21, 144.09, 143.05, 142.86, 142.61, 142.47, 142.40, 142.02, 141.96, 141.45, 141.02, 140.51, 140.32, 139.21 (1C), 138.88 (1C), 135.78 (1C), 134.37, 134.34, 133.83 (1C), 132.85 (1C), 130.24 (1C), 126.20 (1C), 124.89 (1C), 124.24 (1C), 123.36 (1C), 121.92 (1C), 121.29 (1C), 121.25 (1C), 121.17 (1C), 120.77 (1C), 108.97 (1C), 101.27 (1C), 83.86 (1C), 58.04 (1C), 55.48 (1C), 40.35, 31.96, 30.28, 29.56, 29.48, 24.18, 22.90, 14.30; FT-IR ν/cm^{-1} (KBr) 2921, 2849, 1634, 1607, 1490, 1462, 1429, 1377, 1314, 1214, 1062, 1007, 813, 745, 526; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 209, 257, 324, 432; MALDI-TOF MS m/z calcd for C₈₆H₄₅N₂Br [M]⁺ 1328.2761, found 1328.2768.

2ee

Spectral data of **2ee**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 8.03 (d, J = 7.8 Hz, 1H), 7.83 (s, 1H), 7.60–7.58 (m, 2H), 7.54–7.53 (m, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.25 (d, *J* = 4.2 Hz, 1H), 7.08 (t, *J* = 7.8 Hz, 1H), 7.04 (d, *J* = 3.6 Hz, 1H), 6.99 (d, *J* = 7.8 Hz, 1H), 6.96 (d, J = 3.6 Hz, 1H), 6.65 (d, J = 3.6 Hz, 1H), 6.08 (s, 1H), 2.78 (t, J = 7.8Hz, 2H), 1.70–1.65 (m, 2H), 1.39–1.37 (m, 2H), 1.32–1.31 (m, 4H), 0.89 (t, J = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) & 158.21 (1C), 150.27 (1C), 149.52, 148.12, 148.08 (1C), 147.82 (1C), 146.37, 146.19 (4C), 146.15, 146.13, 146.05, 145.68 (1C), 145.31, 145.29, 145.24, 144.88, 144.45, 144.26, 144.19, 143.14, 142.99, 142.80, 142.54, 142.40, 142.34, 141.97 (4C), 141.39, 141.02, 140.59 (1C), 140.44, 140.28, 138.42 (1C), 137.49 (1C), 136.45 (1C), 134.38, 134.34, 133.97 (1C), 132.82 (1C), 130.78 (1C), 125.14 (1C), 124.88 (1C), 124.57 (1C), 124.53 (1C), 124.19 (1C), 123.87 (1C), 123.69 (1C), 123.23 (1C), 121.32 (1C), 109.09 (1C), 101.17 (1C), 83.76 (1C), 58.00 (1C), 31.73 (1C), 31.70 (1C), 30.31 (1C), 28.95 (1C), 22.85 (1C), 14.26 (1C); FT-IR v/cm⁻¹ (KBr) 2921, 1710, 1634, 1606, 1491, 1462, 1429, 1378, 1315, 1245, 1213, 1102, 787, 744, 690, 551, 526; UV-vis (CHCl₃) λ_{max}/nm 216, 255, 331, 431; MALDI-TOF MS m/z calcd for C₈₉H₂₆N₂S₂ [M]⁺ 1186.1532, found 1186.1529.

Spectral data of **2ff**: ¹H NMR (600 MHz, CDCl₃/CS₂) δ 8.09 (d, J = 7.8 Hz, 2H), 8.06 (d, J = 7.8 Hz, 1H), 7.97 (s, 1H), 7.88 (d, J = 7.2 Hz, 2H), 7.74 (d, J = 4.2 Hz, 2H), 7.68 (d, J = 7.2 Hz, 3H), 7.47 (t, J = 7.8 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.38 (t, J = 7.8 Hz, 2H), 7.26 (t, J = 7.8 Hz, 2H), 7.09 (t, J = 7.2 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 6.13 (s, 1H); ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.31 (1C), 150.40 (1C), 149.55, 148.15, 148.12 (1C), 147.88 (1C), 146.41, 146.25, 146.18 (6C), 146.09, 145.35, 145.32, 145.29, 144.92, 144.49, 144.28, 144.21, 143.04, 142.84, 142.59 (3C), 142.45, 142.37, 141.99 (4C), 141.43, 141.04, 140.49, 140.48, 140.29, 138.69 (1C), 137.57 (1C), 137.55 (1C), 134.43, 134.40, 134.00 (1C), 132.93 (1C), 130.89 (1C), 128.58, 127.37, 126.29 (1C), 126.02, 125.65 (1C), 125.06 (1C), 124.26 (1C), 123.44, 123.34 (1C), 121.35 (1C), 120.35, 120.20, 109.63, 109.09 (1C), 101.14 (1C), 83.82 (1C), 58.07 (1C); FT-IR ν/cm^{-1} (KBr) 1634, 1607, 1519, 1489, 1463, 1451, 1378, 1316, 1227, 1102, 1017, 794, 747, 723, 526; UV-vis (CHCl₃) λ_{max}/nm 222, 254, 432; MALDI-TOF MS *m/z* calcd for C₉₃H₂₁N₃ [M]⁺ 1179.1735, found 1179.1732.

8. Single-Crystal X-Ray Crystallography of 2f

Black block crystals of **2f** was obtained from slow evaporation of *n*-hexane into a saturated solution in carbon disulfide at 10 °C. Single-crystal X-ray diffraction data were collected on a diffractometer (Gemini S Ultra, Agilent Technologies) equipped with a CCD area detector using graphite-monochromated Cu K α radiation (λ = 1.54184 Å). The structure was solved with direct methods using SHELXS-97 and refined with full-matrix least-squares refinement using the SHELXL-97 program within OLEX2. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as deposition number CCDC 1835479.

Figure S4. ORTEP Diagrams of **2f** with 50% Thermal Ellipsoids. The Carbon Disulfide Molecule is Omitted for Clarity

Empirical formula	$C_{295}H_{52}Br_4N_8S_6$
Formula weight	4219.44
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	14.3499(3)
b/Å	16.3659(3)
c/Å	18.7206(3)
α/°	112.433(2)
β/°	94.237(2)
γ/°	102.687(2)
Volume/Å ³	3903.50(14)
Z	1
$\rho_{calc}g/cm^3$	1.795
μ/mm^{-1}	2.689
F(000)	2114.0
Crystal size/mm ³	$0.250 \times 0.220 \times 0.200$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	7.512 to 142.71
Index ranges	$-17 \le h \le 17, -20 \le k \le 15, -23 \le l \le 21$
Reflections collected	26998
Independent reflections	14646 [$R_{int} = 0.0194$, $R_{sigma} = 0.0255$]
Data/restraints/parameters	14646/0/1411
Goodness-of-fit on F ²	1.027
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0536, wR_2 = 0.1581$
Final R indexes [all data]	$R_1 = 0.0560, wR_2 = 0.1606$
Largest diff. peak/hole / e Å ⁻³	1.74/-1.72

Crystal data and structure refinement for compound 2f.

9. ¹H NMR and ¹³C NMR Spectra of Compounds 2

13 C NMR (150 MHz, CDCI₃/CS₂) of compound 2b

¹³C NMR (150 MHz, CDCl₃/CS₂) of compound 2c

S-53

S-55

S-63

¹³C NMR (150 MHz, DMSO-d₆/CS₂) of compound 2n

S-73

S-75

¹³C NMR (150 MHz, DMSO-d₆/CS₂) of compound 2r

¹³C NMR (150 MHz, DMSO-d₆/CS₂) of compound 2t

¹³C NMR (150 MHz, CDCI₃/CS₂) of compound 2x

S-89

¹³C NMR (150 MHz, d₆-DMSO/CS₂) of compound 2z

^{13}C NMR (100 MHz, CDCl₃/CS₂) of compound 2bb

7	9	0	•	9	٦	
6	8	6	•	9	7	
0	τ	0	•	L	-1	1
2	L	0	•	L		L
0	6	0	•	L	-11	
6	0	τ	•	L	-11	
0	Đ	2	•	L	7	
Þ	2	Þ	•	L	7	1
2	Đ	Đ	•	L	-11	
2	9	Þ	•	L	7	J/
8	9	₽	•	L	-1	1L
3	L	₽	•	L	-	Ł
8	L	₽	•	L	/	Æ
9	9	5	•	L	1	
L	L	9	•	L]	IF
L	8	5	•	L]	IF
ε	0	9	•	L]	
τ	τ	9	•	L	-11	
τ	3	9	•	L	J	
2	9	8	•	L	Щ	
2	L	8	•	L	Л	
6	5	0	•	8	1	
8	L	0	•	8]	

