Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting Information

This PDF file includes:

Experimental Section	S2
·	
General Considerations	S2
Single-Crystal X-ray Structure Determinations.	S2
Synthetic Procedures	S3
NMR and other spectra	S9
X-Ray Data	S21
References	S25

Experimental Section

General Considerations.

All experiments and manipulations were carried out under dry oxygen-free nitrogen using standard Schlenk techniques or in an MBraun inert atmosphere dry box containing an atmosphere of purified nitrogen. Solvents were dried by standard methods and freshly distilled prior to use. The starting materials (bis)NHC,^[1]Ph₃SiOTf,^[2] Ph₂Si(OTf)₂,^[2] [(dioxane)_nNaOCP]^[3,4] and IPr (IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene)^[5] were prepared according to literature procedures. All other reagents were purchased from Sigma Aldrich, Alfa-Aesar, abcr or TCI Chemicals and, if applicable, distilled prior to use. ¹H, ¹³C, ¹⁹F, ²⁹Si and ³¹P NMR spectra were recorded on Bruker Avance II 200, Avance II 400, Avance III 500 or Avance III 700 spectrometers with residual solvent signals as internal reference (¹H, ¹³C). Data for ¹H NMR spectroscopy are reported as follows: chemical shift (δ ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet, dm = doublet of multiplets, b = broad, sept = septet), coupling constant (Hz), assignment. Data for ¹³C, ¹⁹F, ²⁹Si and ³¹P NMR are reported in terms of chemical shift (δ ppm). Chemical shifts were referenced to δ TMS = 0.00 ppm (¹H, ¹³C), δ H₃PO₄(85%) = 0.00 ppm (³¹P), δ CFCl₃ = 0.00 ppm (¹⁹F), and δ TMS = 0.00 ppm (²⁹Si). Assignments of individual resonances were performed using 2D NMR techniques (HMBC, HSQC, HH-COSY) when necessary. High-resolution mass spectra (HRMS) were obtained on a LTQ Orbitrap XL (ESI). Melting point samples were sealed in a glass capillary under nitrogen.

Single-Crystal X-ray Structure Determinations.

Crystals were each mounted on a glass capillary in perfluorinated oil and measured in a cold N₂ flow. The data were collected on an Oxford Diffraction SuperNova, Single source at offset, Atlas at 150 K (Cu-K α radiation, λ = 1.54184 Å). The structures were solved by direct methods or using the SHELXT program^[6] and refined on F² with the SHELX-2014^[7] software package. The positions of the H atoms were calculated and considered isotropically according to a riding model. CCDC 1866468-1866471 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

Synthetic Procedures

Synthesis of Compound 7[OTf]₂

A solid mixture of $Ph_2Si(OTf)_2$ (3.60 g, 7.49 mmol, 1.00 equiv) and bis(NHC) (3.51 g, 7.49 mmol, 1.00 equiv) was cooled to -78 °C. At this temperature Et_2O (150 mL) was added and the resulting suspension was stirred for 30 min. It was then allowed to warm to ambient temperature and stirred for another 30 min. The liquid phase was separated by decantation, the residue was washed with *n*-hexane (2 x 20 mL) and dried under vacuum to afford 5.95 g of the product as an off-white powder (Yield: 84 %).

Single crystals qualified for X-Ray diffraction analysis were grown from a concentrated CH₃CN solution at ambient temperature.

<u>m.p.</u>: 230 °C (decomp.).

¹<u>H NMR</u> (500 MHz; CD₃CN) δ 8.37 (2H, d, ${}^{3}J_{HH}$ = 1.8 Hz, CHNCH₂), 7.92 (2H, d, ${}^{3}J_{HH}$ = 1.8 Hz, CHNDipp), 7.51 (2H, t, ${}^{3}J_{HH}$ = 7.5 Hz, *p*-Ph), 7.34 (2H, t, ${}^{3}J_{HH}$ = 7.8 Hz, *p*-Dipp), 7.28 (4H, t, ${}^{3}J_{HH}$ = 7.8 Hz, *m*-Ph), 7.21 (2H, s, CH₂), 7.17 (4H, d, *J* = 7.1 Hz, *o*-Ph), 7.08 (4H, d, *J* = 7.8 Hz, *m*-Dipp), 2.24 (4H, sept, ${}^{3}J_{HH}$ = 6.7 Hz, CH(CH₃)₂), 0.91 (12H, d, ${}^{3}J_{HH}$ = 6.7 Hz, CH(CH₃)₂), 0.77 (12H, d, ${}^{3}J_{HH}$ = 6.7 Hz, CH(CH₃)₂).

