Supplementary Information

Continuous flow biodiesel production from wet microalgae using a hybrid thin film microfluidic platform

Eko Kornelius Sitepu, Darryl B. Jones, Youhong Tang, Sophie C. Leterm, Kirsten Heimann, Wei Zhang *, Colin L. Raston*

1. Fluid dynamics within the T²FD

The fluid dynamics within the T²FD is highly complex. In the T²FD device, the rotating blade sections of the rotor introduce Couette flow behaviour (a flow between a stationary and a moving plate) into the fluid. A Couette flow characteristically introduces shear stress within the fluid. In addition, the voids in the rotor create an air-fluid phase boundary which may introduce multi-phase flow characteristics. This phase boundary can further introduce gas into the fluid within the Couette flow regions. It is expected that the multi-phase flow can influence the films surface tension and evaporation of the film, with the Couette flow behaviour likely to dominate the fluid behaviour, which is discussed in further detail below.

In a Couette flow between two parallel plates (one stationary and one moving), the shear stress (τ) can be expressed through (eq. 1):

$$r = \gamma_{Av}\mu_{.} \tag{eq. 1}$$

where μ is the dynamic viscosity of the fluid and γ_{Av} the average shear rate. This average shear rate within the fluid relates to the moving plate's velocity, v, over the distance over which it acts, i.e the gap between the plates, d_s , (eq. 2)

$$\gamma_{Av} = \frac{v}{d_s}.$$
 (eq. 2)

1

In the T²FD platform, the velocity of the conical surface, with respect to the stationary surface, increases as a function of its radial distance, *r*, from the axis of rotation at fixed angular speed, ω , (eq. 3)

$$v = r\omega.$$
 (eq. 3)

Therefore, it is expected that shearing rates (and shear stresses) within the T²FD increase linearly with the radial distance (eq. 4),

$$\gamma_{Av} = \frac{r\omega}{d_s}$$
 (eq. 4)

where d_s is the gap between the rotating and stationary surfaces. The shearing rate based on this model for rotational speeds ranging from 1,000-9,000 rpm are shown in **SI Figure 1**, for gaps of (a) 100 µm and (b) 200 µm, as a function of the radial distance from the axis of rotation.

SI Figure 1: The calculated shear rate in the T²FD as a function of the radial distance from the axis of rotation for (a) d=100 μ m, and (b) d=200 μ m for rotational speeds between 1,000 and 9,000 rpm.

The behaviour of fluids under the influence of shear has been a subject of study over an extended period of time.^{1, 2} Within the T²FD, the high shear stresses experienced by the fluid leads to viscous fingering and phase deformation.³ At the high shear rates present within the device, it is expected that the shear stresses will typically exceed the critical shear stresses required for single phase formation (homogenization).¹ We have therefore investigated the fluid behaviour within the T²FD. The film was photographed at rotational speeds of 500, 1,000 and 4,000 rpm. At 500 rpm, the rotational motion of the rotor propels the liquid up the conical walls to produce a stable continuous film. At the higher rotational speeds (1,000 and 4,000 rpm), as the fluid is pumped into the device it is rapidly dispelled radially outward and up the conical walls. A supplementary video attachment recorded for emulsion experiments (discussed below) shows the fluid pulse moving rapidly out of the device. In this process, the large shear experienced by the fluid produces extensive viscous streaking and fingering, evidenced by the residual droplet film on the stationary conical surface. As the droplets are not in contact with the rotating surface they migrate around the conical surface owing to the physical forces they experience (gravity, surface tension, air flow/pressure). These droplets can recombine or get reabsorbed into a wave of fluid that is pumped into the device. When recombining, if they accumulate to a critical size they reinitiate contact with the rotating surface; leading to a viscous streaking of the droplet (as evident at 1,000 rpm, SI Figure 2B). This phenomenon makes the films characteristics particularly sensitive to the fluid volume available to the device (flow rate). We also note that the residual droplet formation is stabilized at higher flow volumes as it increases the available fluid volumes that are influenced by the viscous fingering and streaking, and reabsorption/recombination rates.

SI Figure 2: Photograph of the film created within the T²FD when water flows into the device at 1 mL/min for rotational speeds of (A) 500, (B) 1,000 and (C) 4,000 rpm.

2. Mixing within the T²FD

To investigate how the fluid dynamics influence mixing within the device, emulsification experiments were performed, using rice bran oil and water. The oil and water exists as a two phase system when prepared in a 1:1 volume ratio (**SI Figure 3A**). The oil and water were independently pumped at 1 mL/min through syringes into the T²FD. A stable emulsion formed (**SI Figure 3B**) and the fluid within the device was a homogeneous emulsion (**SI Figure 3C**). A supplementary video attachment of this emulsion process also demonstrates the rapid ejection of fluid that is pumped into the device. This video shows that there is a rapid wave of fluid moving outwards as fluid is pumped into the device.

SI Figure 3: (A) A photo of rice bran oil and water (1:1 ratio); (B) A photo of the emulsion formed in the T²FD at 4,000 rpm. (C) A photo of the micro-drop emulsion seen within the T²FD at 4,000 rpm.

To further assess mixing within the platform, we considered emulsification of soya bean oil and water. The water was stained with crystal violet to produce an optical contrast. Compared to the rice bran oil, it is more difficult to emulsify soya bean oil with water, making this mixture an ideal candidate to provide a more definitive test of the shear-induced mixing efficiency of the T²FD device.

SI Figure 4A shows photos of oil in water and water in oil to illustrate the phase separation between the two components. In these experiments, water (flow rate 1.0 mL/min) and soya bean oil (0.1 mL/min) were delivered into the T²FD at different rotational speeds. A photo of the emulsion generated at 2,000 rpm is shown in **SI Figure 4A**. Turbidity occurred in the water phase, but there is evidence of some phase separation. Soya bean oil-in-water emulsions are thermodynamically unstable, and are known to require an emulsifier to achieve a stable emulsion.⁴ This phase separation may then occur as the liquid flows out of the device and is collected, so may not reflect the mixing within the device. Micrographs of the emulsions produced at 2,000-6,000 rpm (**SI Figure 4B**) reveal

that there are oil droplets (yellow) contained within the water phase (purple). The size of these droplets characteristically decreased as the rotational speed of the T²FD increased from 2,000 to 6,000 rpm. As a control experiment, soya bean oil in water was sonicated for 5 min (Pulse Swept Power: 70W), after which we did not observe any oil drops forming in the water phase. We believe that these emulsification experiments demonstrate a thorough shear-induced mixing within the T²FD.

