Supporting Information For

Preparation of cross-linked supramolecular polymers based on benzo-21-crown-7/secondary ammonium salt host-guest interactions

Xing Li^a, Li Wang^a, Yan Deng^a, Zheng Luo^a, Qiao Zhang^a, Shengyi Dong^{*a}, Chengyou Han^{*b}

^a College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan (P. R. China)

E-mail: dongsy@hnu.edu.cn

^b Department of Chemistry, College of science, China University of Petroleum (East China), Qingdao, 266580, (P. R. China)

E-mail: hanchengyou@upc.edu.cn

1. Materials and Methods	.1
2. Synthesis of 2	.1
3. Concentration-dependent ¹ H NMR measurements of TC7	.3
4. ¹ H NMR spectra of host-guest complexation between TC7 and 1	.4
5. ¹ H NMR titration experiments between TC7 and 2	.5
6. Concentration-dependent ¹ H NMR measurements of cross-linked supramolecular polymers	.6
7. Temperature-dependent ¹ H NMR measurements of cross-linked supramolecular polymer	rs .7
8. COSY spectra of cross-linked supramolecular polymers	.8
9. DOSY spectra of linear supramolecular polymers	.8
10. Information of Supplementary Video	.9
11. References	.9

1. Materials and Methods

TC7^[S1], 1^[S2] were synthesized according to the previously reported procedures. Other reagents and solvents are commercially available. ¹H NMR spectra were collected on a Varian Unity INOVA-400 or Bruker-AV400 with TMS as the internal standard. ¹³C NMR spectra were recorded on a Bruker-AV400 spectrometer at 101 MHz. Two-dimensional DOSY experiments were performed on a Bruker-AV500 MHz spectrometer. Viscosity measurements were carried out with Ubbelohde semi-micro dilution viscometer (0.47 mm inner diameter). Dynamic light scattering (DLS) measurements were carried out on a Malvern Zetasizer Nano ZS.

2. Synthesis of 2

A solution of **3** (1.50 g, 4.60 mmol) and *n*-butylamine (0.700 g, 9.70 mmol) was heated under reflux overnight in MeOH (30.0 mL). After the reaction mixture was cooled to ambient temperature, NaBH₄ (0.900 g, 23.7 mol) was added portionwise to the stirring solution over a period of 0.5 h. Stirring was maintained under ambient conditions for a further 24 h, after which time 5.0 M HCl was added to neutralize excess NaBH₄. The mixture was filtered and MeOH was removed with a rotaevaporator. The residue was extracted with ethyl acetate and the extract was concentrated to get a white oil. After the oil was added to a hydrochloric acid solution and stirred for a moment, a white precipitate formed. The mixture was filtered and the solid was dissolved in water to get a saturated solution. The solution was added to a saturated NH₄PF₆ solution to produce a precipitate. It was collected by suction filtration and recrystallized from deionized water three times. **2** was obtained as a white solid (3.10 g, 92.0%).^[S3]

¹H NMR (400 MHz, CD₃COCD₃, room temperature) δ 7.49 (d, J = 8.0 Hz, 4H), 7.00 (d, J = 8.0 Hz, 4H), 4.46 (s, 4H), 4.04 (t, J = 6.0 Hz, 4H), 3.41 – 3.29 (m, 4H), 1.82 (m, 8H), 1.55 (s, 4H), 1.44 (m, 4H), 0.93 (t, J = 8.0 Hz, 6H).

¹³C NMR (101 MHz, CD₃COCD₃, room temperature) δ 160.86, 132.33, 123.46, 115.49, 68.38, 52.03, 48.37, 29.58, 28.53, 26.23, 20.04, 13.51. ESI-HR-MS: m/z 441.3476 [**2**-HPF₆-PF₆]⁺, calcd. for [C₂₈H₄₅N₂O₂]⁺, 441.3497, error +4.78ppm.

