Supporting Information

A facile approach for synthesis of *nido*-carborane fused oxazoles via one pot deboronation/cyclization of 9-amide-*o*-carboranes

Cai-Yan Zhang^a, Ke Cao^{*,a}, Tao-Tao Xu^a, Ji Wu^a, Linhai Jiang^{*,b} and Junxiao Yang^a ^aState Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China ^bInstrumental Analysis Center, Shenzhen University (Xili Campus), P. R. China E-mail: <u>caoke@swust.edu.cn</u>, jianglh2010@163.com

Context

- 1. General information
- 2. Experimental
- 3. Spectroscopic date for products
- 4. Copies of ¹H NMR, ¹H{¹¹B} NMR, ¹³C{¹H} NMR, ¹¹B NMR and ¹¹B{¹H} NMR

General information

la-1s were synthesized according to literature methods (The detailed procedure were shown in the experimental section) ¹⁻³. Other materials were purchased from Acros, J&K and Aladdin, and used as received unless otherwise specified. All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on gel F254 plates. The silica gel (200-300 meshes) was used for column chromatography, and the distillation range of petroleum ether was 60-90 °C. ¹H, ¹H{¹¹B}, ¹³C{¹H}, ¹¹B{¹H} and B¹¹ NMR spectra were recorded on the Bruker 600MHz instruments. All ¹H NMR and ¹³C{¹H} NMR spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard, and ¹¹B{¹H} NMR spectral data were measured with ESI techniques.

The calculations were performed using the DFT program Dmol3 in Materials Studio (Accelrys, San Diego, CA), in which the physical wave functions were expanded in terms of numerical basis sets. The double numerical basis set with polarisation function (DNP)^{4,5}, that is comparable to the 6-31G** basis set, was utilised during the calculations⁶. The core electrons were treated with DFT semicore pseudopotentials. The exchange-correlation energy was calculated using the PBE and GGA methods⁷. Special point sampling integration over the Brillouin zone was employed using Monkhorst-Pack schemes with a 5 × 5 × 1 k-point mesh⁸. A Fermi smearing of 0.005 Ha and a global orbital cutoff of 7 Å were employed. The convergence criteria for the geometric optimization and energy calculation were set as follows: (1) self-consistent field tolerance of 1.0×10^{-6} Ha/atom, (2) energy tolerance of 1.0×10^{-5} Ha/atom, (3) maximum force tolerance of 0.002 Ha/Å, and (4) maximum displacement tolerance of 0.005 Å.

Experimental

1. General procedure for synthesis of 1a-1p (Take 1a as an example)^{1,2}

To a 25 mL dried flask was sequentially added 9-iodo-*o*-carborane (500 mg, 1.85 mmol), 3 equivalents of benzamide (671.5 mg, 5.54 mmol), 5 equivalents of K_3PO_4 (1.96 g, 9.23 mmol), 5 mol % of 2-dicyclohexylphosphino-2'-(*N*,

N-dimethylamino)biphenyl (DavePhos) (36 mg, 0.09 mmol), 2.5 mol % of $Pd_2(dba)_3$ (42 mg, 0.046 mmol) and 8 mL of toluene under argon atmosphere. After the reaction mixture was stirred at 100 °C for 2-4 hours until the color was changed from purple to orange, the reaction mixture was cooled to room temperature. Then, the mixture was filtered through a short silica gel column using ethyl acetate as eluent. After evaporation of the solvent, the residue was purified by column chromatography on 200-300 mesh silica gel with petroleum ether/EtOAc=4:1 as eluent, and gave **1a** with 55% yield (267 mg).

9-benzamide-*o***-carborane** (**1a**) ¹H NMR(600 MHz, CDCl₃, *ppm*): δ 7.75-7.74 (d, 2H, *J*=6Hz), 7.47-7.44 (dd, 1H, *J*=6Hz), 7.41-7.38 (dd, 2H, *J*=6Hz), 5.76 (s, 1H), 3.64(s, 1H), 3.59 (s, 1H); ¹³C NMR (150 MHz, CDCl₃, *ppm*): δ 169.0, 135.5, 131.2, 128.4, 127.0, 51.5, 45.9.