¹³<u>C NMR</u> (101 MHz; CD₃CN) δ 146.1 (s, *o*-Dipp), 144.1 (s, N**C**N), 137.7 (s, *o*-Ph), 134.5 (s, *p*-Ph), 133.4 (s, *p*-Dipp), 132.3 (s, *i*-Dipp), 130.8 (s, **C**HNC₆H₃*i*Pr₂), 130.2 (s, *m*-Ph), 128.1 (s, **C**HNCH₂), 125.6 (s, *m*-Dipp), 122.1 (q, ¹*J*_{CF} = 320 Hz, **C**F₃), 118.9 (s, *i*-Ph), 64.2 (s, **C**H₂), 29.2 (s, **C**H(CH₃)₂), 26.8 (s, CH(**C**H₃)₂), 21.6 (s, CH(**C**H₃)₂).

 $\frac{19}{F}$ NMR (188 MHz; CD₃CN) δ -79.2 (s).

 $\frac{^{29}\text{Si} \text{ NMR}}{^{29}\text{Si} \text{ NMR}}$ (79 MHz; CD₃CN) δ –36.7 (s).

HRMS (ESI+): m/z 325.1895 (Calcd for [M-2OTf]²⁺: 325.1897).

Synthesis of Compound 8[OTf]

To a stirred mixture of $7[OTf]_2$ (4.50 g, 4.74 mmol, 1.00 equiv) and $([Na(OCP)\cdot(dioxane)_{4.0}]$ (2.06 g, 4.74 mmol, 1.00 equiv) was added DCM (150 mL) whereupon the reaction mixture turned red-brown and evolution of gas occured. After stirring for 1 h the mixture was filtered and the filtrate was concentrated *in vacuo* before adding *n*-Hexane (60 mL). The precipitate was separated by decantation and dried under vacuum to afford 3.35 g of the product as a yellowish solid (Yield: 85 %). Single crystals qualified for X-Ray diffraction analysis were grown from a concentrated

 CH_3CN solution at -25 °C.

<u>m.p.:</u> 138 °C.

<u>¹H NMR</u> (500 MHz; CD₂Cl₂) δ 8.73 (1H, d, ³J_{HH} = 1.8 Hz, CHN), 7.95 (1H, s, CHN), 7.55 – 7.63 (2H, m, Ar-*H*), 7.48 (3H, m, Ar-*H*), 7.40 – 7.33 (3H, m, Ar-*H*), 7.31 (1H, d, ³J_{HH} = 1.9 Hz, CHN), 7.26 (1H, d, ³J_{HH} = 7.8 Hz, Ar-*H*), 7.12 (3H, m, Ar-*H*), 7.05 (2H, m, Ar-*H*), 6.86 – 6.89 (2H, m, Ar-*H* + CH₂), 6.84 (1H, d, ³J_{HH} = 2.1 Hz, CHN), 6.73 (1H, d, ³J_{HH} = 7.4 Hz, Ar-*H*), 6.31 (1H, d, ²J_{HH} = 14.7 Hz, CH₂), 2.34 – 2.54 (4H, m, CH(CH₃)₂), 1.38 (3H, d br, ³J_{HH} = 6.7 Hz, CH₃), 1.33 (3H, d br, ³J_{HH} = 6.7 Hz, CH₃), 1.29 (3H, d br, ³J_{HH} = 6.7 Hz, CH₃), 1.12 – 1.15 (6H, m, CH₃), 1.06 – 1.09 (6H, m, CH₃), 0.88 – 0-90 (3H, d br, ³J_{HH} = 6.7 Hz, CH₃).

