Electronic Supplementary Information

for Water as a structure-driving agent between UiO-66 and MIL-140A metal-organic frameworks

Vera V. Butova,^{*a}, Andriy P. Budnyk,^a Konstantin M. Charykov,^a Kristina S. Vetlitsyna-Novikova, ^a Carlo Lamberti ^{*a,b} and Alexander V. Soldatov ^a

^a The Smart Materials Research Institute, Southern Federal University, Sladkova str. 178/24,

Rostov-on-Don, 344090, Russia

^b Department of Physics, INSTM Reference Center and CrisDi Interdepartmental Centre for

Crystallography, University of Turin, Via P. Giuria 1, 10125 Turin Italy

*E-mails: <u>vbutova@sfedu.ru</u> ; carlo.lamberti@unito.it

1.	Synthesis parameters for UiO-66 and MIL-140A from literature data	2
2.	Synthesis details	2
3.	XRPD	3
4.	Characterization of the samples	4
5.	Thermal decomposition of UiO-66	5
6.	FTIR spectra	6
7.	Summarizing scheme	7

1. Synthesis parameters for UiO-66 and MIL-140A from literature data

№	Molar ratio Zr ⁴⁺ :BDC ²⁻	Mol of solvent	Modulator	Temperature, °C	Duration	SSA (BET) ^a , m ² /g	N ₂ capacity ^b , cm ³ /g	ref.
1	1:1.4	358.8 DMF	0.06 HCl	80	12 h	1580	410	1
2	1:1	100 DMF, 3H ₂ O	0.79 HCl, 29.6 BA	110	48 h	N/R	N/R	2
3°	1:1	115 DMF	100 FA	120	24 h	1367	350	3
4	1:1	150.4 DMF, 1.33 H ₂ O	50.3 AA	100	14 days	1530	400	4
5	1:1, 4:5, 2:3, 4:7, 1:2	77.5 DMF	2 HCl	100, 160, 220	20 h	1105- 1455	280-390	5
6	1:1	750 DMF, 4H ₂ O	0, 1, 3, 5, 10, 20, 30 BA	120	24 h	700- 1400	N/R	6
7	1:1	133 DMF	1.13 HCl, 10,20 CFCOOH	120	21 h	N/R	N/R	7
8 ^d	1:1	178.6 DMF	- / 0.176 NH₄OH	120	24 h	1433/ 1320	370-390	8
9 ^e	1:2	77.5 DMF	2 HCl	220	16 h	1067	300	9
10	1:1.12	800 DMF	135AA	120	24 h	1194 ^L	400	10
11 ^f	1:1	115 DMF	100 FA	120	5 min	1087	250	3
12	1:1	103.3DMF, 6H ₂ O	30 AA	120 (90-120)	15 min (10-20 min)	982- 1206	300-400	11
13	1:1.12	800 DMF	- /135AA/30B A	100	2 h	888- 1661 ^L	200-350	10
14	1:2	81 DMF	-	220	16 h	415	110	12
15	1:1	129 DMF	7 AA	220	20 min	335	N/R	13
16 ^g	1:1	77.5 DMF	3.5 AA	220	30 min	396	N/R	14

Table S 1 Synthesis parameters of Zr-BDC MOFs from selected literature.

N/R = not reported

^a calculated SSA values for UiO-66=1125 ⁵, MIL-140A = $360 \text{ m}^2/\text{g}^{12}$.

^b for relative pressure $P/P_0 = 0.9$ at 77 K.

 $^{\rm c}$ H_2 capacity – 1.5 wt. % at 77 K and approximately 1 bar.

^d CO₂ capacity - 8.1 mmol/g at 273 K, 988 kPa.

^e CO₂ capacity - 5.5 mmol/g at 303 K, 988 kPa.

 $^{\rm f}$ H₂ capacity – 1.26 wt. % at 77 K and approximately 1 bar.

 g CO₂ capacity – 0.9 mmol/g at 293 K, 120 kPa.

^L specific surface area was calculated according to Langmuir model

2. Synthesis details

<u>Starting materials</u>. Zirconium tetrachloride ZrCl₄, H₂BDC, DMF and M-ZrO₂ NPs – all were of analytical grade and were used as received from commercial suppliers. T-ZrO₂ NPs were obtained from thermal decomposition of UiO-66 at 700 °C for 3 h in air. XRPD, and FTIR proved the total combustion of the starting material. Deionized (DI) water (18 M Ω ·cm) was obtained from Milli-Q ultra-pure water system.

In a typical synthesis, ZrCl₄ was dissolved in DMF, and H₂BDC was added under stirring. Into the samples 1:1:3_120-UiO, 1:2:3_120-UiO, 1:1:3_220-UiO and 1:2:3_220-UiO we added water. For synthesis at 120 °C solution in the glass flask was placed into the preheated oven for 24 h. For synthesizes at 220 °C we used hermetically closed steel autoclaves with Teflon inner vessels. The precipitate was collected by centrifuging, then washed twice with DMF and ones with methanol, and dried at 150°C in the air. 3. XRPD

Fig. S 1 Full range XRPD profiles ($\lambda = 1.5406$ Å) measured for samples synthesized at 120 °C (a) and at 220 °C (b). The patterns labelled as UiO-66 and MIL-140A are calculated from the literature cif data for UiO-66² and MIL-140A.¹²

4. Characterization of the samples

<u>4.1.TGA</u>

Temperature of decomposition occurs, according to TGA, in the 540-545 °C (in nitrogen) and 510-520 °C (in air) intervals for both samples (Fig. S 2). Experimental weight loss for 1:2:3-220-UiO sample with UiO-66 structure is 43% and for 1:2:0-220-MIL sample with MIL-140A structure is 55% in good agreement with theoretical values – 48.5 % for UiO-66 and 54.6 % for MIL-140A.