¹³C NMR (100 MHz, CDCl₃/CS₂) of compound 2dd

¹H NMR (600 MHz, CDCl₃/CS₂) of compound 2ff

10. Optimized Cartesian Coordinates

1			
6	-0.307708	0.442917	-0.007579
6	-0.550986	-0.956766	0.000958
6	-1.876906	-1.414638	0.004389
6	-2.911902	-0.488759	0.002902
6	-2.649199	0.893430	-0.001458
6	-1.345687	1.377825	-0.005995
6	1.689403	-0.608654	-0.002303
6	0.733477	-1.593288	0.004735
1	-2.090280	-2.478224	0.009372
1	-3.940157	-0.832608	0.006409
1	-3.476951	1.593577	-0.000255
1	-1.151439	2.444349	-0.006153
7	1.062409	0.635402	-0.016119
6	1.701997	1.935865	0.014955
1	1.306636	2.573827	-0.780278
1	1.541785	2.436308	0.976074
1	2.773299	1.823859	-0.141246
6	3.176740	-0.748581	-0.002477
1	3.440138	-1.806729	0.009719
1	3.634083	-0.303321	-0.892919
1	0.933483	-2.653971	0.008716
1	3.637177	-0.280971	0.874630

 NO^+

7	0.000000	0.000000	-0.565291
8	0.000000	0.000000	0.494630

٦	r	

6	-0.611835	-0.536083	0.576955
6	-0.569577	0.752449	-0.004900
6	-1.711143	1.423325	-0.430963
6	-2.927113	0.760785	-0.254031
6	-2.992682	-0.522389	0.320250
6	-1.841812	-1.188965	0.732333
6	0.770410	-0.912132	0.812337
6	1.573240	0.235693	0.510927
1	-1.672832	2.411856	-0.875898
1	-3.844414	1.249667	-0.566236
1	-3.960167	-0.997632	0.445444
1	-1.899114	-2.177481	1.177691
1	1.118290	-1.732677	1.428651
7	0.777165	1.175396	-0.028456
6	3.047024	0.379027	0.683311
1	3.464034	-0.532626	1.115827
1	3.555232	0.571361	-0.269297
1	3.284498	1.209736	1.359074
7	0.904659	-1.659230	-1.051596
8	1.095307	-2.783615	-1.074789
6	1.188825	2.480116	-0.549251
1	0.703571	3.271414	0.028877
1	2.269225	2.586771	-0.468530
1	0.894439	2.564404	-1.598730

II

6	-0.496132	-0.619354	0.000027
6	-0.672115	0.782156	0.000026

6	-1.930322	1.378179	0.000006
6	-3.035942	0.530608	-0.000013
6	-2.881238	-0.863687	-0.000008
6	-1.619758	-1.452409	0.000011
6	0.935434	-0.833404	0.000011
6	1.557165	0.420369	0.000020
1	-2.055793	2.454509	-0.000010
1	-4.031998	0.958030	-0.000032
1	-3.763234	-1.493825	-0.000026
1	-1.495873	-2.526295	0.000021
7	0.593530	1.385496	0.000021
6	3.018534	0.709376	-0.000002
1	3.315880	1.280907	-0.885087
1	3.315918	1.280930	0.885055
7	1.696162	-1.983921	0.000004
8	1.066806	-3.047300	-0.000033
6	0.797307	2.824486	-0.000030
1	1.862277	3.044791	0.000204
1	0.346881	3.272878	-0.889400
1	0.346481	3.272962	0.889091
1	3.559576	-0.235442	0.000002

TS1-1

Frequencies	-283.9613		
6	-0.467890	-0.691099	-0.103336
6	-0.817025	0.682289	-0.006030
6	-2.149549	1.093607	0.085399
6	-3.131805	0.111178	0.057966
6	-2.800140	-1.252034	-0.051804
6	-1.477644	-1.664106	-0.129818

6	0.964644	-0.721405	-0.141444
6	1.438364	0.564762	-0.099503
1	-2.415424	2.140292	0.176208
1	-4.174094	0.401165	0.124904
1	-3.592856	-1.990916	-0.069823
1	-1.231196	-2.716752	-0.204906
7	0.346549	1.427273	-0.016174
6	2.848974	1.051176	-0.156366
1	3.008984	1.734542	-0.996695
1	3.140665	1.572887	0.760933
7	1.765497	-1.912015	-0.385724
8	2.109429	-2.491122	0.616483
6	0.397966	2.865781	0.168945
1	1.396282	3.231725	-0.063438
1	-0.308231	3.355273	-0.505688
1	0.153642	3.145879	1.199145
1	3.527096	0.207188	-0.283274
II′			
6	-0.520234	-0.750642	0.000026
6	-0.885076	0.610161	-0.000028
6	-2.214341	1.030900	-0.000053
6	-3.192527	0.041407	-0.000020
6	-2.847720	-1.321029	0.000029
6	-1.519186	-1.729543	0.000048
6	0.925359	-0.785814	0.000020
6	1.380988	0.544414	0.000009
1	-2.484781	2.080149	-0.000085
1	-4.237861	0.327628	-0.000033
1	-3.635712	-2.065375	0.000057

1	-1.253542	-2.779277	0.000087
7	0.290300	1.368340	-0.000036
6	2.776922	1.070467	0.000127
1	2.968275	1.686717	-0.884961
1	2.967586	1.688247	0.884282
7	1.612222	-1.990284	0.000110
8	2.846338	-1.951650	-0.000202
6	0.298309	2.822776	-0.000021
1	1.322416	3.187299	-0.000499
1	-0.211061	3.203585	-0.888965
1	-0.210278	3.203624	0.889361
1	3.471640	0.235628	0.001023

TS2-1

Frequencies	-1573.4641		
6	0.565579	-0.766599	0.130604
6	0.886479	0.599275	0.006684
6	2.199507	1.039874	-0.109022
6	3.205763	0.071424	-0.090727
6	2.901642	-1.288742	0.029960
6	1.579221	-1.719344	0.139546
6	-0.888378	-0.832173	0.195230
6	-1.379891	0.531871	0.203179
1	2.444760	2.089403	-0.216712
1	4.240393	0.382818	-0.176315
1	3.704656	-2.016391	0.034201
1	1.339114	-2.772004	0.226802
7	-0.305783	1.354189	0.023963
6	-2.761661	0.837993	0.146092
1	-3.343670	0.533323	1.017970

1	-3.052772	1.815285	-0.230725
7	-1.625897	-1.857377	-0.201028
8	-2.914115	-1.655793	-0.254919
6	-0.356872	2.799428	-0.098316
1	-0.266480	3.116464	-1.141661
1	-1.305291	3.158067	0.300123
1	0.454709	3.245490	0.479410
1	-3.089081	-0.421830	-0.333664

III

6	-0.513868	-0.742905	-0.057136
6	-0.895209	0.605426	0.052956
6	-2.238758	0.968074	0.085967
6	-3.190682	-0.053094	0.015839
6	-2.818211	-1.396316	-0.080511
6	-1.468282	-1.750040	-0.113227
6	0.951783	-0.780374	-0.042698
6	1.401013	0.648213	-0.059342
1	-2.552370	2.001779	0.160238
1	-4.242570	0.209091	0.036628
1	-3.580323	-2.164444	-0.132153
1	-1.159209	-2.785680	-0.186428
7	0.246356	1.412863	0.127951
6	2.631169	1.159516	-0.285281
1	3.477700	0.540696	-0.538556
1	2.796401	2.227968	-0.318815
7	1.599274	-1.888425	0.053183
8	2.971392	-1.822920	0.192407
6	0.244811	2.857229	0.066952
1	1.010845	3.260875	0.733511
1	0.434538	3.224545	-0.949938
---	-----------	-----------	-----------
1	-0.720453	3.233370	0.401303
1	3.222286	-0.930287	0.485901

TS1-2

Frequencies	-740.1112		
6	-0.746691	0.459772	-0.102315
6	-0.986386	-0.948514	-0.081365
6	-2.294654	-1.421939	0.138898
6	-3.314745	-0.507777	0.332547
6	-3.057795	0.879201	0.307056
6	-1.779872	1.379981	0.088789
6	1.221615	-0.572498	-0.483080
6	0.261829	-1.576982	-0.309490
1	-2.494066	-2.487626	0.156444
1	-4.326773	-0.855436	0.503954
1	-3.877669	1.572067	0.458395
1	-1.604169	2.448552	0.064048
7	0.598947	0.661421	-0.334105
6	1.272392	1.949630	-0.388852
1	0.685808	2.683025	0.163497
1	2.250147	1.872724	0.088055
1	1.391163	2.299173	-1.419548
6	2.628617	-0.713414	-0.709901
1	3.237818	-0.423941	0.306701
1	2.940845	-1.725651	-0.954095
1	0.463081	-2.635970	-0.365674
1	3.101289	0.036485	-1.343873
8	3.888802	-0.034234	1.250523
1	3.703624	-0.704230	1.922933

VI

6	0.823729	0.625199	0.045334
6	0.512720	-0.706400	-0.270325
6	1.505518	-1.664396	-0.365207
6	2.836127	-1.284659	-0.152072
6	3.140061	0.041935	0.152141
6	2.143953	1.018006	0.254065
6	-1.444585	0.631527	-0.312471
6	-0.977162	-0.819331	-0.432179
1	1.256519	-2.694195	-0.596795
1	3.628515	-2.019452	-0.225161
1	4.173358	0.329801	0.311204
1	2.405077	2.043115	0.485137
7	-0.344769	1.387182	0.101693
6	-0.399235	2.818147	0.291765
1	0.474010	3.146817	0.854415
1	-0.430154	3.359214	-0.662986
1	-1.289495	3.077960	0.869057
6	-2.678021	1.079856	-0.579803
1	-3.454978	0.384377	-0.865121
1	-2.947962	2.124053	-0.495183
1	-1.290300	-1.269679	-1.378200
7	-1.575962	-1.695026	0.642282
8	-2.732263	-2.095800	0.588539