 $\frac{^{13}\text{C NMR}}{^{125.79 \text{ MHz}; \text{ CD}_2\text{Cl}_2} \delta 170.8 \text{ (d, } ^{1}J_{\text{CP}} = 103.1 \text{ Hz}, \text{N}_2\text{C}-\text{P}), 151.8 \text{ (s, N}_2\text{C}-\text{Si}), 147.7 \text{ (s, Ar)}, 147.0 \text{ (s, Ar)}, 146.6 \text{ (s, Ar)}, 145.1 \text{ (s, Ar)}, 138.8 \text{ (s, Ar)}, 136.7 \text{ (s, Ar)}, 134.6 \text{ (s, Ar)}, 132.7 \text{ (s, Ar)}, 132.0 \text{ (s, Ar)}, 131.6 \text{ (s, Ar)}, 131.2 \text{ (s, Ar)}, 131.0 \text{ (s, Ar)}, 129.6 \text{ (s, Ar)}, 129.5 \text{ (s, CHN)}, 128.2 \text{ (s, Ar)}, 128.0 \text{ (s, Ar)}, 127.8 \text{ (s, CHN)}, 125.3 \text{ (s, Ar)}, 124.5 \text{ (s, Ar)}, 124.1 \text{ (s, Ar)}, 122.1 \text{ (s, CHN)}, 122.0 \text{ (s, CHN)}, 121.2 \text{ (q, } ^{1}J_{\text{CF}} = 320 \text{ Hz}, \text{CF}_3\text{)}, 59.9 \text{ (s, CH}_2\text{)}, 29.0 \text{ (s, CH(CH}_3)_2\text{)}, 28.5 \text{ (s, CH(CH}_3)_2\text{)}, 26.7 \text{ (s, CH(CH}_3)_2\text{)}, 26.2 \text{ (s, CH(CH}_3)_2\text{)}, 25.1 \text{ (s, CH}_3\text{)}, 24.7 \text{ (s, CH}_3\text{)}, 24.6 \text{ (s, CH}_3\text{)}, 24.2 \text{ (s, CH}_3\text{)}, 23.2 \text{ (s, CH}_3\text{)}, 22.3 \text{ (s, CH}_3\text{)}, 21.5 \text{ (s, CH}_3\text{)}.$

¹⁹F NMR (188 MHz; CD₂Cl₂) δ –79.2 (s).

 $\frac{^{29}\text{Si} \text{ NMR}}{^{17}}$ (79 MHz; CD₂Cl₂) δ –16.0 (d, $^{17}\text{J}_{\text{SiP}}$ = 85 Hz).

 $\frac{^{31}P \text{ NMR}}{(79 \text{ MHz}; \text{ CD}_2\text{Cl}_2) \delta} - 161.4 \text{ (s)}.$

HRMS (ESI+): m/z 681.3523 (Calcd for [M-OTf]⁺: 681.3537).

Synthesis of Compound 9[OTf]

To a stirred solution of **8**[OTf] (300 mg, 0.361 mmol, 1.00 equiv) in DCM (10 mL) was added CyPCl₂ (56 μ L, 0.36 mmol, 1.0 equiv). The resulting mixture was stirred for 30 min, concentrated to approximately 1 mL and *n*-Pentane (10 mL) was added, which led to precipitation of a yellow solid. The liquid phase was decanted and the residue washed with *n*-pentane (2 x 7 mL) before drying under vacuum. This afforded 235 mg of the product as a yellow solid (Yield: 85%). Single crystals qualified for X-Ray diffraction

analysis were grown from a concentrated CH₂Cl₂/toluene solution at ambient temperature.

<u>m.p.:</u> 200 °C.

9[OTf]

¹<u>H NMR</u> (700 MHz, CD_2Cl_2) δ 8.59 (d, ³J_{HH} = 2.0 Hz, 1H, NC*H*), 7.94 (s, 1H, NC*H*), 7.55 (t, ³J_{HH} = 7.8 Hz, 1H, *p*-Dipp), 7.49 (t, ³J_{HH} = 7.8 Hz, 1H, *p*-Dipp), 7.33 (dd, ³J_{HH} = 7.8, ⁴J_{HH} 1.3 Hz, 1H, *m*-Dipp), 7.31 – 7.25 (m, 5H, 3 x *m*-Dipp + 1 x N₂CH₂ + 1 x NC*H*), 6.86 (d, ³J_{HH} = 2.0, 1H, NC*H*), 6.49 (d, ²J_{HH} = 14.5 Hz, 1H, N₂CH₂), 2.53 (sept, ³J_{HH} = 6.9 Hz, 1H, CH(CH₃)₂), 2.41 (m, 2H, 2 x CH(CH₃)₂), 2.19 (sept, ³J_{HH} = 6.9 Hz, 1H, CH(CH₃)₂), 2.16 – 2.10 (m, 2H, P-C*H* + Cy-CH₂), 1.81 – 1.58 (m, 4H, 2 x Cy-CH₂), 1.32 – 1.27 (m, 5H, CH₃ + Cy-CH₂), 1.25 (d, ³J_{HH} = 6.9 Hz, 3H, CH₃), 1.22 (d, ³J_{HH} = 6.9 Hz, 3H, CH₃), 1.21 – 1.16 (m, 2H, Cy-CH₂), 1.15 (d, ³J_{HH} = 6.9 Hz, 3H, CH₃), 1.14 (d, ³J_{HH} = 6.9 Hz, 3H, CH₃), 1.09 (d, ³J_{HH} = 6.9 Hz, 3H, CH₃), 0.99 (d, ³J_{HH} = 6.9 Hz, 3H, CH₃), 0.93 – 0.90 (m, 1H, Cy-CH₂).