SI Figure 4: (A) Left to right: photos of oil in water, water in oil, T²FD 2,000rpm emulsion. (B-D) Micrographs of soya bean oil in water emulsions produced in the T²FD at different rotational speeds 2,000-6,000 rpm. Scale bar 10 μ m.

3. Microalgae Cultivation

Microalgae *Chloroparva pannonica* (FC40) biomass was obtained from SARDI and was grown using F₂SI media which consists of 75.0 g L⁻¹ CO(NH₂)₂, 5.0 g L⁻¹ NaH₂PO₄, 2.6 g L⁻¹ FeCl₃.6H₂O, 8.7 g L⁻¹ Na-EDTA, 40 mg L⁻¹ CuSO₄.5H₂O, 25.2 mg L⁻¹ Na₂MoO₄.2H₂O, 88 mg L⁻¹ ZnSO₄.7H₂O, 40 mg L⁻¹ CoCl2.6H₂O, 1.44 mg L⁻¹ MnCl₂.4H₂O. The pH was adjusted to 4.5 by adding 1 M NaOH prior to autoclaving. The vitamin content per 100 mL of MilliQ water was 10 mg vitamin B₁₂, and 10 mg biotin. A 11 L photo-bioreactor with two cool white fluorescent lamps operating for 12 hours illumination was used in this cultivation. The CO₂ was augmented only during illumination. The cells were collected after 7 days of cultivation and harvested using centrifugation (6000 \boxtimes g, 10 min), then freeze-dried, ground to 250 µm and stored in a cold room until used. Methanol, sodium hydroxide, sulfuric acid and hexane were purchased from Sigma Aldrich and were of analytical grade (AR).

4. FT-IR and ¹H-NMR studies

The production of biodiesel confirmed using FT-IR was а spectrophotometer (Perkin Elmer FT-IR 400) equipped with an attenuated total reflectance (ATR) probe. The biodiesel spectra were observed in the range of 4000 – 400 cm⁻¹. Following the published method, a 600 MHz Bruker spectrometer ¹H-NMR with typical condition of 64 scans and 1 second D1 delay was used to measure the conversion yield based on the integration value of the specific chemical shift of methoxy protons (OMe) and α -methylene protons (α -CH₂), using eq. 5 below 5-8.

$$C = \frac{2A_{Me}}{3A_{CH_2}} \times 100 \tag{eq. 5}$$

where C = percentage conversion of triglyceride (TG) to fatty acid methyl ester, A_{Me} = integration value of the methoxy protons of methyl ester and A_{CH_2} = integration value of α -methylene protons.

Table 1. The appearance of specific peaks of triglyceride and biodiesel in FT-IR spectra.⁹

Absorption	Eunctional Group	Appear	ance
(cm ⁻¹)	Functional Group	Triglyceride	Biodiesel
1445	CH ₃ asymmetric	-	\checkmark
1238 - 1248	O-H deformation	\checkmark	\checkmark
1200	O-CH ₃ stretching	-	\checkmark
1170	C-O-C symmetric stretching; C-C stretching	\checkmark	\checkmark
1100	O-CH ₂ -C asymmetric, -CH ₂ -OH	\checkmark	-

6. Lipid quantification

The Folch method ¹⁰ was used to quantify lipid content in the microalga *Chloroparva pannonica*. The dry biomass (0.05 g) was loaded into a conical polypropylene tube and stirred in a vortex mixer with a mixture of 1.4 mL 0.9% saline and 2 mL methanol. After standing for 5 min, 4 mL of chloroform was added to the mixture and shaken. The homogenate phase formed after 5 min standing was separated through centrifugation at 3000 \Im for 10 min. The chloroform layer containing the extracted lipid was removed and the solvent evaporated under a nitrogen stream. The mass of lipid obtained was determined gravimetrically.

The *Chloroparva pannonica* lipid content was determined to be 23.4%. Oleic acid ($C_{18:1}$) was the major constituent present in *Chloroparva pannonica*, with 30.2% of the total FAME content, followed by Linoleic acid ($C_{18:2}$) and α -Linolenic acid ($C_{18:3}$) and Palmitic acid ($C_{16:0}$) with 24.7, 21.9 and 16.7%, respectively (Table 2). The total saturated fatty acid content was 18.2%, of which palmitic acid ($C_{16:0}$) is the major compound. This profile was similar to other reported data.¹¹

7. Scanning Electron Microscopy

SEM images of the fresh harvested microalgae biomass and solid residues after DT processing with sulfuric acid or sodium hydroxide as the catalyst were investigated using a FEI F50 Inspect FE-SEM (SI Figure 5). The dried sample was mounted on carbon tape and sputter-coated with 2 nm platinum, then examined at an accelerating voltage of 5 kV at a working distance of 19.9 mm. The images were captured at 20,000x magnification for a dwell time of 100 ms.

SI Figure 5 SEM images of microalgae *Chloroparva pannonica* biomass (A) before (reproduced from Sitepu *et al*⁸) and (B) after T²FD processing.

Table 2: Quantified ¹H-NMR spectra for C18:3, C18:1 and C16:0 of T²FD-derived FAME samples of wet biomass of *Chloroparva pannonica* operated in continuous extraction mode. n.d. – not detected; b.d.l. – below detection limit.