TS2-2

Frequencies	-440.4091		
6	0.807865	0.631284	0.046057
6	0.533065	-0.687952	-0.377280

6	1.558022	-1.621959	-0.485498
6	2.861770	-1.229799	-0.186364
6	3.124232	0.082424	0.225651
6	2.108787	1.031586	0.348724
6	-1.421451	0.584152	-0.429470
6	-0.911053	-0.800579	-0.563013
1	1.342080	-2.638947	-0.792784
1	3.675498	-1.939728	-0.270776
1	4.143692	0.373511	0.453309
1	2.337664	2.042351	0.662613
7	-0.373685	1.361541	0.078641
6	-0.481864	2.771235	0.380555
1	0.321883	3.062064	1.056802
1	-0.426118	3.391823	-0.522529
1	-1.430357	2.966828	0.884298
6	-2.657549	1.015947	-0.752228
1	-3.395891	0.309914	-1.105057
1	-2.959329	2.049440	-0.647443
1	-1.325130	-1.427451	-1.343422
7	-1.570107	-1.715675	0.839089
8	-2.726048	-2.046113	0.744759

VII

6	-0.733837	0.696797	-0.043475
6	-0.481838	-0.644343	0.293306
6	-1.516064	-1.556222	0.404084
6	-2.830314	-1.118066	0.195137
6	-3.074733	0.215489	-0.127153
6	-2.035315	1.144859	-0.249336
6	1.535267	0.595875	0.301232

6	1.007649	-0.823363	0.429005
1	-1.315080	-2.592130	0.654833
1	-3.654778	-1.814629	0.285189
1	-4.094744	0.548206	-0.284311
1	-2.252659	2.177621	-0.491645
7	0.468824	1.402462	-0.107689
6	0.592121	2.829532	-0.294284
1	-0.285309	3.208372	-0.816819
1	0.692584	3.360162	0.661405
1	1.469953	3.046199	-0.907836
6	2.798989	0.980431	0.528702
1	3.537557	0.252210	0.834037
1	3.125870	2.005398	0.416611
1	1.345906	-1.348654	1.323304
7	1.497082	-1.617160	-0.791271
8	2.012226	-2.658224	-0.500670

TS2-2'

Frequencies	-323.5190		
6	-1.052666	0.473479	0.069387
6	-1.190672	-0.946677	0.135690
6	-2.455968	-1.527599	-0.080135
6	-3.533497	-0.704433	-0.349850
6	-3.378112	0.697708	-0.406419
6	-2.147008	1.303382	-0.197500
6	0.972990	-0.389510	0.547537
6	0.092922	-1.467442	0.427029
1	-2.577457	-2.604100	-0.035464
1	-4.513531	-1.134933	-0.518998
1	-4.242808	1.317145	-0.615680

1	-2.049024	2.381446	-0.236986
7	0.265735	0.789288	0.306887
6	0.823803	2.130306	0.327877
1	0.250761	2.769899	-0.343411
1	0.800682	2.563636	1.333355
1	1.851408	2.103917	-0.033746
6	2.362966	-0.427394	0.814279
1	2.770816	-1.388299	1.099913
1	2.844874	0.431767	1.262497
1	0.369882	-2.503827	0.545423
7	3.347978	-0.233987	-0.897222
8	4.528732	-0.334334	-0.756490

VII'

6	-1.019428	0.474393	0.037008
6	-1.083386	-0.940376	0.160767
6	-2.322189	-1.584958	0.012769
6	-3.450032	-0.822439	-0.247963
6	-3.367393	0.579182	-0.362971
6	-2.157533	1.245568	-0.221585
6	1.055035	-0.276254	0.471338
6	0.248064	-1.387748	0.429590
1	-2.393241	-2.663551	0.101073
1	-4.412389	-1.307471	-0.364753
1	-4.267009	1.149776	-0.563720
1	-2.108062	2.324829	-0.305247
7	0.295080	0.860904	0.217092
6	0.762484	2.236220	0.204237
1	0.235585	2.792187	-0.572875
1	0.591775	2.730596	1.166862

1	1.824084	2.264809	-0.035087
6	2.524029	-0.233836	0.716617
1	2.881305	-1.179649	1.127837
1	2.812952	0.592041	1.376972
1	0.578037	-2.404087	0.581016
7	3.245929	0.045907	-0.588507
8	4.041498	-0.798208	-0.888876

XII

6	0.725849	-0.494473	-0.843153
6	0.578625	0.648272	-0.012674
6	1.661037	1.226586	0.655012
6	2.908962	0.637960	0.486523
6	3.075517	-0.498963	-0.326087
6	1.997756	-1.069089	-0.989235
6	-0.576313	-0.794136	-1.357226
6	-1.452935	0.139663	-0.852937
1	1.541248	2.101505	1.283556
1	3.769269	1.062216	0.991653
1	4.063167	-0.932906	-0.433630
1	2.136100	-1.944568	-1.614411
1	-0.844841	-1.599681	-2.023267
7	-0.756248	1.017396	-0.030358
6	-2.919638	0.270774	-1.099512
1	-3.245890	-0.527013	-1.767152
1	-3.499920	0.186736	-0.174904
1	-3.173576	1.226446	-1.570536
7	-1.710105	-1.980644	1.230863
8	-0.924457	-1.692505	2.023074
6	-1.293645	2.157514	0.687477

1	-0.879146	3.095050	0.303008
1	-2.375566	2.187033	0.574787
1	-1.062009	2.083294	1.753641

TS1-3

Frequencies	-277.2536		
6	-1.297088	-0.491892	-0.043579
6	-0.651489	0.747488	-0.040888
6	-1.410046	1.909215	-0.058087
6	-2.802702	1.796831	-0.092389
6	-3.426163	0.546267	-0.111305
6	-2.675559	-0.632548	-0.086560
6	0.914824	-0.971585	0.006413
6	0.817627	0.503932	-0.022555
1	-0.929988	2.880107	-0.039912
1	-3.411171	2.693544	-0.104415
1	-4.507575	0.485832	-0.141901
1	-3.161226	-1.600648	-0.099117
7	-0.297484	-1.512607	0.008482
6	-0.635279	-2.929934	0.072705
1	-1.262415	-3.114608	0.947282
1	-1.179315	-3.222475	-0.827773
1	0.272396	-3.521143	0.154540
1	1.453856	0.871701	-0.895042
7	1.567511	1.079403	1.157801
8	2.744777	1.428491	0.884576
6	2.198171	-1.711365	0.055425
1	2.456074	-1.939065	1.097155
1	2.158416	-2.648904	-0.502543
1	2.973345	-1.062182	-0.359328

8	3.065886	0.929564	-1.404151
1	3.568339	1.747375	-1.311407

TS1-3'

Frequencies	-623.3153		
6	0.757713	0.547399	0.178003
6	0.754873	-0.779970	-0.253684
6	1.915296	-1.533328	-0.330648
6	3.111772	-0.900295	0.023882
6	3.131044	0.431119	0.438536
6	1.945714	1.170361	0.518722
6	-0.664555	1.040014	0.155465
6	-1.437149	-0.189945	-0.276676
1	1.912476	-2.569877	-0.642487
1	4.038507	-1.460027	-0.023848
1	4.072334	0.895560	0.706816
1	1.957940	2.204430	0.842228
1	-1.049238	1.351060	1.131133
7	-0.580266	-1.166055	-0.562020
6	-2.873342	-0.254665	-0.290551
1	-3.331200	0.711067	-0.499112
1	-3.307205	-1.055981	-0.884166
7	-0.886371	2.154263	-0.825208
8	-0.508265	3.296733	-0.589886
6	-0.959599	-2.550043	-0.806687
1	-1.090403	-3.059722	0.151841
1	-1.893831	-2.582547	-1.362941
1	-0.185366	-3.039981	-1.395082
8	-1.997111	-0.654131	2.051438
1	-1.919919	-0.850004	2.991998

1	-2.985230	-0.486121	0.863624
DMSO			
16	-0.000001	0.242942	-0.439557
8	-0.000010	1.508261	0.387017
6	1.363360	-0.822141	0.180111
1	1.331841	-1.796845	-0.316569
1	2.300234	-0.314040	-0.060802
1	1.275980	-0.932770	1.265094
6	-1.363350	-0.822157	0.180111
1	-2.300229	-0.314063	-0.060799
1	-1.331824	-1.796861	-0.316570
1	-1.275965	-0.932786	1.265093

I-D

6	1.631805	-0.719944	-0.008107
6	2.504788	0.308091	-0.381293
6	3.748707	0.081365	-0.945112
6	4.118063	-1.255011	-1.126179
6	3.265668	-2.297197	-0.756388
6	2.009826	-2.042882	-0.195275
6	0.432313	-0.083990	0.580750
6	0.686243	1.367603	0.452558
1	4.413132	0.884688	-1.237161
1	5.082592	-1.481766	-1.563440
1	3.581258	-3.321554	-0.912331
1	1.353719	-2.858919	0.078387
1	-0.573851	-0.346605	0.203016
7	1.876957	1.561327	-0.079568
6	-0.273553	2.387993	0.917067
1	-0.399507	2.271950	2.001797