¹³<u>C NMR</u> (176 MHz, CD₂Cl₂) δ 169.21 (dd, ¹*J*_{CP} = 145.2, ²*J*_{CP} = 10.6 Hz, N₂*C*-P), 151.46 (dd, ¹*J*_{CP} = 76.2, ²*J*_{CP} = 7.4 Hz, N₂*C*-PCy), 147.17 (s, *o*-Dipp), 146.98 (s, *o*-Dipp), 146.96 (s, *o*-Dipp), 145.40 (s, *o*-Dipp), 132.06 (s, *p*-Dipp), 131.72 (s, *i*-Dipp), 131.50 (s, *i*-Dipp), 131.31 (s, *p*-Dipp), 125.91 (CH, d, ³*J*_{CP} = 2.5 Hz, NC*H*), 125.85 (s, *m*-Dipp), 125.21 (s, *m*-Dipp), 125.08 (s, NCH), 124.80 (s, , *m*-Dipp), 122.91 (CH, d, ³*J*_{CP} = 5.3 Hz, NC*H*), 121.79 (d, ³*J*_{CP} = 2.9 Hz, NC*H*), 121.17 (quart, ¹*J*_{CF} = 320.1 Hz, CF₃), 59.53 (s, N₂CH₂), 45.08 (d, ¹*J*_{CP} = 22.5 Hz, PCH), 32.02 (d, ²*J*_{CP} = 11.2 Hz, Cy-CH₂), 29.05 (s, CH(CH₃)₂), 29.01 (s, CH(CH₃)₂), 28.98 (s, CH(CH₃)₂), 28.83 (s, Cy-CH₂), 27.10 (d, ³*J*_{CP} = 10.4 Hz, Cy-CH₂), 26.9 (d, ²*J*_{CP} = 16.6 Hz, Cy-CH₂), 26.45 (s, CH₃), 26.25 (s, Cy-CH₂), 25.65 (s, CH₃), 25.01 (s, CH₃), 24.74 (s, CH₃), 23.88 (d, *J* = 2.9 Hz, CH₃), 23.09 (d, *J*_{PC} = 2.5 Hz, CH₃), 22.88 (d, *J*_{PC} = 3.2 Hz, CH₃), 22.78 (s, CH₃). ¹⁹<u>F NMR</u> (188 MHz, CD₂Cl₂) δ -78.9 (s).

³¹<u>P NMR</u> (81 MHz, CD₂Cl₂) δ -66.5 (d, ¹J_{PP} = 453.5 Hz), -97.5 (d, ¹J_{PP} = 453.5 Hz). <u>HRMS</u> (ESI+): m/z 613.3577 (Calcd for [M-OTf]⁺: 613.3583).

Synthesis of Compound 10[OTf]

To a stirred solution of **8**[OTf] (200 mg, 0.241 mmol, 1.00 equiv) in DCM (7 mL) was added PhPCl₂ (33 μ L, 0.24 mmol, 1.0 equiv). The resulting mixture was stirred for 30 min, concentrated to approximately 1 mL and *n*-Pentane (8 mL) was added, which led to precipitation of a yellow solid. The liquid phase was decanted and the residue washed with *n*-pentane (2 x 7 mL) before drying under vacuum. This afforded 150 mg of the product as a yellow solid (Yield: 82%). Single crystals qualified for X-Ray diffraction analysis were grown from a concentrated CH₂Cl₂/*n*-Pentane solution at ambient

temperature.