						Polyunsatur Fatty Aci	ated d	Monounsatu Fatty Aci	rated d	Sa	aturated Fatty Ac	id	ΣPUFA	ΣΜυγΑ	ΣSFA	Σ _{C18:3,C18:1,C16:0}
						C _{18:3}	C _{18:2}	C _{18:1}	C _{24:1}	C _{14:0}	C _{16:0}	C _{18:0}				
GC	Dry bioma T²FD	iss non				21.9	24.7	30.2	0.7	0.4	16.7	0.7	48.6	33.1	18.2	
NMR	Wet biom	ass turbo thi	in film devic	e using base	catalyst											
	Ratio Biomass : MeOH (wt./v)	Flow Rate (mL/min)	Rotation Speed (rpm)	Catalyst Conc. (wt.%/v)	Water Content (wt%)											
	1:12	2	6,000	0	67.6	20.48 ± 0.9	b.d.l	7.77 ± 1.79	n.d.	n.d.	10.7 ± 0.18	n.d	n.d.	7.77 ± 1.79	n.d.	38.95
	1:12	2	6,000	0.5	67.6	22.03 ± 3.09	b.d.l	4.05 ± 4.61	n.d.	n.d.	10.66 ± 0.07	n.d	n.d.	4.05 ± 4.61	n.d.	36.74
	1:12	2	6,000	1	67.6	12.87 ± 2.89	b.d.l	17.55 ± 3.5	n.d.	n.d.	10.08 ± 0.23	n.d	n.d.	17.55 ± 3.5	n.d.	40.50
	1:12	2	6,000	3	67.6	25.06 ± 19.74	b.d.l	8.11 ± 20.14	n.d.	n.d.	11.57 ± 1.98	n.d	n.d.	8.11 ± 20.14	n.d.	44.74
	1:12	2	6,000	5	67.6	7.33 ± 0.92	b.d.l	25.5 ± 8.98	n.d.	n.d.	9.47 ± 0.86	n.d	n.d.	25.5 ± 8.98	n.d.	42.30
	1:12	2	6,000	7	67.6	11.71 ± 1.06	b.d.l	17.67 ± 0.88	n.d.	n.d.	10.03 ± 0.04	n.d	n.d.	17.67 ± 0.88	n.d.	39.41
	1:12	2	6,000	9	67.6	6.84 ± 1.21	b.d.l	25.79 ± 2.45	n.d.	n.d.	9.78 ± 0.12	n.d	n.d.	25.79 ± 2.45	n.d.	42.41
	1:12	2	6,000	12	67.6	n.d	b.d.l	n.d	n.d.	n.d.	n.d	n.d	n.d.	n.d	n.d.	NA
	1:12	1	6,000	1	67.6	12.96 ± 1.58	b.d.l	14.13 ± 2.99	n.d.	n.d.	10.02 ± 0.2	n.d	n.d.	14.13 ± 2.99	n.d.	37.11
	1:12	2	6,000	1	67.6	12.87 ± 2.89	b.d.l	17.55 ± 3.5	n.d.	n.d.	10.08 ± 0.23	n.d	n.d.	17.55 ± 3.5	n.d.	40.50
	1:12	3	6,000	1	67.6	15.28 ± 1.2	b.d.l	13.64 ± 1.7	n.d.	n.d.	10.3 ± 0.08	n.d	n.d.	13.64 ± 1.7	n.d.	39.22
	1:12	4	6,000	1	67.6	17.21 ± 1.73	b.d.l	11.37 ± 1.35	n.d.	n.d.	10.35 ± 0.06	n.d	n.d.	11.37 ± 1.35	n.d.	38.93
	1:12	5	6,000	1	67.6	14.21 ± 0.59	b.d.l	14.95 ± 0.78	n.d.	n.d.	10.26 ± 0.11	n.d	n.d.	14.95 ± 0.78	n.d.	39.42
	1:12	3	2,000	1	67.6	11.68 ± 0.72	b.d.l	20.91 ± 0.6	n.d.	n.d.	10.53 ± 0.04	n.d	n.d.	20.91 ± 0.6	n.d.	43.12
	1:12	3	2,500	1	67.6	11.41 ± 0.7	b.d.l	22.09 ± 0.7	n.d.	n.d.	10.57 ± 0.08	n.d	n.d.	22.09 ± 0.7	n.d.	44.07
	1:12	3	3,000	1	67.6	10.87 ± 0.54	b.d.l	22.96 ± 0.67	n.d.	n.d.	10.55 ± 0.05	n.d	n.d.	22.96 ± 0.67	n.d.	44.38
	1:12	3	3,500	1	67.6	10.28 ± 0.73	b.d.l	22.97 ± 0.53	n.d.	n.d.	10.48 ± 0.04	n.d	n.d.	22.97 ± 0.53	n.d.	43.73