S-117

1	0.017233	3.412605	0.698367
1	-1.250440	2.163219	0.476372
7	0.166233	-0.398053	2.183939
8	0.505387	-1.467960	2.500630
6	2.538754	2.838120	-0.358817
1	2.740489	2.910549	-1.428247
1	1.905075	3.664127	-0.052457
1	3.478906	2.880510	0.192669
16	-3.650892	-0.678876	-0.604925
8	-2.405053	0.106525	-0.156748
6	-4.911833	-0.390400	0.680640
1	-5.856177	-0.830164	0.355659
1	-4.564099	-0.890092	1.583972
1	-5.011803	0.681686	0.852663
6	-4.411857	0.307587	-1.936734
1	-3.726268	0.279717	-2.782772
1	-5.362329	-0.149773	-2.216460
1	-4.552211	1.332399	-1.591550

Frequencies	-657.0782		
6	1.133413	-0.584764	0.543533
6	2.166342	-0.251734	-0.343779
6	3.088819	-1.176132	-0.814022
6	2.961780	-2.483287	-0.344354
6	1.948319	-2.833122	0.554523
6	1.017908	-1.894208	1.003005
6	0.356880	0.658825	0.759516
6	1.092291	1.699827	0.050968
1	3.879982	-0.907787	-1.502742

1	3.665111	-3.236516	-0.677580
1	1.886353	-3.854284	0.910970
1	0.239622	-2.172231	1.700238
1	-0.744414	0.545316	0.083568
7	2.093297	1.143711	-0.617434
6	0.750678	3.144642	0.045496
1	0.127060	3.366965	0.911243
1	1.640508	3.775650	0.074335
1	0.179230	3.399569	-0.854066
7	-0.234664	1.076292	2.032701
8	-0.538841	0.169688	2.765048
6	3.027562	1.813317	-1.524106
1	2.966988	1.351238	-2.510459
1	2.773608	2.865943	-1.607938
1	4.043194	1.713523	-1.138393
16	-2.959759	-0.599315	-0.329843
8	-1.875237	0.501875	-0.620874
6	-4.419506	0.345191	0.190171
1	-5.259617	-0.344821	0.285214
1	-4.184871	0.778236	1.161851
1	-4.622859	1.125634	-0.542815
6	-3.489622	-1.115761	-1.986134
1	-2.653502	-1.651810	-2.432968
1	-4.346504	-1.783023	-1.880094
1	-3.740726	-0.231853	-2.572034

I-D1

6	1.302242	-0.529112	-0.057714
6	2.704552	-0.659690	-0.008529
6	3.355600	-1.884314	-0.036688

6	2.558579	-3.025427	-0.119565	
6	1.165248	-2.924783	-0.173154	
6	0.525199	-1.686238	-0.143169	
6	1.046068	0.908547	-0.007257	
6	2.319030	1.563372	0.066394	
1	4.434813	-1.963422	0.001747	
1	3.027996	-4.001215	-0.144333	
1	0.570322	-3.827629	-0.240014	
1	-0.552797	-1.647732	-0.188579	
1	-1.930979	-0.074647	-0.060637	
7	3.278259	0.632464	0.066570	
6	2.570246	3.027168	0.133756	
1	1.618873	3.553641	0.108229	
1	3.095406	3.294830	1.055566	
1	3.181220	3.361359	-0.710017	
7	-0.031313	1.692344	-0.016627	
8	-1.190861	1.172735	-0.076383	
6	4.719999	0.857604	0.129570	
1	5.196030	0.452972	-0.765474	
1	4.924061	1.922965	0.190575	
1	5.131812	0.364183	1.011683	
16	-4.020001	0.199540	0.464487	
8	-2.783478	-0.683380	-0.074892	
6	-4.470493	1.223786	-0.959891	
1	-5.377304	1.773959	-0.701706	
1	-3.638941	1.914121	-1.103030	
1	-4.616615	0.591390	-1.835054	
6	-5.304360	-1.068301	0.427590	
1	-5.062338	-1.788464	1.207910	
1	-6.255757	-0.582142	0.647685	

1	
T	

-5.311169 -1.540978 -0.553812

I-D2+DMSO

-		0.4440.04	0 0 4 0 - 0 0
6	1.150321	0.446901	0.018780
6	2.494398	0.862835	0.038297
6	2.881673	2.190352	0.086048
6	1.862155	3.144740	0.114938
6	0.521402	2.759192	0.096098
6	0.146083	1.414219	0.047737
6	1.199773	-1.021468	-0.036442
6	2.611819	-1.391752	-0.046237
1	3.922058	2.489226	0.100208
1	2.120551	4.195889	0.152760
1	-0.249452	3.519756	0.120162
1	-0.902919	1.151215	0.036614
7	3.335794	-0.286484	-0.000991
6	3.164659	-2.768620	-0.096115
1	3.780463	-2.973732	0.784775
1	2.346955	-3.484485	-0.128070
7	0.382515	-2.041746	-0.080814
8	-0.916955	-1.929882	-0.075783
6	4.795873	-0.193470	0.008928
1	5.229352	-1.188824	-0.020962
1	5.129110	0.372364	-0.862387
1	5.120002	0.315055	0.918125
1	3.790640	-2.905924	-0.982914
1	-1.377606	-1.015386	-0.014465
16	-4.011481	-0.477150	-0.219422
8	-2.564039	-0.008349	0.090670
6	-4.904984	-0.304974	1.355500
1	-5.964838	-0.495613	1.179189

1	-4.500822	-1.057502	2.031374
1	-4.739742	0.696459	1.753145
6	-4.758837	0.913840	-1.120647
1	-4.254879	0.974288	-2.084345
1	-5.819025	0.702890	-1.269609
1	-4.612385	1.831410	-0.550624

I-D3

1	-3.875486	-2.370608	-0.647026
16	4.443272	-0.383359	-0.276172
8	2.984802	-0.013718	0.035765
6	4.812662	0.354082	-1.903795
1	5.871734	0.212386	-2.125378
1	4.207810	-0.178568	-2.636614
1	4.548920	1.412110	-1.888499
6	5.477404	0.724512	0.740525
1	5.314315	0.444452	1.780569
1	6.525361	0.570947	0.477730
1	5.174921	1.758455	0.571238
6	-2.777606	-0.105635	-0.131091
6	-1.976069	0.994604	0.219793
6	-2.414046	2.302470	0.134426
6	-3.716793	2.509253	-0.331772
6	-4.531244	1.437250	-0.693354
6	-4.072463	0.121165	-0.597175
6	-1.942847	-1.285962	0.123202
6	-0.653083	-0.797448	0.630110
1	-1.790318	3.140121	0.417462
1	-4.096156	3.520511	-0.411051
1	-5.535735	1.624287	-1.051594

1	-4.745445	-0.677760	-0.887515
7	-0.700389	0.519426	0.660957
6	0.491430	-1.623526	1.059467
1	0.615232	-1.543496	2.146154
1	0.309736	-2.665922	0.807566
7	-2.078143	-2.568775	0.011766
8	-3.228633	-3.068764	-0.441274
6	0.376916	1.410497	1.110547
1	0.359021	2.309846	0.497312
1	0.212709	1.679537	2.156406
1	1.341119	0.920525	0.978271
1	1.424730	-1.265356	0.603419

Frequencies	-864.1852		
1	0.713906	-2.811783	-0.569124
16	-3.639433	-0.032619	-0.010243
8	-2.470611	0.848759	0.612697
6	-3.400458	-1.665606	0.735081
1	-4.266193	-2.279199	0.479358
1	-2.501408	-2.085296	0.286194
1	-3.293676	-1.555382	1.813946
6	-5.082542	0.555256	0.910628
1	-5.266175	1.580000	0.590923
1	-5.932336	-0.076812	0.648185
1	-4.867852	0.515074	1.978020
6	2.002307	-0.666569	-0.193363
6	2.456137	0.621437	0.151820
6	3.683865	0.833060	0.754584
6	4.487473	-0.286559	0.997566

6	4.072502	-1.567759	0.639240
6	2.827550	-1.767608	0.039093
6	0.660311	-0.474630	-0.754052
6	0.416041	0.998810	-0.799025
1	4.023629	1.821993	1.033391
1	5.454121	-0.149337	1.466945
1	4.720314	-2.415602	0.821873
1	2.557234	-2.776386	-0.253739
7	1.493541	1.587280	-0.232999
6	-0.754707	1.602462	-1.241234
1	-0.793369	2.683226	-1.312229
1	-1.281728	1.064896	-2.024457
7	-0.321290	-1.247494	-1.060802
8	-0.162866	-2.595905	-0.927029
6	1.684163	3.022299	-0.065145
1	1.389869	3.342059	0.937765
1	2.732555	3.269567	-0.229859
1	1.087754	3.556161	-0.802381
1	-1.699512	1.209835	-0.180833

III'+DMSO-H

1	-0.388261	-2.655061	0.458755
16	3.500807	-0.091826	0.088258
8	2.553877	0.881146	-0.804140
6	3.387254	-1.663680	-0.794119
1	4.199112	-2.293958	-0.425689
1	2.426156	-2.105122	-0.536078
1	3.482576	-1.476231	-1.863201
6	5.121282	0.501111	-0.454287
1	5.242995	1.506566	-0.053605