 $\frac{1}{H}$ NMR (200 MHz; CD₂Cl₂) δ 8.67 (1H, d, ${}^{3}J_{HH}$ = 2.0 Hz, CHN), 7.90 (1H, s, CHN), 7.51 – 7.67 (4H, m, Ph + Dipp), 7.32 – 7.46 (15H, m, Ph + Dipp + CHN), 6.82 – 6.90 (2H, m, CHN + CH₂), 5.92 (1H, d, ${}^{2}J_{HH}$ = 14.3 Hz, CH₂), 2.39 – 2.51 (3H, m, CH(CH₃)₂), 2.21 – 2.32 (1H, sept, ${}^{3}J_{HH}$ = 6.7 Hz, CH(CH₃)₂), 1.23 – 1.29 (12H, m, CH₃), 1.05 – 1.17 (12H, m, CH₃).

 $\frac{19F \text{ NMR}}{188 \text{ MHz}}$ (188 MHz; CD₂Cl₂) δ -79.2 (s).

 $\frac{^{31}\text{P} \text{ NMR}}{^{(81 \text{ MHz}; \text{CD}_2\text{Cl}_2)} \delta} -65.0 \text{ (d, } ^{1}J_{\text{PP}} = 478.8 \text{ Hz}), -102.4 \text{ (d, } ^{1}J_{\text{PP}} = 478.8 \text{ Hz}).$

HRMS (ESI+): m/z 607.3109 (Calcd for [M-OTf]⁺: 607.3114).

Note: Compound **10[OTf]** slowly decomposes in CH₂Cl₂ and CD₂Cl₂ and ¹H NMR spectra always showed the formation of the protonated bis(NHC) ligand [bis(NHC)·2HOTf]. This material was used without further purification for growing single crystals suitable for X-Ray structure analysis and investigation of the ³¹P NMR shifts. Attempts to obtain pure material by recrystallisation afforded crystalline mixtures of **10[OTf]** and [bis(NHC)·2HOTf].

Synthesis of IPrSiPh3[OTf]

 $\begin{array}{cccc} & \text{To a mixture of } Ph_3SiOTf \ (252 \text{ mg}, \ 0.617 \text{ mmol}, \ 1.00 \text{ equiv}) \text{ and } IPr \ (240 \text{ mg}, \\ & 0.617 \text{ mmol}, \ 1.00 \text{ equiv}) \text{ was added diethyl ether } (7\text{mL}) \text{ at } -60 \ ^{\circ}\text{C}. \text{ The mixture was} \\ & \text{allowed to warm to ambient temperature and stirred for 1 h what led to formation} \\ & \text{of a colourless precipitate}. \text{ Subsequently, the supernatant was decanted and the solid residue was washed with} \\ & \text{diethyl ether } (2 \times 10 \text{ mL}). \text{ Drying under vacuum afforded } 445 \text{ mg of the product as white microcrystalline solid} \\ & (Yield: 90 \%). \end{array}$

<u>m.p.:</u> 205 °C.

<u>¹H NMR</u> (700 MHz, CD₂Cl₂) δ 7.91 (s, 2H, NC*H*), 7.43 – 7.29 (m, 5H, *p*-Ph + *p*-Dipp), 7.17 (t, ${}^{3}J_{HH}$ = 7.7 Hz, 6H, *m*-Ph), 7.04 (d, ${}^{3}J_{HH}$ = 7.8 Hz, 4H, *m*-Dipp), 7.02 – 7.00 (d, ${}^{3}J_{HH}$ = 7.7 Hz, 6H, *o*-Ph), 2.54 (sept, ${}^{3}J_{HH}$ = 6.7 Hz, 4H, CH(CH₃)₂), 1.11 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 12H, CH₃), 0.86 (d, ${}^{3}J_{HH}$ = 6.7 Hz, 12H, CH₃).

¹³<u>C NMR</u> (176 MHz, CD₂Cl₂) δ 150.95 (s, N₂C), 145.41 (s, *o*-Dipp), 136.88 (s, *o*-Ph), 132.92 (s, *p*-Dipp), 132.86 (s, *i*-Dipp), 131.52 (s, *p*-Ph), 131.12 (s, NCH), 128.78 (s, *m*-Ph), 127.31 (s, *i*-Ph), 125.29 (s, *m*-Dipp), 121.39 (q, ${}^{1}J_{CF}$ = 321.3 Hz, CF₃), 29.83 (s, CH(CH₃)₂), 26.77 (s, CH₃), 21.63 (s, CH₃).