					Polyunsatur Fatty Aci	ated d	Monounsatu Fatty Acie	rated d	Sa	aturated Fatty Ac	id	Σρυγα	ΣΜυγΑ	ΣSFA	Σ _{C18:3,C18:1,C16:0}
					C _{18:3}	C _{18:2}	C _{18:1}	C _{24:1}	C _{14:0}	C _{16:0}	C _{18:0}				
1:12	3	4,000	1	67.6	10.4 ± 0.5	b.d.l	23.1 ± 0.81	n.d.	n.d.	10.48 ± 0.06	n.d	n.d.	23.1 ± 0.81	n.d.	43.98
1:12	3	4,500	1	67.6	10.56 ± 0.55	b.d.l	23.03 ± 1.1	n.d.	n.d.	10.5 ± 0.05	n.d	n.d.	23.03 ± 1.1	n.d.	44.09
1:12	3	5,000	1	67.6	11.49 ± 0.4	b.d.l	21.51 ± 1.01	n.d.	n.d.	10.47 ± 0.05	n.d	n.d.	21.51 ± 1.01	n.d.	43.47
1:12	3	5,500	1	67.6	11.35 ± 1.18	b.d.l	21.81 ± 1.56	n.d.	n.d.	10.5 ± 0.06	n.d	n.d.	21.81 ± 1.56	n.d.	43.66
1:12	3	6,000	1	67.6	15.28 ± 1.2	b.d.l	13.64 ± 1.7	n.d.	n.d.	10.3 ± 0.08	n.d	n.d.	13.64 ± 1.7	n.d.	39.22
1:12	3	6,500	1	67.6	14.99 ± 1.67	b.d.l	15.43 ± 1.99	n.d.	n.d.	10.3 ± 0.14	n.d	n.d.	15.43 ± 1.99	n.d.	40.72
1:12	3	7,000	1	67.6	15.22 ± 0.6	b.d.l	14.11 ± 0.76	n.d.	n.d.	10.25 ± 0.02	n.d	n.d.	14.11 ± 0.76	n.d.	39.58
1:12	3	2,000	0.5	67.6	15.13 ± 0.46	b.d.l	15.79 ± 0.54	n.d.	n.d.	10.55 ± 0.02	n.d	n.d.	15.79 ± 0.54	n.d.	41.47
1:12	3	3,000	0.5	67.6	16 ± 1.37	b.d.l	13.66 ± 1.89	n.d.	n.d.	10.5 ± 0.07	n.d	n.d.	13.66 ± 1.89	n.d.	40.16
1:12	3	4,000	0.5	67.6	17.45 ± 0.72	b.d.l	11.22 ± 0.83	n.d.	n.d.	10.51 ± 0.06	n.d	n.d.	11.22 ± 0.83	n.d.	39.18
1:12	3	5,000	0.5	67.6	17.56 ± 1.66	b.d.l	10.69 ± 2.01	n.d.	n.d.	10.49 ± 0.08	n.d	n.d.	10.69 ± 2.01	n.d.	38.74
1:12	3	2,000	0	67.6	23.63 ± 1.17	b.d.l	13.2 ± 0.89	n.d.	n.d.	10.98 ± 0.06	n.d	n.d.	13.2 ± 0.89	n.d.	47.81
1:12	3	3,000	0	67.6	24.03 ± 0.19	b.d.l	14.56 ± 1.55	n.d.	n.d.	11.14 ± 0.17	n.d	n.d.	14.56 ± 1.55	n.d.	49.73
1:12	3	4,000	0	67.6	23.83 ± 1.43	b.d.l	14.75 ± 1.01	n.d.	n.d.	11.27 ± 0.16	n.d	n.d.	14.75 ± 1.01	n.d.	49.85
1:12	3	5,000	0	67.6	23.28 ± 1.55	b.d.l	13.39 ± 1.17	n.d.	n.d.	11.32 ± 0.2	n.d	n.d.	13.39 ± 1.17	n.d.	47.99
1:6	3	4,000	1	67.6	14.19 ± 0.65	b.d.l	15.89 ± 1.19	n.d.	n.d.	10.22 ± 0.08	n.d	n.d.	15.89 ± 1.19	n.d.	40.30
1:9	3	4,000	1	67.6	14.11 ± 0.55	b.d.l	16.22 ± 0.66	n.d.	n.d.	10.24 ± 0.06	n.d	n.d.	16.22 ± 0.66	n.d.	40.57
1:15	3	4,000	1	67.6	13.66 ± 1.53	b.d.l	16.67 ± 1.25	n.d.	n.d.	10.39 ± 0.07	n.d	n.d.	16.67 ± 1.25	n.d.	40.72
1:12	3	4,000	1	67.6	10.4 ± 0.5	b.d.l	23.1 ± 0.81	n.d.	n.d.	10.48 ± 0.06	n.d	n.d.	23.1 ± 0.81	n.d.	43.98
1:18	3	4,000	1	67.6	12.32 ± 0.95	b.d.l	19.09 ± 2.58	n.d.	n.d.	10.35 ± 0.08	n.d	n.d.	19.09 ± 2.58	n.d.	41.76
1:12	3	4,000	1	67.6	10.4 ± 0.5	b.d.l	23.1 ± 0.81	n.d.	n.d.	10.48 ± 0.06	n.d	n.d.	23.1 ± 0.81	n.d.	43.98
1:12	3	4,000	1	75	15.32 ± 1.08	b.d.l	14.93 ± 1.14	n.d.	n.d.	10.6 ± 0.1	n.d	n.d.	14.93 ± 1.14	n.d.	40.85
1:12	3	4,000	1	80	15.76 ± 0.61	b.d.l	14.24 ± 0.68	n.d.	n.d.	10.51 ± 0.04	n.d	n.d.	14.24 ± 0.68	n.d.	40.51
1:12	3	4,000	1	85	16.66 ± 0.55	b.d.l	12.67 ± 0.62	n.d.	n.d.	10.53 ± 0.04	n.d	n.d.	12.67 ± 0.62	n.d.	39.86
1:12	3	4,000	1	90	16.05 ± 0.55	b.d.l	13.03 ± 0.76	n.d.	n.d.	10.31 ± 0.05	n.d	n.d.	13.03 ± 0.76	n.d.	39.39

Ratio Biomass : MeOH (wt./v)	Flow Rate (mL/min)	Rotation Speed (rpm)	% Catalyst Concentration (wt./v)	Water Content (wt%)	Fatty Acid to FAME Conversion Efficiency (%)
Effect of catalys	t concentrat	ion			
1:12	2	6,000	0	67.6	7.57 ± 1.34
1:12	2	6,000	0.5	67.6	84.04 ± 4.35
1:12	2	6,000	1	67.6	91.03 ± 1.28
1:12	2	6,000	3	67.6	93.44 ± 2.12
1:12	2	6,000	5	67.6	90.2 ± 5.07
1:12	2	6,000	7	67.6	94.46 ± 3.31
1:12	2	6,000	9	67.6	90.39 ± 2.86
1:12	2	6,000	12	67.6	52.9 ± 17.01
Effect of flow ra	ite				
1:12	1	6,000	1	67.6	73.99 ± 8.53
1:12	2	6,000	1	67.6	91.03 ± 1.28
1:12	3	6,000	1	67.6	94.01 ± 1.19
1:12	4	6,000	1	67.6	89.79 ± 1.96
1:12	5	6,000	1	67.6	89.75 ± 3.47
Effect of rotatio	n speed				
1:12	3	2,000	1	67.6	91.49 ± 3.04
1:12	3	2,500	1	67.6	95.27 ± 1.65
1:12	3	3,000	1	67.6	92.49 ± 2.27
1:12	3	3,500	1	67.6	94.01 ± 2.32
1:12	3	4,000	1	67.6	96.56 ± 0.66
1:12	3	4,500	1	67.6	95.8 ± 1.54
1:12	3	5,000	1	67.6	89.43 ± 2.89
1:12	3	5,500	1	67.6	87.44 ± 3.51

Table 3: FA to FAME conversion efficiencies of the DT of wet biomass of *Chloroparva pannonica* in T²FD operated in continuous extraction mode.