2. General procedure for synthesis of 1q-1s(Take 1q as an example)³

To a 50 mL dried flask was added 9-iodo-*o*-carborane (1.35 g, 5 mmol) and tetrahydrofuran (20 mL) under an argon atmosphere. Then 6.9 mL *n*-BuLi (1.6 M, 11 mmol) was added at 0°C and stirred for 2 h. After slowly added iodomethane (1.37 mL, 22 mmol) at 0 °C, the reaction mixture was stirred at 80 °C for 6 h. After cooled to room temperature, the mixture was quenched with water and extracted with ethyl acetate. The organic phase was washed with water (3x10mL), NaHCO₃ (aq.) (3x10mL) and brine (3x10mL) in sequence, then dried over anhydrous Na₂SO₄. After evaporation of the solvent, the crude product was sublimation at 60 °C and gave 1,2-Me₂-9-I-*o*-carborane with 85% yield (1.27 g).

Then, to a 25 mL dried flask was sequentially added 1,2-Me₂-9-iodo-*o*-carborane (298.2 mg, 1mmol), 3 equivalents of the benzamide (363 mg, 3 mmol), 5 equivalents of K₃PO₄ (1.06 g, 5 mmol), 5 mol % of 2-dicyclohexylphosphino-2'-(*N*, *N*-dimethylamino)biphenyl (DavePhos) (20 mg, 0.05 mmol), 2.5 mol % of Pd₂(dba)₃ (23 mg, 0.025 mmol) and 4 mL of toluene under an argon atmosphere, then stirred at 100 °C for 5 h. After the reaction mixture was cooled to room temperature, the mixture was filtered through a short silica gel column using ethyl acetate as eluent. After evaporation of the solvent, the residue was purified by column chromatography

on 200-300 mesh silica gel with petroleum ether/EtOAc=8:1~4:1 as eluent, and gave the 1q with 56% yield (164 mg).

1,2-Me₂-9-benzamide-*o***-carborane** (**1q**) ¹H NMR(600 MHz, CDCl₃, *ppm*): δ 7.77-7.75 (d, 2H, *J*=6 Hz), 7.45-7.44 (dd, 1H, *J*=6 Hz), 7.40-7.38 (dd, 2H, *J*=6Hz), 5.67 (s, 1H), 2.08 (brs, 6 H); ¹³C NMR (150 MHz, CDCl₃, *ppm*): δ 169.0, 135.7, 131.1, 128.3, 127.1, 70.3, 64.7, 23.7, 21.8.

3. General procedure for synthesis of *nido*-7,8-carborane fused oxazoles (3a-3s) (Take 3a as an example)

To a 10 mL dried flask was sequentially added 9-benzamide-*o*-carborane (26.3 mg, 0.1 mmol), 1,4-dioxane (1 mL), Pd(OAc)₂ (2.3 mg, 0.01 mmol), AgOAc (33.4 mg, 0. 2 mmol) and K₂CO₃ (13.8 mg, 0.1 mmol) under an argon atmosphere. After the reaction mixture was stirred at 100 °C for 24h until 9-benzamide-*o*-carborane was consumed completely, the mixture was cooled to room temperature and filtered through a short silica gel column using ethyl acetate as eluent. After evaporation of the solvent, the residue was purified by column chromatography on 200-300 mesh silica gel with petroleum ether/EtOAc=10:1 as eluent. The desired product **3a** was obtained with 93% yield (23.5 mg).

4. Procedure for synthesis of 4(Cs⁺)

To a 10 mL dried flask was sequentially added 1,2-Me₂-9-benzamide-*o*-carborane (58.2 mg, 0.2 mmol), 1,4-dioxane (2 mL), Pd(OAc)₂ (4.6 mg, 0.02 mmol) , and Cs₂CO₃ (65.2 mg, 0.2 mmol) under an argon atmosphere. After the reaction mixture was stirred at 100 °C for 12 h, the mixture was cooled to room temperature and filtered through a short silica gel column using ethyl acetate as eluent (60 mL). After evaporation of the solvent, the residue was purified by column chromatography on 200-300 mesh silica gel with petroleum ether/EtOAc=1:1 as eluent to gave the product **4**(**Cs**⁺) (53.9 mg, 65% yield). Its exact structure was confirmed by X-ray crystallographic analysis.

Figure S3. Crystal structure of $4(Cs^+)$.