¹⁹F NMR (188 MHz, CD₂Cl₂) δ –78.92 (s).

²⁹Si NMR (139 MHz, CD₂Cl₂) δ –22.24 (s).

HRMS (ESI+): m/z 647.3802 (Calcd for [M-OTf]⁺: 647.3816).

Synthesis of bis(NHC)(PPh)[OTf]₂ from 7[OTf]₂

Scheme S1: Synthesis of bis(NHC)(PPh)[OTf]₂ starting from 7[OTf]₂

A solution of $\mathbf{7}$ [OTf]₂ (85 mg, 0.089 mmol, 1.0 equiv) and PhPCl₂ (12 µL, 0.089 mmol, 1.0 equiv) in o-C₆H₄F₂ was stirred at 55 °C for three days. After cooling to ambient temperature the mixture was concentrated under vacuum and subsequent addition of *n*-Pentane led to formation of an off-white precipitate. The supernatant was decanted and the solid residue was washed with *n*-Pentane (5 mL). Drying under vacuum afforded 64 mg of the product as an off-white solid (Yield: 83 %).

¹H and ³¹P NMR spectra were in agreement with the ones that were previously reported.^[8]

Synthesis of IPr=C=P-OSiPh3 from IPrSiPh3[OTf]

Scheme S2: Synthesis of IPr=C=P-OSiPh3 from IPrSiPh3[OTf]

THF (0.5 mL) was added to a mixture of [IPrSiPh₃][OTf] (25mg, 0.031 mmol, 1.0 equiv) and [(dioxane)_{1.46}NaOCP] (6.6 mg, 0.031 mmol, 1.0 equiv). After stirring the resulting suspension at ambient temperature for 12 h, all volatiles were removed under vacuum. The residue was extracted with C_6D_6 (0.5 mL) and filtered into an NMR tube.

¹H, ¹³C and ³¹P NMR spectra were in agreement with those previously reported.^[9]

NMR and other spectra

Spectra of compound 7[OTf]₂

Figure S1. ¹H NMR spectrum of 7[OTf]₂ in CD₃CN. *Hexane.

Figure S2: ¹³C NMR spectrum of 7[OTf]₂ in CD₃CN.

Figure S3: ²⁹Si NMR spectrum of 7[OTf]₂ in CD₃CN.

Figure S4: HRMS (ESI⁺) of $[C_{45}H_{50}F_6N_4O_6S_2Si]$ (**7[OTf]**₂) and zoom into the $[M-2OTf]^{2+}$ -peak region (top) in comparison to the calculated isotopic pattern for $[C_{43}H_{50}N_4Si]^{2+}$ (bottom).

Spectra of compound 8[OTf]

Figure S6: ¹³C NMR spectrum of **8**[OTf] in CD₂Cl₂. *Dioxane.

Figure S7: ²⁹Si NMR spectrum of 8[OTf] in CD₂Cl₂.

Figure S8: ³¹P{¹H} NMR spectrum of 8[OTf] in CD₂Cl₂.

Figure S9: HRMS (ESI⁺) of $[C_{44}H_{50}F_3N_4O_3PSSi]$ (8[OTf]) and zoom into the [M-OTf]⁺-peak region (top) in comparison to the calculated isotopic pattern for $[C_{43}H_{50}N_4PSi]^+$ (bottom).

Figure S11: ¹³C NMR spectrum of 9[OTf] in CD₂Cl₂.

Figure S12: ${}^{31}P{}^{1}H$ NMR spectrum of 9[OTf] in CD₂Cl₂.

Figure S13: HRMS (ESI⁺) of $[C_{38}H_{51}F_3N_4O_3P_2S]$ (**9**[OTf]) and zoom into the [M-OTf]⁺-peak region (top) in comparison to the calculated isotopic pattern for $C_{37}H_{51}N_4P_2$ (bottom).

Spectra of compound 10[OTf]

Figure S14: ¹H NMR spectrum of 10[OTf] in CD₂Cl₂. * [bis(NHC)·2HOTf]

Figure S15: ${}^{31}P{}^{1}H$ NMR spectrum of 10[OTf] in CD₂Cl₂.

Figure S16: HRMS (ESI⁺) of $[C_{38}H_{46}F_3N_4O_3P_2S]$ (**10**[OTf]) and zoom into the [M-OTf]⁺-peak region (top) in comparison to the calculated isotopic pattern for $[C_{37}H_{46}N_4P_2]^+$ (bottom).