Ratio Biomass : MeOH (wt./v)	Flow Rate (mL/min)	Rotation Speed (rpm)	% Catalyst Concentration (wt./v)	Water Content (wt%)	Fatty Acid to FAME Conversion Efficiency (%)
1:12	3	6,000	1	67.6	94.01 ± 1.19
1:12	3	6,500	1	67.6	87.57 ± 0.55
1:12	3	7,000	1	67.6	89.49 ± 3.37
1:12	3	2,000	0.5	67.6	87.26 ± 3.42
1:12	3	3,000	0.5	67.6	88.21 ± 1.92
1:12	3	4,000	0.5	67.6	88.19 ± 2.63
1:12	3	5,000	0.5	67.6	87.28 ± 2.1
1:12	3	2,000	0	67.6	14.39 ± 3.85
1:12	3	3,000	0	67.6	9.22 ± 2.58
1:12	3	4,000	0	67.6	8.34 ± 2.97
1:12	3	5,000	0	67.6	5.54 ± 1.57
Effect of ratio b	iomass to me	ethanol			
1:6	3	4,000	1	67.6	90.75 ± 4.84
1:9	3	4,000	1	67.6	91.57 ± 2.64
1:12	3	4,000	1	67.6	96.56 ± 0.66
1:15	3	4,000	1	67.6	93.5 ± 3.37
1:18	3	4,000	1	67.6	90.48 ± 6.28
Effect of water	<u>content</u>				
1:12	3	4,000	1	67.6	96.56 ± 0.66
1:12	3	4,000	1	75	94.46 ± 0.98
1:12	3	4,000	1	80	90.28 ± 0.6
1:12	3	4,000	1	85	90.66 ± 1.79
1:12	3	4,000	1	90	91.58 ± 0.8

Table 4: Tukey test for C18:3, C18:1 and C16:0 of T²FD-derived FAME samples of wet biomass of *Chloroparva pannonica* operated in continuous extraction mode. Significance Values below α <0.05 are colour coded in red.

Cell N	Tukey HSD test; variable C18:3 (CC-T2FD microalgae biodiesel_FA extraction efficiency(5)) Approximate Probabilities for Post Hoc Tests Cell No. Error: Between MS = 2.5554, df = 8.0000 Cat. conc. {1} {2} {3} {4}						cy(5)) ts		Cell	T n A No. E	ukey H nicroalg pproxii rror: B	ISD test; gae biod mate Pro etween	; variable iesel_FA bbabilities MS = 32.	C18:1 (2 extraction for Post 050, df =) (CC- ⁻ n efficie Hoc Te 6.0000	T2FD ency(ests)	5))	Cell N	Tuk mic App Io. Err	ey HSE roalgae proximat or: Betw) test; v biodie te Prot veen M	variable esel_FA pabilities IS = .266	C16:0(extractio for Pos 648, df	CC-T2FI on efficie t Hoc Te = 8.0000) ency({ ests	5))
	Ca coi [wt/v	at. nc. v %]	{1}		{2}	{3}	{4}	}			Cat coi [wt/v %	nc. 6]	{1}	{2}		{3}			Cat [w	t conc. t/v %]	{1}	{	[2}	{3}		{4}
1	()		0.0	01908	0.000247	0.000	232	1		0			0.16686	8 ().0202	237	1		0		0.50	05179	0.07626	3 <mark>0.0</mark>	000454
2		1	0.0019	08		0.012181	0.001	169	2		1	0.1	66868		().273 [,]	135	2		1	0.505	179		0.50533	1 0.0	01310
3	ţ	5	0.0002	47 0.0	12181		0.231	906	3		5	0.0	20237	0.27313	5			3		5	0.0762	266 0.50	05331		0.0	06314
4	1	2	0.0002	32 0 0	01169	0 231906									-			4		12	0.0004	154 0.00	01310	0 00631	4	
	1	2	0.0002	.02 0.0	01100	0.201000														12	0.000-	10-1 0.00	51010	0.00001		
Cell No.	Tukey HSD test; variable C18:3 (Ratio-T2FD microalgae biodiesel_FA extraction efficiency) II No. Approximate Probabilities for Post Hoc Tests Error: Between MS = .84607, df = 10.000 Ratio {1} {2} {3} {4}								Cell N	Tuk bioo lo. App Erro	ey HSD diesel_F proximate pr: Betw	test; varia A extracti e Probabi een MS =	able C18:1 on efficienc lities for Po 2.1463, df	(Ratio-T2F cy) st Hoc Tes = 10.000	D microa	algae		Cell N	Tuke biodi o. Appr Error	y HSD te esel_FA (oximate F :: Betwee	st; varia extractic Probabili n MS =	ble C16:0 n efficien ties for Po .00533, d	(Ratio-T cy) ost Hoc T f = 10.00	2FD micro ests 0	algae	
	Ratio	{	1}	{2}	{3}	{4}	{5}			F	Ratio	{1}	{2}	{3}	{4}		{5}		Ra	tio	{1}	{2}	{3}	{4}		{5}
1	1:18		0	.432721	0.010072	2 0.972441	0.9519	982	1		1:18		0.321371	0.002360	0.9951	37 0.9	963133	1	1:	18		0.937025	0.6051	21 0.165	503 0	.084954
2	1:15	0.43	32721	450000	0.152932	2 0.198118	0.1709	920	2		1:15	0.321371	0.045004	0.045881	0.1925	09 0.	128956	2	1:	15 0.9	37025	0.047040	0.2470	48 0.451	222 0	.257874
3	1:12	0.01	10072 0 72441 0	109119	0.004251	0.004252		090 071	3		1.1∠ 1·0	0.002300	0.102500	0.001470	0.0014	0.0	001009	3	1.		165502	0.247048	0.0176	0.017	0 503	000711
5	1.9	0.97	2441 0 31982 0	170920	0.004202		0.9995	571			1.9	0.995137	0.192509	0.001478	0 0085	85	990000	4 5	1	.9 0. 6 0.0	184954	0.451222		55 62 0 990	0 711	.990711
	1.0	0.00	1002 0		0.000000	0.00007					1.0	0.000100	0.120000	0.001000	0.0000	.00				0 0.0	01001	0.201011	0.0000	0.000		
T A Cell No. F	ukey HSD te oproximate l fror: Betwee Rotational	est; varial Probabilit en MS =	ole C18:3 (ties for Pos 1.4418, df	RS-T2FD st Hoc Test = 22.000	microalgae I ts	biodiesel_FA	extraction e	efficiency	y)				Ce	T A ell No. F	ukey HSD opproximate frror: Betw Rotational	test; var e Probat een MS	riable C18:1 bilities for Po = 4.1087, df	(RS-T2FD n st Hoc Tests = 22.000	nicroalgae s	biodiesel_F	A extract	ion efficienc	y)			
	speed [rpm]	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}			speed [rpm]	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}
1	2000		1.000000	0.998695	0.930553	0.959715 0.9	83035 1.0	000000 0	0.999562).040428	0.074542	2 0.045997		1	2000		0.999602	0.969838	0.969394	0.954564	0.963108	0.999999	0.996305	0.008374 0.	085639	0.015914
2	2500 1.	000000	0 000050	0.999959	0.981797	0.991874 0.9	97783 1.0	000000 0	0.994113	0.022726	0.04289	5 0.025961		2	2500	0.99960	2	0.999973	0.999971	0.999898	0.999948	0.9999999	0.847754	0.001746 0.	019041	0.003250
4	3500 0.	990095	0.981797	0.999913	0.999913	1.000000 1.0	00000 0.9	999001 (971227 (0.564909).000004).001784	0.003382	2 0.007039		4	3500	0.96939	0.999973 4 0.999971	1.000000	1.000000	1.000000	1.000000	0.997612	0.543556	0.000628 0. 0.000625 0.	005831	0.001070
5	4000 0.	959715	0.991874	0.999989	1.000000	1.0	00000 0.9	985933 0).640249).002314	0.004429	0.002640		5	4000	0.95456	4 0.999898	1.000000	1.000000		1.000000	0.995262	0.495259	0.000550 0.	004883	0.000911
6	4500 0.	983035	0.997783	1.000000	1.000000	1.000000	0.9	995520 0	0.734590	0.003259	0.006293	3 0.003737		6	4500	0.96310	8 0.999948	1.000000	1.000000	1.000000		0.996698	0.521272	0.000589 0.	005375	0.000993
7	5000 1.	000000	1.000000	0.999861	0.971227	0.985933 0.9	95520	().996973	0.027060	0.050759	0.030880		7	5000	0.99999	9 0.999999	0.997672	0.997612	0.995262	0.996698		0.960619	0.003732 0.	040574	0.007087
8	5500 0.	999562	0.994113	0.890638	0.564909	0.002314 0.0	34590 0.9	996973 127060 (168261	J. 168261	0.27791	0.187658		8 0	5500 6000	0.99630	5 0.847754	0.000629	0.000625	0.495259	0.521272	0.003722	0.063082	J.U63082 0.	419275	0.111902
9 10	6500 0.	074542	0.042895	0.012892	0.003382	0.004429 0.0	06293 0.0)50759 ().277915	1.000000	1.000000	1.000000		10	6500	0.08563	9 0.019041	0.005867	0.005831	0.004883	0.005375	0.040574	0.419275	0. 0.988373	500575	0.999001
11	7000 0.	045997	0.025961	0.007639	0.002031	0.002640 0.0	03737 0.0	030880	187658	1.000000	1.00000)		11	7000	0.01591	4 0.003250	0.001070	0.001064	0.000911	0.000993	0.007087	0.111902	1.000000 0.	999001	