Fig. S 2 TGA measured in airflow (left) and in N₂ (right) of the samples 1:2:3_220-UiO and 1:2:0_220-MIL.

4.2. Nitrogen adsorption

The N_2 adsorption isotherms are reported in Fig. S2a and S2b for samples synthesized at 120 and 220 °C, respectively. Quantitative results are summarized in Table S2.

Fig. S 3 Nitrogen adsorption-desorption isotherms of samples obtained at 120 °C (a) and 220 °C (b). Filled markers corresponds to adsorption branch of isotherm and open one for desorption branch.

Sample designation	SSA	Doro volumoli om ³ /a	
Sample designation	BET	Langmuir	Fole volume, cm /g
1:1:3-120-UiO	1155	1243	0.41
1:1:0-120-UiO	954	1014	0.38
1:2:3-120-UiO	1058	1130	0.44
1:2:0-120-UiO	1017	1119	0.49
1:1:3-220-UiO	630	669	0.22
1:2:3-220-UiO	718	751	0.26
1:2:0-220-MIL	89	94	0.03

Table S 2 Specific surface areas and pore volumes of synthesized samples

ⁱSpecific surface area

ⁱⁱ Pore volumes were calculated at P/P₀=0.97

1:1:0-220-MIL was characterized as amorphous, so its SSA was not measured. Low SSA value of the sample 1:2:0-220-MIL (compared with theoretical SSA of MIL-140A 360 m^2/g) could be attributed to the presence of amorphous phase according to XRPD.

5. Thermal decomposition of UiO-66

XRPD and TEM characterization of the T-ZrO₂ NPs obtained after full thermal decomposition at 700 °C of the UiO-66 sample in the air for 3 h.

Fig. S 4 Powder of T-ZrO₂, obtained after full thermal decomposition of the UiO-66 sample at 700 °C in the air for 3 h. (a) Particle size distribution from the TEM data. (b) Representative TEM image. (c) XRPD profile of the sample.

6. FTIR spectra

Fig. S5a,b reports a magnification of the FTIR spectra reported in the main Fig. 1b,d of the main text.

Fig. S 5 FTIR spectra of desolvated samples synthesized at 120 °C (a) and 220 °C (b). Patterns and spectra have been vertically translated for clarity.

7. Summarizing scheme

Fig. S6 summarized the main message of the present study.

Fig. S 6 Schematic picture describing the outcome of the synthesis at 220 °C. The Presence of water drives the synthesis towards the UiO-66 phase (left);

REFERENCES

1. M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp and O. K. Farha, *Chem. Commun.*, 2013, **49**, 9449.

2. S. Oien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga, C. Lamberti and K. P. Lillerud *Cryst. Growth Des.*, 2014, **14**, 5370.

3. J. Ren, T. Segakweng, H. Langmi, N. Musyoka, B. North, M. Mathe and D. Bessarabov *Int. J. Mater. Res.*, 2014, **105**, 516.

4. G. Shearer, S. Forselv, S. Chavan, S. Bordiga, K. Mathisen, M. Bjørgen, S. Svelle and K. Lillerud *Top Catal.*, 2013, **56**, 770.

5. G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga and K. P. Lillerud *Chem. Mater.*, 2014, **26**, 4068.

6. A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke and P. Behrens *Chem. – Euro J.*, 2011, **17**, 6643.

7. F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock and D. E. De Vos *J. Am. Chem. Soc.*, 2013, **135**, 11465.

8. H. R. Abid, G. H. Pham, H.-M. Ang, M. O. Tade and S. Wang J. Colloid Interf. Sci., 2012, 366, 120.

9. Q. Yang, A. D. Wiersum, H. Jobic, V. Guillerm, C. Serre, P. L. Llewellyn and G. Maurin J. *Phys. Chem. C*, 2011, **115**, 13768.

10. Y. Li, Y. Liu, W. Gao, L. Zhang, W. Liu, J. Lu, Z. Wang and Y.-J. Deng *CrystEngComm*, 2014, **16**, 7037.

11. M. Taddei, P. V. Dau, S. M. Cohen, M. Ranocchiari, J. A. van Bokhoven, F. Costantino, S. Sabatini and R. Vivani *Dalton Trans.*, 2015, **44**, 14019.

12. V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Ferey, A. Vittadini, S. Gross and C. Serre *Angew. Chem.-Int. Edit.*, 2012, **51**, 9267.

13. W. Liang, R. Babarao and D. M. D'Alessandro Inorg. Chem., 2013, 52, 12878.

14. W. B. Liang, R. Babarao, T. L. Church and D. M. D'Alessandro Chem. Commun., 2015, 51, 11286.