Spectra of [IPrSiPh₃][OTf]

Figure S17: ¹H NMR spectrum of IPrSiPh₃[OTf] in CD₂Cl₂.

Figure S18: ¹³C NMR spectrum of IPrSiPh₃[OTf] in CD₂Cl₂.

Figure S19: ²⁹Si NMR spectrum of IPrSiPh₃[OTf] in CD₂Cl₂.

Figure S20: HRMS (ESI⁺) of $[C_{46}H_{51}F_3N_2O_3SSi]$ (IPrSiPh₃[OTf]) and zoom into the [M-OTf]⁺-peak region (top) in comparison to the calculated isotopic pattern for $C_{45}H_{51}N_2Si$ (bottom).

Figure S21: ³¹P{¹H} NMR spectrum of bis(NHC)(PPh)[OTf₂] generated from 7[OTf₂] and PhPCl₂ in CD₂Cl₂.

Figure S22: ${}^{31}P{}^{1}H$ NMR spectrum of IPr=C=P-O-SiPh₃ generated from [IPrSiPh₃][OTf] and NaOCP in C₆D₆. *Small amount of unidentified byproduct.

Crystallographic Details

Table S1. Crystallographic data of $7[OTf]_2 \cdot 2CH_3CN$.

CCDC No.	1866468		
Empirical formula	C39.20 H44.80 F4.80 N4	C39.20 H44.80 F4.80 N4.80 O4.80 S1.60 Si0.80	
Formula weight	824.96		
Temperature	149.97(11) K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	P 21/n		
Unit cell dimensions	a = 12.86820(10) Å	<i>α</i> = 90°.	
	b = 24.1210(2) Å	β= 97.4150(10)°.	
	c = 17.0410(2) Å	$\gamma = 90^{\circ}$.	
Volume	5245.19(9) Å ³		
Z	5		
Density (calculated)	1.306 Mg/m ³		
Absorption coefficient	1.769 mm ⁻¹		
F(000)	2160		
Crystal size	0.398 x 0.160 x 0.102 mr	m ³	
Theta range for data collection	3.193 to 69.997°.		
Index ranges	-15<=h<=15, -29<=k<=1	8, -20<=l<=20	
Reflections collected	20333		
Independent reflections	9914 [R(int) = 0.0196]		
Completeness to theta = 69.997°	99.6 %		
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.59107	1.00000 and 0.59107	
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	9914 / 19 / 674		
Goodness-of-fit on F ²	1.034		
Final R indices [I>2sigma(I)]	R1 = 0.0375, wR2 = 0.09	946	
R indices (all data)	R1 = 0.0444, wR2 = 0.10	R1 = 0.0444, wR2 = 0.1009	
Largest diff. peak and hole	0.398 and -0.372 e.Å ⁻³		

Table S2. Crystallographic data of $8[OTf] \cdot CH_3CN$.

CCDC No.	1866469	
Empirical formula	C46 H53 F3 N5 O3 P S Si	
Formula weight	872.05	
Temperature	150.00(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 20.7909(2) Å	α=90°.
	b = 9.61130(10) Å	β= 105.5340(10)°.
	c = 23.6415(2) Å	$\gamma = 90^{\circ}$.
Volume	4551.66(8) Å ³	
Z	4	
Density (calculated)	1.273 Mg/m ³	
Absorption coefficient	1.693 mm ⁻¹	
F(000)	1840	
Crystal size	0.176 x 0.160 x 0.150 mm ³	
Theta range for data collection	2.517 to 69.992°.	
Index ranges	-22<=h<=25, -11<=k<=11, -24	<=l<=28
Reflections collected	17708	
Independent reflections	8607 [R(int) = 0.0197]	
Completeness to theta = 69.992°	99.7 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	1.00000 and 0.69744	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	8607 / 19 / 583	
Goodness-of-fit on F ²	1.042	
Final R indices [I>2sigma(I)]	R1 = 0.0550, wR2 = 0.1425	
R indices (all data)	R1 = 0.0607, wR2 = 0.1486	
Largest diff. peak and hole	0.948 and -0.610 e.Å ⁻³	

Table S3. Crystallographic data of $9[OTf] \cdot C_6H_5CH_3 \cdot CH_2CI_2$.