	Tukey HSI	D test; varia	ble C16:0	RS-T2FD	nicroalgae	biodiesel_F	A extractio	n efficienc	y)			
					5							
Cell No.	Error. Bet	ween wis =	.00497, 01	= 22.000								
	Rotational		(0)	(0)		(=)	(0)	((0)	(0)	(10)	
	speed	{1}	{2}	{3}	{4}	{5}	{6}	{/}	{8}	{9}	{10}	{11}
	[rpm]											
1	2000		0.999922	1.000000	0.998493	0.996654	0.999943	0.989943	0.822981	0.015949	0.015826	0.003138
2	2500	0.999922		1.000000	0.928516	0.901043	0.980254	0.843174	0.474479	0.004253	0.004220	0.000914
3	3000	1.000000	1.000000		0.987047	0.978140	0.998442	0.954221	0.676053	0.008856	0.008787	0.001775
4	3500	0.998493	0.928516	0.987047		1.000000	1.000000	1.000000	0.998010	0.092908	0.092270	0.020080
5	4000	0.996654	0.901043	0.978140	1.000000		1.000000	1.000000	0.999166	0.109633	0.108896	0.024182
6	4500	0.999943	0.980254	0.998442	1.000000	1.000000		0.999987	0.984831	0.054787	0.054390	0.011263
7	5000	0.989943	0.843174	0.954221	1.000000	1.000000	0.999987		0.999855	0.143252	0.142326	0.032850
8	5500	0.822981	0.474479	0.676053	0.998010	0.999166	0.984831	0.999855		0.403887	0.401948	0.120009
9	6000	0.015949	0.004253	0.008856	0.092908	0.109633	0.054787	0.143252	0.403887		1.000000	0.999512
10	6500	0.015826	0.004220	0.008787	0.092270	0.108896	0.054390	0.142326	0.401948	1.000000		0.999531
11	7000	0.003138	0.000914	0.001775	0.020080	0.024182	0.011263	0.032850	0.120009	0.999512	0.999531	