1	5.874955	-0.163998	-0.029547
1	5.162287	0.507096	-1.542969
6	-1.910343	-0.671790	0.233514
6	-2.514878	0.539923	-0.171922
6	-3.817594	0.570834	-0.650434
6	-4.520364	-0.634891	-0.714036
6	-3.947892	-1.838344	-0.299350
6	-2.639690	-1.862441	0.181250
6	-0.546656	-0.321591	0.634592
6	-0.468100	1.173867	0.613081
1	-4.291996	1.493609	-0.957358
1	-5.539771	-0.628998	-1.081327
1	-4.524880	-2.753359	-0.336169
1	-2.243436	-2.804174	0.546505
7	-1.623906	1.610865	0.004786
6	0.549920	1.928125	1.098849
1	0.523195	3.008686	1.075548
1	1.273789	1.457480	1.751496
7	0.541841	-0.981041	0.817983
8	0.494895	-2.360209	0.733043
6	-1.969897	3.015146	-0.142691
1	-1.114853	3.564469	-0.539238
1	-2.787173	3.114846	-0.853907
1	-2.269901	3.457144	0.813083
1	1.808322	1.246333	-0.235719

DMSO-H

16	-0.000089	-0.080527	-0.495591
8	0.001510	-1.452601	0.401906
6	-1.411387	0.785439	0.231502

1	-1.417888	1.802267	-0.173707
1	-2.313839	0.255473	-0.081872
1	-1.315408	0.791411	1.319992
6	1.410272	0.787382	0.231247
1	2.313392	0.259280	-0.083331
1	1.414931	1.804857	-0.172286
1	1.314818	0.791222	1.319800
1	0.000026	-2.232197	-0.190892

C₆₀

6	2.204963	2.206471	-1.718229
6	2.446865	2.567273	-0.324888
6	3.100936	1.671532	0.525368
6	3.541486	0.375063	0.020067
6	3.310016	0.029752	-1.314051
6	2.627097	0.965230	-2.201972
6	0.898186	2.732628	-2.100011
6	0.332375	3.418264	-0.942619
6	1.289614	3.316134	0.154423
6	0.835057	3.137318	1.463891
6	2.625883	1.484702	1.892670
6	3.339375	-0.612772	1.075110
6	2.914354	-1.904163	0.751272
6	2.672956	-2.265057	-0.642092
6	2.866289	-1.318831	-1.652355
6	1.908672	-1.216885	-2.749033
6	1.760919	0.194803	-3.088441
6	0.509632	0.698512	-3.453649
6	0.068671	1.994899	-2.949127
6	-1.038431	3.336666	-0.683501

6	-1.904739	2.566980	-1.570486
6	-1.363186	1.910518	-2.679085
6	-1.806697	0.561691	-3.016593
6	-0.649285	-0.186999	-3.495585
6	-0.508005	-1.538733	-3.170786
6	0.798673	-2.064984	-2.789536
6	0.596476	-3.052548	-1.734213
6	1.512944	-3.149907	-0.683800
6	2.773181	0.073080	2.232173
6	-0.898186	-2.732628	2.100011
6	-0.068671	-1.994899	2.949127
6	-0.509632	-0.698512	3.453649
6	-1.760919	-0.194803	3.088442
6	-2.627097	-0.965230	2.201972
6	-2.446865	-2.567273	0.324888
6	-1.289614	-3.316134	-0.154423
6	-0.332375	-3.418264	0.942619
6	1.038431	-3.336666	0.683501
6	1.904739	-2.566980	1.570486
6	1.363186	-1.910518	2.679085
6	0.649285	0.186999	3.495585
6	0.508005	1.538733	3.170786
6	-0.798673	2.064984	2.789536
6	-1.908672	1.216885	2.749033
6	-2.866289	1.318831	1.652355
6	-3.310016	-0.029752	1.314051
6	-3.541486	-0.375063	-0.020067
6	-3.100936	-1.671532	-0.525368
6	-0.835057	-3.137318	-1.463891
6	-1.517707	-2.201939	-2.351921

6	-2.625883	-1.484702	-1.892670
6	-2.773181	-0.073080	-2.232173
6	-3.339375	0.612772	-1.075109
6	-2.914354	1.904163	-0.751272
6	-2.672956	2.265057	0.642092
6	-1.512944	3.149907	0.683800
6	-0.596476	3.052548	1.734213
6	1.806697	-0.561691	3.016593
6	1.517707	2.201939	2.351921
6	-2.204963	-2.206471	1.718229

Frequencies	-379.6039		
6	1.806933	0.879235	1.170864
6	1.866026	-0.582989	1.241709
6	1.833128	-1.314613	0.054696
6	1.839218	-0.667463	-1.240632
6	1.915411	0.778329	-1.351521
6	1.767339	1.522819	-0.058395
6	0.977378	1.344238	2.265783
6	0.515283	0.183136	3.005568
6	1.061301	-1.005339	2.368480
6	0.285466	-2.168943	2.291225
6	1.036801	-2.526895	-0.027408
6	0.963524	-1.438085	-2.101069
6	0.123287	-0.821404	-3.027037
6	0.073771	0.639652	-3.075947
6	0.875701	1.398026	-2.234916
6	0.325530	2.565091	-1.588384
6	0.873179	2.640527	-0.244968

6	0.081337	3.109785	0.808309
6	0.133460	2.444844	2.092047
6	-0.774711	0.163837	3.538241
6	-1.655542	1.305921	3.349904
6	-1.210490	2.424072	2.643334
6	-2.094611	3.082816	1.695655
6	-1.295370	3.508034	0.559502
6	-1.820757	3.436003	-0.730143
6	-0.993388	2.962866	-1.829475
6	-1.826143	2.176294	-2.713572
6	-1.301332	1.032232	-3.320094
6	0.492605	-2.601427	-1.367544
6	-3.866614	-1.355586	-2.153663
6	-3.019740	-2.451338	-1.970785
6	-2.971698	-3.123141	-0.681385
6	-3.767283	-2.671131	0.372178
6	-4.645797	-1.529307	0.181459
6	-4.741016	0.567359	-1.117320
6	-3.941250	0.994312	-2.251448
6	-3.397513	-0.194198	-2.890021
6	-2.103228	-0.174679	-3.411978
6	-1.221794	-1.316909	-3.225847
6	-1.677331	-2.437262	-2.521285
6	-1.596520	-3.520275	-0.434231
6	-1.070989	-3.450556	0.856602
6	-1.897968	-2.977856	1.953698
6	-3.219204	-2.596456	1.716737
6	-3.758882	-1.407883	2.355714
6	-4.639470	-0.748407	1.406810
6	-4.687826	0.645509	1.348932

6	-4.738995	1.316673	0.060890
6	-3.172018	2.155912	-2.166229
6	-3.168571	2.935292	-0.938982
6	-3.937187	2.524663	0.151769
6	-3.389187	2.599687	1.496167
6	-3.851895	1.437457	2.235251
6	-3.002008	0.804427	3.144332
6	-2.954260	-0.647724	3.206019
6	-1.579158	-1.043466	3.454293
6	-1.058604	-2.183686	2.838053
6	-0.797836	-3.091346	-1.571819
6	0.276132	-2.944107	1.065724
6	-4.692596	-0.885070	-1.055887
6	5.919031	-0.639234	-0.051513
6	6.138767	0.698413	0.365487
6	7.022766	1.004780	1.400838
6	7.704574	-0.049838	2.008159
6	7.526613	-1.375033	1.586316
6	6.640681	-1.676842	0.552934
6	4.962220	-0.562087	-1.154118
6	4.678899	0.839834	-1.369218
1	7.179232	2.025926	1.732981
1	8.393475	0.165311	2.820014
1	8.086082	-2.172983	2.064451
1	6.547724	-2.701945	0.207749
7	4.278474	-1.455150	-1.837865
6	3.643383	1.303166	-2.191206
1	3.483502	0.727653	-3.096699
1	3.512104	2.375039	-2.311099
7	5.381622	1.562435	-0.423774

6	5.358462	3.007053	-0.289219
1	5.210942	3.461070	-1.272389
1	6.317888	3.352646	0.102611
1	4.556345	3.338723	0.379919
8	4.422410	-2.760443	-1.407756
1	4.636197	-2.749214	-0.452525

IV

6	1.611117	1.005224	1.488471
6	1.720566	-0.469244	1.523642
6	1.877525	-1.180934	0.355176
6	2.243888	-0.564027	-1.013143
6	2.117231	1.048555	-1.050379
6	1.655630	1.664938	0.282506
6	0.655603	1.397616	2.501539
6	0.175560	0.197725	3.163694
6	0.833049	-0.947786	2.560292
6	0.127731	-2.144389	2.391425
6	1.121486	-2.389720	0.163504
6	1.222368	-1.294603	-1.905305
6	0.440833	-0.679788	-2.855584
6	0.328128	0.795676	-2.895764
6	0.997029	1.562803	-1.970325
6	0.324492	2.674396	-1.357322
6	0.731585	2.738152	0.033917
6	-0.178756	3.155709	1.011341
6	-0.220138	2.465531	2.277552
6	-1.154222	0.107756	3.575249
6	-2.066208	1.213192	3.328266
6	-1.607264	2.369086	2.692994