5. Effect of PIDA for synthesis of *nido*-carborane fused oxazole (3a)

Scheme S1. Effect of PIDA for deboronation/cyclization of 9-benzamide-*o*-carborane (1a).

Scheme S2. Effect of PIDA for cyclization of 6-benzamide-nido-carborane (5).

Table S1. Calcul	ated Mulli	iken charge

	9-amide-o-caroborane	o-carborane
C1	-0.262	-0.254
H1	0.175	0.171
C2	-0.260	-0.252
H2	0.171	0.171
B3	0.087	0.098
H3	0.010	0.008
B4	-0.010	0.024
H4	0.023	-0.000
B5	0.004	0.025
H5	0.034	0.001
B6	0.084	0.098
H6	0.010	0.008
B7	0.014	0.027
H7	0.000	-0.000
B8	-0.072	-0.031
H8	-0.007	-0.012
B9	0.415	-0.013
N1	-0.427	-0.018
B10	-0.075	-0.030
H10	-0.006	-0.011
B11	0.016	0.022
H11	0.001	-0.000
B12	-0.063	-0.012
H12	-0.015	-0.018

Table S2. Detailed calculated Mulliken charge

9-benzamide-*o*-carborane:

			charge	spin
Ν	(1)	-0.427	0.000
0	(2)	-0.456	0.000
С	(3)	-0.262	0.000
С	(4)	-0. 260	0.000
н	(5)	0. 171	0.000
H	(6)	0.175	0.000
С	(7)	0.419	0.000
Б	(8)	0.084	0.000
H	(9)	0.010	0.000
Б	(10)	0.004	0.000
н	(11)	0.034	0.000
Б	(12)	-0.010	0.000
H	(13)	0.023	0.000
Б	(14)	0.087	0.000
н	(15)	0.010	0.000
Б	(16)	0.016	0.000
H	(17)	0.001	0.000
Б	(18)	-0.075	0.000
н	(19)	-0.006	0.000
Б	(20)	0.415	0.000
Б	(21)	-0.072	0.000
н	(22)	-0.007	0.000
В	(23)	0.014	0.000
н	(24)	0.000	0.000
Б	(25)	-0.063	0.000
н	(26)	-0.015	0.000
н	(27)	0.198	0.000
С	(28)	-0.083	0.000
¢	(29)	-0.079	0.000
¢	(30)	-0.106	0.000
С	(31)	-0.052	0,000
¢	(32)	-0.061	0.000
С	(33)	-0.082	0.000
Н	(34)	0.085	0.000
H	(35)	0.085	0.000
Н	(36)	0.086	0.000
н	(37)	0.114	0.000
H	(38)	0.086	0.000

o-carborane:

M 11	. 1 1	liken	atomic	charges.
1.00		LIKCH	charge	enin
т	7	1)	_0 019	0 000
	Σ	1)	-0.010	0.000
	2	2)	-0.252	0.000
	÷	3)	-0.254	0.000
н	Ś	4)	0.171	0.000
H	9	5)	0.171	0.000
В	(6)	0.098	0.000
H	(7)	0.008	0.000
В	(8)	0.027	0.000
H	(9)	-0.000	0.000
В	(10)	0.022	0.000
H	(11)	-0.000	0.000
В	(12)	0.098	0.000
H	(13)	0.008	0.000
В	(14)	0.024	0.000
H	(15)	-0.000	0.000
В	(16)	-0.031	0.000
H	(17)	-0.012	0.000
В	(18)	-0.012	0.000
В	(19)	-0.030	0.000
Н	Ċ	20)	-0.011	0.000
в	Ċ	21)	0.025	0.000
H	Ċ	22)	0.001	0.000
B	è	23)	-0.013	0.000
н	è	24)	-0.018	0.000
	ì			

Reference:

- 1. S. N. Mukhin, K. Z. Kabytaev, G. G. Zhigareva, I. V. Glukhov, Z. A. Starikova, V. I. Bregadze and I. P. Beletskaya, *Organometallics*, **2008**, *27*, 5937.
- 2. Y. Sevryugina, R. L. Julius and M. F. Hawthorne, Inorg. Chem., 2010, 49, 10627.
- 3.(a) T. L. Heying, J. W. Ager, Jr., S. L. Clark,; R. P. Alexander, S. Papetti, J. A. Reid

and S. I. Trotz, Inorg. Chem., 1963, 2, 1097; (b) T. E. Paxson, M.K. Kaloustian, G. M.

