Ultrafast Na Intercalation Chemistry of Na₂Ti_{3/2}Mn_{1/2}(PO₄)₃ Nanodots Planted in Carbon Matrix as a Low Cost Anode for Aqueous Sodium-Ion Batteries

Ping Lei, Kelu Liu, Xin Wan, Dongxue Luo and Xingde Xiang*

Department of Chemistry and Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, China E-mail address: xiangxingde@nefu.edu.cn

S1 Experimental section

The Na₂Ti_{3/2}Mn_{1/2}(PO₄)₃ material was synthesized with a simple sol-gel route. In specific, a precursor solution was firstly prepared by dissolving 0.6890 g citric acid (C₆H₈O₇·H₂O, 99.5%), 0.5296 g manganese acetate (Mn(CH₃COO)₂·4H₂O, 99%), 0.7090 g sodium acetate (CH₃COONa, anhydrous, 99%), and 1.4912 g ammonium dihydrogen phosphate (NH₄H₂PO₄, 99%) in 30 ml distilled water and then dropping the isopropyl titanate ethanol solution consisting of 2 ml C₁₂H₂₈O₄Ti (95%) and 3 ml CH₃CH₂OH (99.7%). After being sufficiently stirred, the precursor solution was evaporated at 75 °C until a gel was obtained, followed by drying the gel at 100 °C overnight. The resultant powder was treated at 450 °C for 4 h and 600 °C for 8 h in Ar-fluxing atmosphere.

X-ray diffraction (X'Pert Powder with a Cu K α radiation source) was employed to confirm the crystal structure of the as-synthesized material, and the XRD pattern was recorded in the range of 10-70° with a scanning rate of 8° min⁻¹. The morphological properties were observed with scanning electron microscopy (JSM7500F) and transmission electron microscopy (JEM-2100). The practical composition involving element ratio and carbon content was determined by combining energy-dispersive spectrometer and thermogravimetric analysis (STA449F3, NETZSCH) with a heating rate of 5 °C min⁻¹.

Electrochemical measurements were carried on a three-electrode system with NiHCF counter electrode, Ag/AgCl (saturated KCl) reference electrode, 6 M NaClO₄ aqueous electrolyte and prepared working electrode. The working electrode consists of 70 wt% active material (Na₂Ti_{3/2}Mn_{1/2}(PO₄)₃), 20 wt% Super P carbon and 10 wt% PVDF binder. The loading of the active material in electrode is about 2.5 mg cm⁻². The cyclic voltammetry was carried out on electrochemical workstation (CHI 600E) in the potential range of -1.0 and 0 V, while galvanostatic charge/discharge tests were performed between -1.0 and 0 V on Land Test System (CT2001A). In this work, the specific capacity is calculated based on the active Na₂Ti_{3/2}Mn_{1/2}(PO₄)₃.

Figure S1. TG curve of the $Na_2Ti_{3/2}Mn_{1/2}(PO_4)_3$ material in air.

Figure S2. HRTEM images of the $Na_2Ti_{3/2}Mn_{1/2}(PO_4)_3$ material

Figure S3. Cycling performance of the $Na_2Ti_{3/2}Mn_{1/2}(PO_4)_3$ material at 10 C.

Table S1. Performance comparison of reported anode materials for aqueous SIBs.

Material	Reversible capacity	Capacity retention
NaTi ₂ (PO ₄) ₃ ¹	~105 mAh g ⁻¹ at 1 C	86% after 100 cycles (1 C)
Na ₃ MgTi(PO ₄) ₃ ²	54 mAh g ⁻¹ at 0.2 C	94.2% after 100 cycles (0.5 C)
Na ₃ MnTi(PO ₄) ₃ ³	58.2 mAh g ⁻¹ at 0.5 C	~97% after 100 cycles (1 C)
$Na_2TiV(PO_4)_3^4$	52 mAh g ⁻¹ at 1 C	94% after 500 cycles (5 C)
$Na_2Ti_{3/2}Mn_{1/2}(PO_4)_3$ (this work)	78.8 mAh g ⁻¹ at 0.5 C	93% after 200 cycles (1 C)
		90% after 1000 cycles (10 C)

- 1. W. Wu, J. Yan, A. Wise, A. Rutt and J. F. Whitacre, *J. Electrochem. Soc.*, 2014, **161**, A561-A567.
- 2. F. Zhang, W. Li, X. Xiang and M. Sun, Chem. Eur. J., 2017, 23, 12944-12948.
- 3. H. C. Gao and J. B. Goodenough, Angew. Chem. Int., 2016, 55, 12768-12772.
- 4. H. Wang, T. Zhang, C. Chen, M. Ling, Z. Lin, S. Zhang, F. Pan and C. Liang, *Nano Res.*, 2017, **11**, 490-498.