6	-2.425731	3.010724	1.676300
6	-1.540505	3.499896	0.633846
6	-1.932174	3.436393	-0.702623
6	-0.979809	3.026282	-1.722184
6	-1.677356	2.228255	-2.699836
6	-1.032298	1.121946	-3.264245
6	0.714897	-2.456360	-1.230004
6	-3.588411	-1.410759	-2.417250
6	-2.717931	-2.475671	-2.174798
6	-2.767530	-3.177416	-0.901857
6	-3.684275	-2.785223	0.075891
6	-4.589551	-1.679037	-0.179759
6	-4.651518	0.444881	-1.439466
6	-3.765976	0.936175	-2.476973
6	-3.102161	-0.209956	-3.077832
6	-1.762261	-0.118653	-3.455182
6	-0.854682	-1.222829	-3.202850
6	-1.328088	-2.382842	-2.581188
6	-1.405729	-3.512976	-0.524994
6	-1.015052	-3.451046	0.810994
6	-1.967599	-3.046583	1.829705
6	-3.276147	-2.718714	1.469647
6	-3.929111	-1.571270	2.074111
6	-4.742106	-0.928729	1.055329
6	-4.847079	0.462677	1.020040
6	-4.804680	1.163781	-0.252025
6	-3.067374	2.131154	-2.292795
6	-3.226309	2.880094	-1.056539
6	-4.077393	2.405581	-0.056497
6	-3.668432	2.471633	1.337508

6	-4.144274	1.271120	2.001912
6	-3.357870	0.655547	2.978132
6	-3.248573	-0.795691	3.015474
6	-1.888820	-1.133869	3.387295
6	-1.259160	-2.238030	2.808706
6	-0.520607	-3.016246	-1.567492
6	0.277865	-2.885308	1.163441
6	-4.541914	-1.006383	-1.402813
6	5.880011	-0.673913	-0.115493
6	6.494385	0.550791	0.295872
6	7.703778	0.567083	1.000634
6	8.313247	-0.651481	1.275025
6	7.736256	-1.866614	0.853423
6	6.532886	-1.889479	0.162098
6	4.673673	-0.278545	-0.782617
6	4.606899	1.087023	-0.781646
1	8.156704	1.500588	1.322116
1	9.254226	-0.665996	1.817887
1	8.245985	-2.801342	1.069849
1	6.111855	-2.828497	-0.181108
7	3.638726	-0.975818	-1.452034
6	3.473216	1.739984	-1.480179
1	3.582390	1.606584	-2.565069
1	3.385081	2.813023	-1.288358
7	5.710913	1.612012	-0.124950
6	5.962465	3.005142	0.179573
1	5.345075	3.636333	-0.462660
1	7.012035	3.247847	-0.015104
1	5.734901	3.241593	1.227102
8	3.793362	-2.378334	-1.360426

1

Frequencies	-525.6037			
6	-0.511218	-2.441415	1.029474	
6	-0.846169	-1.270325	1.864173	
6	-1.398683	-0.140017	1.302480	
6	-1.976645	-0.046093	-0.129842	
6	-1.586624	-1.329920	-1.053147	
6	-0.725438	-2.383904	-0.325043	
6	0.707820	-3.018138	1.554103	
6	1.124169	-2.235776	2.703510	
6	0.166171	-1.161378	2.891566	
6	0.605523	0.094079	3.323596	
6	-0.907575	1.154259	1.713749	
6	-1.324969	1.275403	-0.589168	
6	-0.687118	1.449809	-1.798265	
6	-0.344028	0.287575	-2.647071	
6	-0.635351	-0.983724	-2.215001	
6	0.330973	-2.031310	-2.385368	
6	0.277205	-2.893353	-1.220953	
6	1.447729	-3.484393	-0.734663	
6	1.670739	-3.547334	0.689377	
6	2.479056	-2.012312	2.945861	
6	3.478288	-2.555630	2.040463	
6	3.081164	-3.308605	0.933876	
6	3.732079	-3.107118	-0.350991	
6	2.719791	-3.218166	-1.386270	
6	2.770745	-2.389795	-2.506551	
6	1.551698	-1.790634	-3.024735	
6	1.858597	-0.457673	-3.481792	

6	0.926066	0.565482	-3.280806
6	-0.865194	2.022198	0.550433
6	3.153556	2.896774	-1.475496
6	2.202804	3.424322	-0.600146
6	2.432364	3.372868	0.834391
6	3.603226	2.799211	1.333766
6	4.593230	2.257448	0.419774
6	4.708075	1.161893	-1.790549
6	3.697983	1.045300	-2.823719
6	2.731071	2.113333	-2.626108
6	1.374822	1.875759	-2.846706
6	0.382691	2.416738	-1.935105
6	0.791308	3.180315	-0.836643
6	1.161941	3.096036	1.479460
6	1.112630	2.269000	2.599046
6	2.329351	1.677958	3.126532
6	3.550845	1.935146	2.501826
6	4.508217	0.860443	2.308109
6	5.154287	1.060388	1.022253
6	5.474674	-0.038454	0.223771
6	5.251147	0.013774	-1.211104
6	3.269580	-0.215112	-3.244109
6	3.835278	-1.411569	-2.641803
6	4.804878	-1.298239	-1.644343
6	4.752135	-2.162838	-0.476242
6	5.165507	-1.383762	0.677301
6	4.540431	-1.577325	1.910264
6	4.204922	-0.431513	2.742614
6	2.933465	-0.700584	3.383486
6	2.014352	0.331559	3.576810

6	0.151383	2.975080	0.439284
6	0.053671	1.280410	2.720749
6	4.372258	2.307582	-0.957749
6	-5.667975	-1.095019	0.449722
6	-6.064921	-2.381738	0.000319
6	-7.314983	-2.927633	0.301456
6	-8.185641	-2.153704	1.061171
6	-7.812645	-0.875680	1.516554
6	-6.561181	-0.342900	1.230070
6	-4.309198	-0.928461	-0.018420
6	-3.972943	-2.062953	-0.746413
1	-7.602436	-3.915166	-0.045062
1	-9.167605	-2.544974	1.309063
1	-8.515656	-0.297257	2.108520
1	-6.277509	0.631615	1.607734
7	-3.515893	0.207646	-0.091342
6	-2.820017	-2.064202	-1.675119
1	-3.110086	-1.549511	-2.601743
1	-2.501603	-3.068236	-1.966678
7	-5.029623	-2.935208	-0.749473
6	-5.133372	-4.194255	-1.471346
1	-5.423080	-4.993800	-0.782789
1	-4.168525	-4.451707	-1.907865
1	-5.879252	-4.124532	-2.270592
8	-3.864153	1.016630	1.380772
1	-3.106904	0.880906	1.992266
16	-4.866207	3.581799	-0.610363
8	-3.991469	3.334549	0.662846
6	-5.787589	5.090210	-0.196605
1	-6.324687	5.433384	-1.085300

1	-6.498934	4.829300	0.589741
1	-5.089917	5.850729	0.162666
6	-3.708398	4.268671	-1.829630
1	-3.020419	3.465582	-2.102542
1	-4.271823	4.596043	-2.708121
1	-3.159064	5.099752	-1.380110
1	-3.911703	2.096162	1.037168

V+DMSO+H₂O

6	2.082244	2.291608	-2.778698
6	1.013484	1.337217	-3.032518
6	-0.113412	1.308195	-2.202362
6	-0.212402	2.241414	-1.094460
6	0.806654	3.171154	-0.860886
6	1.981080	3.189636	-1.717635
6	3.344158	1.626665	-3.050462
6	3.050996	0.266775	-3.471790
6	1.609585	0.095831	-3.462261
6	1.049274	-1.113082	-3.037068
6	-0.716395	0.062427	-1.805548
6	-0.862898	1.576599	-0.003301
6	-0.462206	1.819084	1.288651
6	0.607187	2.756081	1.548177
6	1.227516	3.434229	0.492947
6	2.667824	3.612781	0.489279
6	3.135173	3.462857	-0.879362
6	4.347184	2.819469	-1.135435
6	4.453750	1.883378	-2.243089
6	3.880021	-0.780984	-3.066578
6	5.033860	-0.514082	-2.230955

6	5.315847	0.791899	-1.825883
6	5.742491	1.052311	-0.461674
6	5.142809	2.305125	-0.035191
6	4.693497	2.450783	1.278915
6	3.432897	3.114017	1.545357
6	2.787224	2.420064	2.648955
6	1.404641	2.241806	2.646477
6	-1.505364	0.263308	-0.487450
6	1.383001	-1.410760	3.069267
6	0.271553	-1.654701	2.254841
6	0.388015	-2.583527	1.147575
6	1.597005	-3.240835	0.899234
6	2.752208	-2.978927	1.741869
6	3.715680	-1.131849	3.059340
6	3.109331	0.118902	3.485290
6	1.669156	-0.061257	3.489355
6	0.830121	0.977997	3.073034
6	-0.325471	0.699878	2.248487
6	-0.618876	-0.590744	1.872807
6	-0.409668	-2.098063	0.060076
6	0.018185	-2.235789	-1.238392
6	1.276596	-2.889412	-1.510758
6	2.053233	-3.394106	-0.460703
6	3.494026	-3.225729	-0.475013
6	3.927664	-2.966953	0.888500
6	4.952642	-2.051591	1.130925
6	4.844741	-1.115806	2.238446
6	3.657792	1.334214	3.070600
6	4.832935	1.350928	2.222541
6	5.414301	0.149888	1.811913