Figure S2. ¹³C NMR spectra (101 MHz, CD₃COCD₃, room temperature) of 2

3. Concentration-dependent ¹H NMR measurements of TC7

Figure S3. Partial ¹H NMR spectra (400 MHz, CDCl₃, room temperature) of **TC7** (a) 1.0 mM (b) 8.0 mM (c) 16 mM, (d) 24 mM, (e) 40 mM, (f) 80 mM, (g) 160 mM, (h) 240 mM, (i) 400 mM.

Figure S4. ¹H NMR spectra (400 MHz, CDCl₃/CD₃CN, 3/1, *v/v*, room temperature) of (a) **TC7** at 8.0 mM, (b) mixture of 8.0 mM **TC7** and 24 mM **1**, (c) **1** at 24 mM. Here "c" and "uc" denote the complexed and uncomplexed crown ether and secondary ammonium salts, respectively.

5. ¹H NMR titration experiments between TC7 and 2

Figure S5. ¹H NMR (400 MHz, CDCl₃/CD₃CN, 3/1, *v/v*, room temperature) titration experiment was performed between **TC7** and **2**, for which the concentration of **TC7** was kept constant at 120 mM, while concentration of **2** was systematically varied: (a) 12 mM, (b) 24 mM, (c) 36 mM, (d) 84 mM, (e) 120 mM, (f) 144 mM, (g) 180 mM, (h) 216 mM, (i) 240 mM. Herein, peaks of uncomplexed monomers, cyclic oligomers, and the cross-linked polymers, are designated as uc, o, and p, respectively.

6. Concentration-dependent ¹H NMR measurements of cross-linked supramolecular polymers

Figure S6. ¹H NMR spectra (400 MHz, CDCl₃/CD₃CN, 3/1, v/v, room temperature) of (a)
TC7 at 8.0 mM, (h) 2 at 12 mM; mixtures of TC7 and 1.50 equiv. 2 at different concentrations of TC7: (b) 1.0 mM, (c) 8.0 mM, (d) 40 mM, (e) 80 mM, (f) 120 mM, (g) 160 mM.

7. Temperature-dependent ¹H NMR measurements of cross-linked supramolecular polymers

Figure S7. ¹H NMR spectra (400 MHz, CDCl₃/CD₃CN, 3/1, v/v) of 1:1.5 mixture of cross-linked supramolecular polymers at TC7 concentration of 120 mM: (a) 25 °C, (b) 30 °C, (c) 35 °C, (d) 40 °C, (e) 45 °C, (f) 50 °C. Herein, peaks of uncomplexed monomers, cyclic oligomers, and the cross-linked polymers, are designated as uc, o, and p, respectively.

8. COSY spectra of cross-linked supramolecular polymers

Figure S8. ¹H-¹H COSY NMR spectra (400 MHz, CDCl₃/CD₃CN, 3/1, *v/v*, room temperature) of cross-linked supramolecular polymers (at **TC7** concentration of 8.0 mM). Herein, peaks of uncomplexed monomers, cyclic oligomers, and the cross-linked polymers, are designated as uc, o, and p, respectively.

9. Information of Supplementary Video

polymers (at TC7 concentration of 20.0 mM).

10. Information of Supplementary Video

Soft viscous fibers were pulled from cross-linked supramolecular polymers (CHCl₃/CH₃CN, 3/1, *v*/*v*, room temperature) at **TC7** concentration of 160 mM.

11. References

S1. S. Dong, J. Leng, Y. Feng, M Liu, C. J. Stackhouse, A. Schönhals, L. Chiappisi, L. Gao, W. Chen, J. Shang, L. Jin, Z. Qi and C. A. Schalley, *Sci. Adv.*, 2017, **3**, eaa00900.

S2. C. Zhang, S. Li, J. Zhang, K. Zhu, N. Li and F. Huang, Org. Lett., 2007, 9, 5553-5556.

S3. C. Lu, M. Zhang, D. Tang, X. Zhou, Z. Zhang, Z. Zhou, B. Song, H. Wang, X. Li, S. Yin, H. Sepehrpour and P. J. Stang, *J. Am. Chem. Soc.*, 2018, **140**, 7674-7680.