Cell No.	Tukey HSD test; variable C18:3 (RS-CC-FACTORIAL-T2FD microalgae biodiesel_FA extraction efficient Approximate Probabilities for Post Hoc Tests II No. Error: Between MS = 1.4033, df = 16.000 Cat Rotational										Cell No	Tukey HS Approxim Error: Be	SD test; var ate Probat tween MS	iable C18:1 ilities for Po = 1.7726, df	(RS-CC-FA st Hoc Test = 16.000	CTORIAL- s	T2FD micr	oalgae bio	diesel_FA e	extraction e	efficiency)
	Cat	Rotational									OCITIO.	Cat	Rotationa	l							
	Conc.	speed	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}		Conc.	speed	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}
	[%]	[rpm]										[%]	[rpm]								
1	0	2000		0.981322	0.303902	0.256527	0.000175	0.000175	0.000175	0.000177	1	0	2000		0.537413	0.012071	0.004756	0.313989	0.939678	0.974707	0.395692
2	0	3000	0.981322		0.798727	0.738157	0.000181	0.000177	0.000179	0.000190	2	0	3000	0.537413		0.374053	0.180915	0.999833	0.989109	0.968089	0.999995
3	0	4000	0.303902	0.798727		1.000000	0.000340	0.000248	0.000287	0.000506	3	0	4000	0.012071	0.374053		0.999595	0.612286	0.101771	0.074111	0.512654
4	0	5000	0.256527	0.738157	1.000000		0.000380	0.000266	0.000313	0.000588	4	0	5000	0.004756	0.180915	0.999595		0.344131	0.041812	0.029894	0.269676
5	0.5	2000	0.000175	0.000181	0.000340	0.000380		0.999868	0.999999	0.999942	5	0.5	2000	0.313989	0.999833	0.612286	0.344131		0.905782	0.834652	1.000000
6	0.5	3000	0.000175	0.000177	0.000248	0.000266	0.999868		0.999999	0.992456	6	0.5	3000	0.939678	0.989109	0.101771	0.041812	0.905782		1.000000	0.953018
7	0.5	4000	0.000175	0.000179	0.000287	0.000313	0.999999	0.999999		0.998812	7	0.5	4000	0.974707	0.968089	0.074111	0.029894	0.834652	1.000000		0.903173
8	0.5	5000	0.000177	0.000190	0.000506	0.000588	0.999942	0.992456	0.998812		8	0.5	5000	0.395692	0.999995	0.512654	0.269676	1.000000	0.953018	0.903173	

Tukey HSD test; variable C16:0 (RS-CC-FACTORIAL-T2FD microalgae biodiesel_FA extraction efficiency) Approximate Probabilities for Post Hoc Tests

Error: Between MS = .01417, df = 16.000

Cell No. Cat Rotational {1} {4} {8} Conc. speed {2} {3} {5} {6} {7} [%] [rpm] 1 0 2000 0.999612 0.999856 0.997199 0.007722 0.000518 0.000197 0.000181 2 0 3000 0.999612 1.000000 1.000000 0.003104 0.000312 0.000182 0.000177 . 0 3 4000 0.999856 1.000000 0.999996 0.003514 0.000330 0.000184 0.000177 0 5000 0.997199 1.000000 0.999996 0.002259 0.000270 0.000180 0.000176 4 • 5 0.5 2000 0.007722 0.003104 0.003514 0.002259 0.760196 0.135690 0.046911 0.5 0.000518 0.000312 0.000330 0.000270 0.760196 0.871365 0.553684 6 3000 7 0.5 4000 0.000197 0.000182 0.000184 0.000180 0.135690 0.871365 0.998579 0.5 8 5000 0.000181 0.000177 0.000177 0.000176 0.046911 0.553684 0.998579

Cell No	Tukey HS biodiesel_ Approxima . Error: Bet	D test; varia FA extractio ate Probabil ween MS =	able C18:3 on efficienc lities for Po .48137, df	(Water-T2F y) st Hoc Test = 10.000	D microalg	ae	Cell No.	Tukey HSI biodiesel_ Approxima Error: Bet	D test; varia FA extraction ate Probabi ween MS =	able C18:1 on efficienc lities for Po .67650, df	(Water-T2F cy) st Hoc Test = 10.000	D microalg	jae	Cell No.	Tukey HS biodiesel_ Approxima Error: Bet	D test; varia FA extractio ate Probabil ween MS =	able C16:0 (on efficienc ities for Pos .00411, df	(Water-T2F y) st Hoc Test = 10.000	D microalg s	jae
	Water							Water							Water					
	content	{1}	{2}	{3}	{4}	{5}		content	{1}	{2}	{3}	{4}	{5}		content	{1}	{2}	{3}	{4}	{5}
	[%]							[%]							[%]					
1	67		0.000198	0.000183	0.000177	0.000179	1	67		0.000176	0.000176	0.000176	0.000176	1	67		0.223202	0.982398	0.856240	0.060094
2	75	0.000198		0.931621	0.199139	0.699018	2	75	0.000176		0.837221	0.044394	0.101596	2	75	0.223202		0.440231	0.691747	0.002086
3	80	0.000183	0.931621		0.529696	0.983335	3	80	0.000176	0.837221		0.209160	0.422234	3	80	0.982398	0.440231		0.989635	0.026566
4	85	0.000177	0.199139	0.529696		0.813295	4	85	0.000176	0.044394	0.209160		0.981115	4	85	0.856240	0.691747	0.989635		0.013224
5	90	0.000179	0.699018	0.983335	0.813295		5	90	0.000176	0.101596	0.422234	0.981115		5	90	0.060094	0.002086	0.026566	0.013224	

Cell No.	Tukey HSD test; variable FA to FAME conversion efficiency [%] (CC-T2FD microalgae biodiesel) Approximate Probabilities for Post Hoc Tests Cell No.													
	Catalyst concentration [%wt./v]	{1}	{2}	{3}	{4}	{5}	{6}	{7}						
1	0		0.000174	0.000174	0.000174	0.000174	0.000174	0.000186						
2	1	0.000174		0.999421	0.999999	0.995792	1.000000	0.000310						
3	3	0.000174	0.999421		0.996933	0.999996	0.997762	0.000234						
4	5	0.000174	0.999999	0.996933		0.986822	1.000000	0.000349						
5	7	0.000174	0.995792	0.999996	0.986822		0.989464	0.000217						
6	9	0.000174	1.000000	0.997762	1.000000	0.989464		0.000340						
7	12	0.000186	0.000310	0.000234	0.000349	0.000217	0.000340							

Table 5: Tukey test of FA to FAME conversion efficiencies of the DT of wet biomass of *Chloroparva pannonica* in T²FD operated in continuous extraction mode.