5.875358	-0.002309	0.442553
5.587727	-1.362347	0.021728
5.173460	-1.614395	-1.287918
4.104718	-2.559785	-1.539582
3.299509	-2.043059	-2.636278
1.914779	-2.201243	-2.617917
-1.339777	-0.962390	0.554988
-0.130081	-1.119080	-2.198343
2.646940	-2.080967	2.802055
-4.825362	-2.467393	0.239999
-5.699690	-1.914095	-0.705762
-6.933047	-2.466645	-1.003328
-7.282232	-3.632657	-0.305283
-6.420179	-4.203748	0.636361
-5.173983	-3.628828	0.916981
-3.625573	-1.623945	0.225662
-3.904253	-0.546016	-0.733758
-7.606675	-2.030627	-1.732886
-8.240953	-4.100123	-0.506774
-6.721683	-5.107235	1.156832
-4.498547	-4.069205	1.643176
-5.086932	-0.737178	-1.266242
-3.006296	0.616334	-0.798610
-2.540737	-1.749293	0.890213
-5.805453	0.164174	-2.167828
-6.597776	0.669611	-1.603195
-5.110041	0.896732	-2.576162
-6.231514	-0.422292	-2.985051
-5.186344	0.859586	1.342138
-5.252071	0.771723	2.303790
	5.8753585.5877275.1734604.1047183.2995091.914779-1.339777-0.1300812.646940-4.825362-5.699690-6.933047-7.282232-6.420179-5.173983-3.625573-3.904253-7.606675-8.240953-6.721683-4.498547-5.086932-3.006296-2.540737-5.805453-6.597776-5.110041-6.231514-5.186344-5.252071	5.875358-0.0023095.587727-1.3623475.173460-1.6143954.104718-2.5597853.299509-2.0430591.914779-2.201243-1.339777-0.962390-0.130081-1.1190802.646940-2.080967-4.825362-2.467393-5.699690-1.914095-6.933047-2.466645-7.282232-3.632657-6.420179-4.203748-5.173983-3.628828-3.625573-1.623945-3.904253-0.546016-7.606675-2.030627-8.240953-4.100123-6.721683-5.107235-4.498547-4.069205-5.086932-0.737178-3.0062960.616334-2.540737-1.749293-5.8054530.164174-6.5977760.669611-5.1100410.896732-5.1863440.859586-5.2520710.771723

1	-3.062213	1.161986	-1.744184
1	-3.400925	1.280547	-0.012883
16	-8.620149	2.452495	0.796456
8	-7.620389	1.468650	0.167724
6	-8.814515	3.825926	-0.388366
1	-9.596309	4.502428	-0.031067
1	-7.860512	4.356510	-0.427500
1	-9.064988	3.428958	-1.376130
6	-10.270025	1.705837	0.577852
1	-10.300913	0.805656	1.195672
1	-11.033893	2.411731	0.916406
1	-10.418573	1.444453	-0.473493
1	-6.089963	1.108456	1.039903

Frequencies	-878.4877		
6	-1.949924	1.141512	3.331831
6	-0.818421	0.227899	3.375917
6	0.353407	0.528069	2.670905
6	0.438814	1.761011	1.908488
6	-0.646513	2.645458	1.878919
6	-1.866276	2.326267	2.602789
6	-3.162666	0.343531	3.288230
6	-2.775670	-1.057461	3.305423
6	-1.326466	-1.120943	3.363125
6	-0.638062	-2.100744	2.639595
6	1.080089	-0.492317	1.966821
6	1.215896	1.506243	0.729355
6	0.860553	2.101740	-0.461001
6	-0.272141	3.000742	-0.518246

6	-1.010407	3.281942	0.637148
6	-2.458492	3.356574	0.574976
6	-2.988832	2.764524	1.792221
6	-4.151609	1.994375	1.741757
6	-4.240888	0.760292	2.505530
6	-3.483381	-1.983539	2.537009
6	-4.604587	-1.550865	1.727079
6	-4.977669	-0.205824	1.710692
6	-5.344697	0.429550	0.456816
6	-4.833393	1.789423	0.476301
6	-4.324156	2.359570	-0.692188
6	-3.112907	3.153587	-0.641700
6	-2.345032	2.873068	-1.845628
6	-0.954523	2.794287	-1.782744
6	1.941247	0.148107	0.846529
6	-0.587045	-0.546281	-3.273530
6	0.490963	-0.955137	-2.480446
6	0.397948	-2.184673	-1.715987
6	-0.762918	-2.962270	-1.778398
6	-1.885575	-2.529946	-2.595361
6	-2.930518	-0.437875	-3.376748
6	-2.413205	0.920564	-3.355817
6	-0.965252	0.845834	-3.294921
6	-0.247855	1.762074	-2.518847
6	0.877084	1.320359	-1.722472
6	1.252546	-0.003581	-1.719537
6	1.093167	-2.003374	-0.474865
6	0.594916	-2.553959	0.679701
6	-0.617364	-3.340273	0.640172
6	-1.283616	-3.555169	-0.571268

6	-2.732251	-3.491453	-0.625515
6	-3.106153	-2.856871	-1.879133
6	-4.192194	-1.981219	-1.920582
6	-4.102493	-0.747050	-2.684284
6	-3.090289	1.912845	-2.643572
6	-4.310206	1.592747	-1.929733
6	-4.806015	0.287751	-1.947268
6	-5.331334	-0.305294	-0.729326
6	-4.950809	-1.707311	-0.713212
6	-4.591617	-2.318055	0.489950
6	-3.461158	-3.223582	0.534777
6	-2.769912	-3.012965	1.797256
6	-1.377995	-3.065315	1.845353
6	1.950173	-0.712816	-0.532724
6	0.584289	-1.774615	1.939388
6	-1.799804	-1.347872	-3.328211
6	5.636682	-1.675085	-0.556745
6	6.423573	-1.342854	0.560496
6	7.755023	-1.715303	0.653773
6	8.289086	-2.451513	-0.415782
6	7.515736	-2.797784	-1.528023
6	6.172839	-2.413023	-1.606570
6	4.297071	-1.137230	-0.299412
6	4.385483	-0.438920	1.011951
1	8.372441	-1.457427	1.507638
1	9.329591	-2.758678	-0.371470
1	7.961042	-3.370960	-2.334771
1	5.556888	-2.678284	-2.460160
7	5.630685	-0.613071	1.498555
6	3.361192	0.402340	1.411665

7	3.255349	-1.198217	-1.032382
6	6.143919	-0.017467	2.722949
1	6.555572	0.980033	2.529527
1	5.334375	0.062707	3.451709
1	6.920869	-0.659808	3.141077
1	3.364254	0.799773	2.427637
1	4.044464	1.652736	0.832624
16	4.945941	3.463153	-0.518544
8	4.813085	2.510452	0.746319
6	4.552414	2.447375	-1.974092
1	4.662184	3.087391	-2.854765
1	5.291599	1.644012	-2.014204
1	3.538800	2.042474	-1.918516
6	3.514430	4.576581	-0.470792
1	3.620230	5.185760	0.429780
1	3.565764	5.217691	-1.356271
1	2.582455	4.007031	-0.448148

2+DMSO-H

6	-2.033163	0.888182	3.410703
6	-0.928069	-0.057993	3.412923
6	0.271123	0.263509	2.766035
6	0.413161	1.550261	2.108232
6	-0.647623	2.465009	2.119876
6	-1.896140	2.124869	2.782730
6	-3.264510	0.131400	3.270202
6	-2.915202	-1.277097	3.185863
6	-1.470305	-1.386540	3.278223
6	-0.786904	-2.325178	2.496874
6	0.989030	-0.718391	2.002908

6	1.219777	1.369244	0.935237
6	0.916353	2.069461	-0.213092
6	-0.192108	3.000958	-0.229199
6	-0.957495	3.209241	0.924454
6	-2.400638	3.330031	0.828858
6	-2.982260	2.658629	1.979694
6	-4.162887	1.928236	1.835324
6	-4.307415	0.640176	2.494421
6	-3.623913	-2.118063	2.326233
6	-4.709811	-1.590674	1.523837
6	-5.046708	-0.238127	1.605274
6	-5.359213	0.505106	0.396783
6	-4.812149	1.843736	0.539270
6	-4.253724	2.490325	-0.565080
6	-3.024276	3.242571	-0.417552
6	-2.228725	3.036666	-1.618472
6	-0.843022	2.914300	-1.524343
6	1.901395	-0.019316	0.960957
6	-0.520997	-0.306540	-3.266927
6	0.520601	-0.808869	-2.479297
6	0.376471	-2.093616	-1.820129
6	-0.802817	-2.829220	-1.977513
6	-1.889276	-2.299510	-2.786760
6	-2.855767	-0.123059	-3.426639
6	-2.303905	1.214370	-3.282866
6	-0.860829	1.093676	-3.188128
6	-0.142681	1.924560	-2.321716
6	0.947292	1.389210	-1.533402
6	1.280167	0.056688	-1.621654
6	1.043827	-2.031717	-0.551068
6	0.492509	-2.655794	0.540505
---	-----------	-----------	-----------
6	-0.739208	-3.400535	0.405094
6	-1.375082	-3.501218	-0.836963
6	-2.819087	-3.390339	-0.925096
6	-3.138811	-2.647111	-2.133008
6	-4.199891	-1.740288	-2.133941
6	-4.055173	-0.452440	-2.793254
6	-2.975433	2.166152	-2.512109
6	-4.223939	1.825261	-1.859771
6	-4.752772	0.540421	-1.995421
6	-5.329688	-0.132632	-0.844004
6	-4.986581	-1.541727	-0.929989
б	-4.679341	-2.256335	0.229440
6	-3.575142	-3.195016	0.232394
6	-2.916206	-3.105198	1.525741
6	-1.528160	-3.200622	1.606816
б	1.935344	-0.765800	-0.484750
6	0.463442	-1.980337	1.858577
6	-1.751332	-1.065986	-3.420487
6	5.652712	-1.582426	-0.577530
б	6.439719	-1.293429	0.556534
б	7.796163	-1.593629	0.587229
6	8.347219	-2.205383	-0.547512
б	7.573463	-2.505788	-1.674727
б	6.210832	-2.196650	-1.695686
6	4.289138	-1.144894	-0.268694
6	4.358021	-0.543549	1.091622
1	8.417391	-1.370732	1.448262
1	9.404786	-2.452642	-0.545643
1	8.034396	-2.984592	-2.532587