Tom, R. J. Wiersema and M. F. Hawthorne, J. Am. Chem. Soc., 1972, 94,4882; (c) A.

- F. Armstrong and J. F. Valliant, Inorg. Chem., 2007, 46, 2148.
- 4. Delley, B. J. Chem. Phys., 2000, 113, 7756-7764.
- 5. Delley, B. J. Chem. Phys., 1990, 92, 508-517.
- 6. Delley B. Phys. Rev. B. 2002, 66, 155125-155133.
- 7. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
- 8. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B. 1976, 13, 5188-5192.

Spectroscopic data for products

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.86 (brs, 1H, *N*-*H*), 7.81-7.79 (dd, 2H, *J*=6Hz), 7.71-7.68 (dd, 1H, *J*=6Hz), 7.55-7.52 (m, 2H), 2.05 (s, 1H, *Cage C-H*), 1.81 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 178.9, 135.2, 129.4, 128.1, 125.4, 38.2, 35.8; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.5 (1B), -3.9 (1B, *B-N*), -8.6 (1B), -14.8 (1B), -16.0 (1B), -21.9 (1B), -24.4 (1B), -25.6 (1B), -39.4 (1B); HRMS: calculated for C₉B₉H₁₅NO⁻ (M-H)⁻ 252.1997, found 252.2016. Element analysis calcd (%) for C₉B₉H₁₆NO: C 42.98, H 6.41; found: C 43.11, H 6.41.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.77 (brs, 1H, *N-H*), 7.69-7.68 (d, 2H, *J*=6Hz), 7.33-7.32 (d, 2H, *J*=6Hz), 2.45 (s, 3H, *-CH*₃), 2.04 (s, 1H, *Cage C-H*), 1.79 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 178.9, 146.7, 130.1, 128.2,