Cell No.	Tukey HSI (Water-T2 Approxima Error: Bet	D test; varia FD microal ate Probabil ween MS =	ble FA to F gae biodies ities for Pos 1.1222, df	AME conve sel) st Hoc Test = 10.000	ersion effici s	ency [%]
	water content	{1}	{2}	{3}	{4}	{5}
	[wt. %]		.,	.,	.,	
1	67		0.183541	0.000334	0.000470	0.001444
2	75	0.183541		0.004912	0.009350	0.046816
3	80	0.000334	0.004912		0.990689	0.584197
4	85	0.000470	0.009350	0.990689		0.824089
5	90	0.001444	0.046816	0.584197	0.824089	

Cell No.	Tukey HS efficiency Approxima Error: Bet	D test; varia [%] (RS-0% ate Probabil ween MS =	ble FA to F %-T2FD mid ities for Pos 8.1991, df	AME conve croalgae bio st Hoc Test = 8.0000	ersion odiesel) s
	Rotational				
	speed	{1}	{2}	{3}	{4}
	[rpm]				
1	2000		0.200442	0.119039	0.022457
2	3000	0.200442		0.980282	0.442846
3	4000	0.119039	0.980282		0.646466
4	5000	0.022457	0.442846	0.646466	

Tukey HSD test; variable FA to FAME conversion efficiency [%] (FR-T2FD microalgae biodiesel) Approximate Probabilities for Post Hoc Tests

Cell No. Error: Between MS = 18.336, df = 10.000

	flow rate [mL/min]	{1}	{2}	{3}	{4}	{5}
1	1		0.004637	0.001518	0.007751	0.007875
2	2	0.004637		0.908477	0.995979	0.995485
3	3	0.001518	0.908477		0.748070	0.742217
4	4	0.007751	0.995979	0.748070		1.000000
5	5	0.007875	0.995485	0.742217	1.000000	

Tukey HSD test; variable FA to FAME conversion efficiency [%] (RS-1%-12FD microalgae biodiesel)												
Approximate Probabilities for Post Hoc Tests												
Cell No. Error: Between MS = 5.3713, df = 22.000												
	Rotational speed [rpm]	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}
1	2000		0.651104	0.999972	0.952472	0.268571	0.478624	0.987713	0.564284	0.952931	0.606170	0.990269
2	2500	0.651104		0.915210	0.999773	0.999724	1.000000	0.131785	0.014752	0.999767	0.017136	0.140473
3	3000	0.999972	0.915210		0.998912	0.556796	0.795314	0.857627	0.273826	0.998935	0.304429	0.872170
4	3500	0.952472	0.999773	0.998912		0.948251	0.995688	0.397307	0.061985	1.000000	0.071131	0.416331
5	4000	0.268571	0.999724	0.556796	0.948251		0.999998	0.032967	0.003216	0.947762	0.003740	0.035475
6	4500	0.478624	1.000000	0.795314	0.995688	0.999998		0.076331	0.007888	0.995614	0.009174	0.081744
7	5000	0.987713	0.131785	0.857627	0.397307	0.032967	0.076331		0.990600	0.398452	0.994309	1.000000
8	5500	0.564284	0.014752	0.273826	0.061985	0.003216	0.007888	0.990600		0.062250	1.000000	0.988110
9	6000	0.952931	0.999767	0.998935	1.000000	0.947762	0.995614	0.398452	0.062250		0.071431	0.417504
10	6500	0.606170	0.017136	0.304429	0.071131	0.003740	0.009174	0.994309	1.000000	0.071431		0.992610
11	7000	0.990269	0.140473	0.872170	0.416331	0.035475	0.081744	1.000000	0.988110	0.417504	0.992610	

- . ----FO / 7 4.0.4 ...

Tukey HSD test; variable FA to FAME conversion efficiency [%] (RS-0and0.5%-T2FD microalgae biodiesel) Approximate Probabilities for Post Hoc Tests

Error: Between MS = 7.4312, df = 16.000 Cell No.

	Rotational speed [rpm]	Catalyst concentration [%wt./v]	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}
1	2000	0.0		0.000175	0.340571	0.000175	0.186419	0.000175	0.018918	0.000175
2	2000	0.5	0.000175		0.000175	0.999818	0.000175	0.999848	0.000175	1.000000
3	3000	0.0	0.340571	0.000175		0.000175	0.999891	0.000175	0.714455	0.000175
4	3000	0.5	0.000175	0.999818	0.000175		0.000175	1.000000	0.000175	0.999843
5	4000	0.0	0.186419	0.000175	0.999891	0.000175		0.000175	0.902419	0.000175
6	4000	0.5	0.000175	0.999848	0.000175	1.000000	0.000175		0.000175	0.999870
7	5000	0.0	0.018918	0.000175	0.714455	0.000175	0.902419	0.000175		0.000175
8	5000	0.5	0.000175	1.000000	0.000175	0.999843	0.000175	0.999870	0.000175	

References

- 1. T. Hashimoto, K. Matsuzaka, E. Moses and A. Onuki, *Phys. Rev. Lett.*, 1995, **74**, 126-129.
- 2. K. Fujioka, T. Takebe and T. Hashimoto, *J. Chem. Phys.*, 1993, **98**, 717-728.
- 3. B. Jha, L. Cueto-Felgueroso and R. Juanes, *Phys. Rev. Lett.*, 2011, **106**, 194502.
- 4. X. Huang, Q. Li, H. Liu, S. Shang, M. Shen and J. Song, *Journal of Agricultural and Food Chemistry*, 2017, **65**, 3497-3504.
- 5. V. M. Mello, F. C. C. Oliveira, W. G. Fraga, C. J. do Nascimento and P. A. Z. Suarez, *Magnetic Resonance in Chemistry*, 2008, **46**, 1051-1054.
- 6. J. K. Satyarthi, D. Srinivas and P. Ratnasamy, *Energy & Fuels*, 2009, **23**, 2273-2277.
- 7. M. Tariq, S. Ali, F. Ahmad, M. Ahmad, M. Zafar, N. Khalid and M. A. Khan, *Fuel Processing Technology*, 2011, **92**, 336-341.
- 8. W. Y. Choi, D. H. Kang, S. Y. Lee and H. Y. Lee, *Journal of Chemical Technology & Biotechnology*, 2015, **90**, 1245-1252.
- 9. N. G. Siatis, A. C. Kimbaris, C. S. Pappas, P. A. Tarantilis and M. G. Polissiou, *Journal of the American Oil Chemists' Society*, 2006, **83**, 53-57.
- 10. J. Folch, M. Lees and G. H. Sloane Stanley, *The Journal of biological chemistry*, 1957, **226**, 497-509.
- 11. B. Somogyi, T. Felföldi, K. Solymosi, J. Makk, Z. G. Homonnay, G. Horváth, E. Turcsi, B. Böddi, K. Márialigeti and L. Vörös, *Phycologia*, 2011, **50**, 1-10.