1	5.590396	-2.428990	-2.555944
7	5.637433	-0.702982	1.560616
6	3.291765	0.129698	1.594745
7	3.249240	-1.203245	-1.006532
6	6.120350	-0.213951	2.837988
1	6.457135	0.829193	2.773462
1	5.319516	-0.285797	3.578917
1	6.950469	-0.836965	3.177295
1	3.308180	0.569695	2.589775
1	4.234041	1.727688	0.880573
16	5.069826	3.309925	-0.513985
8	4.977773	2.425375	0.833654
6	4.659665	2.188380	-1.879739
1	4.782778	2.763210	-2.803193
1	5.387413	1.373442	-1.856183
1	3.637528	1.808205	-1.798061
6	3.628801	4.407343	-0.466324
1	3.773156	5.077586	0.384272
1	3.631299	4.985937	-1.395724
1	2.705644	3.830457	-0.361786

DMF

7	-0.344651	-0.018876	-0.000021
6	-1.589887	-0.764147	0.000034
1	-2.187289	-0.528954	-0.887775
1	-1.377158	-1.834385	-0.000789
1	-2.186711	-0.530156	0.888556
6	-0.423069	1.433450	-0.000008
1	0.589432	1.832665	-0.000301
1	-0.954172	1.790016	-0.889031

1	-0.953628	1.790175	0.889283
6	0.864945	-0.645931	-0.000012
8	1.951237	-0.097630	0.000028
1	0.760253	-1.746428	-0.000108

I-D'

6	1.723758	-0.739785	-0.086951
6	2.514022	0.348078	-0.475906
6	3.706810	0.212599	-1.164866
6	4.111879	-1.092680	-1.461455
6	3.342381	-2.193255	-1.079565
6	2.137129	-2.030767	-0.388350
6	0.565973	-0.196497	0.652213
6	0.736254	1.269437	0.579566
1	4.306223	1.061712	-1.467637
1	5.038451	-1.248489	-2.000069
1	3.683128	-3.190909	-1.328055
1	1.544367	-2.891588	-0.106702
1	-0.457802	-0.506966	0.394565
7	1.863851	1.550629	-0.044973
6	-0.219593	2.216321	1.186471
1	-0.256134	2.025312	2.267145
1	0.016034	3.264112	1.017228
1	-1.219649	1.984577	0.806108
7	0.518573	-0.591789	2.290134
8	1.000128	-1.623514	2.521226
6	2.440183	2.871509	-0.308156
1	2.546678	3.006911	-1.385195
1	1.797183	3.648565	0.092345
1	3.420915	2.934258	0.165349

7	-4.608603	-0.254218	-0.551942
6	-5.847815	-1.016999	-0.439744
1	-6.169019	-1.367881	-1.424090
1	-5.693514	-1.880575	0.207253
1	-6.640376	-0.396347	-0.012938
6	-4.633797	0.939666	-1.390494
1	-3.637357	1.373901	-1.415506
1	-4.941407	0.676111	-2.405882
1	-5.341415	1.670382	-0.988595
6	-3.494248	-0.628971	0.095804
8	-2.410152	-0.038407	0.071347
1	-3.630487	-1.552027	0.680161

TS1'

Frequencies	-798.7339		
6	-1.301981	0.691986	0.417938
6	-2.279820	0.173316	-0.441845
6	-3.222479	0.964263	-1.083549
6	-3.174634	2.333081	-0.820720
6	-2.216801	2.869637	0.046484
6	-1.264952	2.060981	0.669146
6	-0.475016	-0.460941	0.846175
6	-1.131848	-1.636350	0.283341
1	-3.968914	0.551894	-1.750627
1	-3.895271	2.988671	-1.293913
1	-2.214527	3.935871	0.237990
1	-0.529044	2.484796	1.338218
1	0.643559	-0.386453	0.171600
7	-2.129694	-1.241940	-0.494123
6	-0.729011	-3.047836	0.511878

1	-0.096380	-3.102092	1.397346	
1	-1.594049	-3.698301	0.654290	
1	-0.155071	-3.428917	-0.340337	
7	0.096018	-0.650413	2.176166	
8	0.291897	0.368610	2.791379	
6	-2.996970	-2.092100	-1.311947	
1	-2.945917	-1.763887	-2.350894	
1	-2.669889	-3.125871	-1.248406	
1	-4.025395	-2.012396	-0.956306	
7	3.970774	0.245878	-0.584172	
6	5.181738	0.591815	0.166116	
1	5.564915	1.555605	-0.175112	
1	4.956001	0.654246	1.230016	
1	5.946115	-0.171693	0.007449	
6	4.097640	0.128961	-2.040214	
1	3.128389	-0.110835	-2.468465	
1	4.457525	1.075068	-2.449707	
1	4.814045	-0.659201	-2.281796	
6	2.819881	0.045339	0.029764	
8	1.751249	-0.263311	-0.561213	
1	2.844566	0.163501	1.116845	

I-D2+DMF

6	1.975315	-0.705203	-0.044250
6	3.281082	-0.192586	0.017745
6	4.407881	-0.995912	0.001506
6	4.193930	-2.375463	-0.081382
6	2.903431	-2.906669	-0.144828
6	1.776669	-2.081043	-0.127166
6	1.097471	0.458176	-0.003589

6	1.942026	1.634057	0.081831
1	5.411348	-0.592377	0.049007
1	5.047906	-3.041504	-0.097132
1	2.774727	-3.980180	-0.209291
1	0.779015	-2.493318	-0.177643
1	-1.878638	-0.246762	-0.150108
7	3.205312	1.231591	0.093254
6	1.490858	3.047137	0.144670
1	0.403797	3.080455	0.112601
1	1.830701	3.526763	1.067520
1	1.885389	3.622752	-0.697951
7	-0.197771	0.620495	-0.033933
8	-0.876202	-0.501350	-0.114466
6	4.394091	2.080479	0.167216
1	5.007612	1.923753	-0.721386
1	4.099509	3.124657	0.221874
1	4.970661	1.820702	1.056394
7	-5.547665	-0.151689	0.071335
6	-6.622579	-0.884904	0.735435
1	-7.280677	-1.343345	-0.006880
1	-6.203892	-1.668717	1.366467
1	-7.211885	-0.207191	1.358066
6	-5.932816	0.945021	-0.816574
1	-5.036431	1.386840	-1.243836
1	-6.572597	0.564809	-1.616712
1	-6.483354	1.702120	-0.252595
6	-4.268070	-0.469081	0.262488
8	-3.309122	0.114660	-0.270554
1	-4.115467	-1.312752	0.948566

11. References

- M. J. Frisch, et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.
- (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang and R. G.
 Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785.
- 3. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.
- 4. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- 5. (a) B. G. Gowenlock and G. B. Richter-Addo, *Chem. Rev.*, 2004, 104, 3315; (b) S. Gowrisankar and J. Seayad, *Chem.-Eur. J.*, 2014, 20, 12754; (c) L. Garc á-R ó, J. R. Leis, J. A. Moreira, F. Norberto, *J. Chem. Soc. Perkin Trans.* 2, 1998, 1613; (d) C. Bravo, P. Herv és, J. R. Leis and M. E. Peña, *J. Chem. Soc. Perkin Trans.* 2, 1991, 2091; (e) J. Casado, A. Castro, F. Meijide, M. Mosquera and J. Vázquez Tato, *J. Chem. Soc. Perkin Trans.* 2, 1987, 1759; (f) A. Castro, E. Iglesias, J. R. Leis, M. E. Peña, and J. V. Tato, *J. Chem. Soc. Perkin Trans.* 2, 1986, 1725; (g) D. L. H. Williams, *Nitrosation*, Cambridge University Press, UK, 1988.
- (a) D. Wu, J. Zhang, J. Cui, W. Zhang and Y. Liu, *Chem. Commun.*, 2014, **50**, 10857;
 (b) T.-X. Liu, J. Ma, D. Chao, P. Zhang, Q. Liu, L. Shi, Z. Zhang and G. Zhang, *Chem. Commun.*, 2015, **51**, 12775;
 (c) B. Yuan, F. Zhang, Z. Li, S. Yang and R. Yan, *Org. Lett.*, 2016, **18**, 5928.
- 7. (a) J. B. Briggs and G. P. Miller, C. R. Chimie, 2006, 9, 916; (b) P. Hudhomme, C. *R. Chimie*, 2006, 9, 881.
- F. Chen, X. Huang, X. Li, T. Shen, M. Zou and N. Jiao, Angew. Chem. Int. Ed., 2014, 53, 10495.