CCDC No.	1866470	
Empirical formula	C33.09 H43.64 Cl0.73 F2.18 N	2.91 O2.18 P1.45 S0.73
Formula weight	652.67	
Temperature	150.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	I 2/a	
Unit cell dimensions	a = 21.3898(4) Å	<i>α</i> = 90°.
	b = 14.7759(2) Å	β= 108.989(2)°.
	c = 32.3467(7) Å	$\gamma = 90^{\circ}$.
Volume	9666.9(3) Å ³	
Ζ	11	
Density (calculated)	1.233 Mg/m ³	
Absorption coefficient	2.168 mm ⁻¹	
F(000)	3800	
Crystal size	0.222 x 0.148 x 0.120 mm ³	
Theta range for data collection	2.889 to 69.978°.	
Index ranges	-25<=h<=26, -18<=k<=17, -39<=l<=30	
Reflections collected	18470	
Independent reflections	9078 [R(int) = 0.0326]	
Completeness to theta = 69.978°	99.1 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.19449	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9078 / 28 / 667	
Goodness-of-fit on F ²	1.061	
Final R indices [I>2sigma(I)]	R1 = 0.0567, wR2 = 0.1510	
R indices (all data)	R1 = 0.0725, $wR2 = 0.1674$	
Largest diff. peak and hole	0.722 and -0.510 e.Å ⁻³	

Figure S23: Molecular structure of **10**[OTf] in the crystal, (hydrogen atoms are omitted for clarity and thermal ellipsoids are displayed at 50% probability); selected experimental bond lengths in Å and angles in °; P1–P2 2.1561(18), P1–C17 1.802(6), P2–C1 1.825(5), C17–P1–P2 107.19(17), C1–P2–P1 100.09(15).

Table S4. Crystallographic data of **10**[OTf].

CCDC No.	1866471	
Empirical formula	C38 H45 F3 N4 O3 P2 S	
Formula weight	756.78	
Temperature	150.00(10) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.2894(6) Å	$\alpha = 95.680(7)^{\circ}$.
	b = 11.9054(10) Å	β= 101.636(6)°.
	c = 18.4338(15) Å	$\gamma = 92.537(6)^{\circ}$.
Volume	1982.6(3) Å ³	
Z	2	
Density (calculated)	1.268 Mg/m ³	
Absorption coefficient	1.944 mm ⁻¹	
F(000)	796	
Crystal size	0.356 x 0.094 x 0.068 mm ³	

Theta range for data collection	3.739 to 69.997°.
Index ranges	-11<=h<=8, -14<=k<=14, -22<=l<=22
Reflections collected	13380
Independent reflections	7469 [R(int) = 0.1021]
Completeness to theta = 69.997°	99.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.63397
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7469 / 0 / 468
Goodness-of-fit on F ²	0.982
Final R indices [I>2sigma(I)]	R1 = 0.0800, wR2 = 0.1842
R indices (all data)	R1 = 0.1454, $wR2 = 0.2505$
Largest diff. peak and hole	0.475 and -0.365 e.Å ⁻³

References

- [1] Y. Xiong, S. Yao, S. Inoue, J. D. Epping, M. Driess, *Angew. Chem. Int. Ed.* **2013**, *52*, 7147–7150.
- [2] S. A. Weicker, D. W. Stephan, *Chem. Eur. J.* **2015**, *21*, 13027–13034.
- [3] F. F. Puschmann, D. Stein, D. Heift, C. Hendriksen, Z. A. Gal, H.-F. Grützmacher, H. Grützmacher, *Angew. Chem.* **2011**, *123*, 8570–8574.
- [4] F. F. Puschmann, D. Stein, D. Heift, C. Hendriksen, Z. A. Gal, H.-F. Grützmacher, H. Grützmacher, *Angew. Chem. Int. Ed.* **2011**, *50*, 8420–8423.
- [5] L. Jafarpour, E. D. Stevens, S. P. Nolan, J. Organomet. Chem. **2000**, 606, 49–54.
- [6] G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8.
- [7] G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3–8.
- [8] M. Mehta, T. C. Johnstone, J. Lam, B. Bagh, A. Hermannsdorfer, M. Driess, D. W. Stephan, *Dalt. Trans.* 2017, 46, 14149–14157.
- [9] Z. Li, X. Chen, Y. Li, C. Y. Su, H. Grützmacher, *Chem. Commun.* **2016**, *52*, 11343–11346.