122.6, 38.4, 35.8, 21.9; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.6 (1B), -3.9 (1B, *B-N*), -8.5 (1B), -14.6 (1B), -16.0 (1B), -21.9 (1B), -24.5 (1B), -25.6 (1B), -39.4 (1B); HRMS: calculated for C₁₀B₉H₁₉NO⁺ (M+H)⁺ 267.23350, found 267.23270. Element analysis calcd (%) for C₁₀B₉H₁₈NO: C 45.23, H 6.83; found: C 45.60, H 6.98.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.82 (brs, 1H, *N*-*H*), 7.62 (s, 1H), 7.59-7.58 (d, 1H, *J*=6Hz), 7.50-7.49 (d, 1H, *J*=6Hz), 7.42-7.40 (dd, 1H, *J*=6Hz), 2.42 (s, 3H, -*CH*₃), 2.04 (s, 1H, *Cage C-H*), 1.80 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 179.1, 139.6, 135.9, 129.3, 128.7, 125.3, 125.2, 38.3, 35.7, 21.2; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.5 (1B), -3.9 (1B, *B-N*), -8.5 (1B), -14.6 (1B), -15.9 (1B), -21.8 (1B), -24.4 (1B), -25.5 (1B), -39.3 (1B); HRMS: calculated for $C_{10}B_9H_{19}NO^+$ (M+H)⁺ 267.23350, found 267.23392.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.75-7.74 (d, 2H, *J*=6Hz), 7.62 (brs, 1H, *N-H*), 6.99-6.97 (d, 2H, *J*=6Hz), 3.89 (s, 3H, -*OCH*₃), 2.03 (s, 1H, *Cage C-H*), 1.79 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 178.3, 165.1, 130.4, 117.5, 114.8, 55.8, 38.1, 35.8; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.6 (1B), -4.0 (1B, *B-N*), -8.4 (1B), -14.4 (1B), -16.1 (1B), -21.9 (1B), -24.5 (1B), -25.6 (1B), -39.4 (1B); HRMS: calculated for $C_{10}B_9H_{19}NO_2^+$ (M+H)⁺ 282.23204, found 282.23239.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 9.34 (brs, 1H, *N*-*H*), 8.02-8.01 (d, 1H, *J*=6Hz), 7.63-7.61 (dd, 1H, *J*=6Hz), 7.12-7.10 (dd, 1H, *J*=6Hz), 7.07-7.05 (d, 1H, *J*=6Hz), 4.07 (s, 3H, -*OCH*₃), 2.03 (s, 1H, *Cage C-H*), 1.78 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 176.1, 159.2, 136.6, 132.0, 121.7, 113.4, 111.7, 56.5, 38.3, 35.7; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.7 (1B), -3.9 (1B, *B-N*), -8.7 (1B), -14.6 (1B), -16.6 (1B), -22.1 (1B), -24.6 (1B), -25.5 (1B), -39.4 (1B); HRMS: calculated for $C_{10}B_9H_{19}NO_2^+$ (M+H)⁺ 282.23204, found 282.23212.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.85 (brs, 1H, *N*-*H*), 6.87 (s, 2H), 6.71 (s, 1H), 3.83 (s, 6H, -*OCH*₃), 2.05 (s, 1H, *Cage C-H*), 1.80 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 178.8, 161.3, 126.9, 107.3, 105.8, 55.8, 38.4, 35.8; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.5 (1B), -3.9 (1B, *B-N*), -8.6 (1B), -14.8 (1B), -16.0 (1B), -21.8 (1B), -24.5 (1B), -25.5 (1B), -39.4 (1B); HRMS: calculated for C₁₁B₉H₁₉NO₃⁻ (M-H)⁻ 312.2208, found 312.2229. Element analysis calcd (%) for C₁₁B₉H₂₀NO₃: C 42.40, H 6.47; found: C 42.63, H 6.96.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.89 (brs, 1H, *N*-*H*), 7.75-7.74 (d, 2H, *J*=6Hz), 7.52-7.51 (d, 2H, *J*=6Hz), 2.05 (s, 1H, *Cage C-H*), 1.81 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 178.9, 135.2, 129.4, 128.1, 125.4, 38.4, 35.8; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.5 (1B), -3.9 (1B, *B-N*), -8.7 (1B), -14.9 (1B), -16.1 (1B), -21.9 (1B), -24.5 (1B), -25.6 (1B), -39.4 (1B); HRMS: calculated for C₉B₉H₁₄NOCl⁻ (M-H)⁻ 286.1607, found 286.1636.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.88-7.85 (m, 3H), 7.25-7.23 (m, 2H), 2.08 (s, 1H, *Cage C-H*), 1.83 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 177.7, 166.8 (*J*=258Hz), 130.9 (*J*=9Hz), 121.7, 116.9 (*J*=21Hz), 38.6, 35.8; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.5 (1B), -4.0 (1B, *B-N*), -8.6 (1B), -14.8 (1B), -16.1 (1B), -21.9 (1B), -24.4 (1B), -25.6 (1B), -39.4 (1B); HRMS: calculated for C₉B₉H₁₄NOF⁻ (M-H)⁻ 270.1902, found 270.1914.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 8.13 (brs, 1H, *N*-*H*), 7.96-7.95 (d, 2H, *J*=6Hz), 7.82-7.81 (d, 2H, *J*=6Hz), 2.08 (s, 1H, *Cage C-H*), 1.83 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 177.5, 136.5 (*J*=33Hz), 128.7, 128.5, 126.5 (*J*=3Hz), 122.9 (*J*=272Hz), 38.9, 35.9; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.4 (1B), -3.9 (1B, *B-N*), -8.8 (1B), -15.1 (1B), -16.1 (1B), -21.8 (1B), -24.4 (1B), -25.6 (1B), -39.3 (1B); HRMS: calculated for C₁₀B₉H₁₄NOF₃⁻ (M-H)⁻ 320.1871, found 320.1872.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.43 (brs, 1H, *N*-*H*), 2.24 (s, 3H, -*CH*₃), 1.99 (s, 1H, *Cage C-H*), 1.76 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 183.5, 38.5, 35.9, 19.3; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.7 (1B), -4.4 (1B, *B-N*), -8.8 (1B), -14.8 (1B), -16.3 (1B), -21.9 (1B), -24.6 (1B), -25.7 (1B), -39.6 (1B); HRMS: calculated for C₄B₉H₁₃NO⁻(M-H)⁻ 190.1840, found 190.1841.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.40 (brs, 1H, *N*-*H*), 2.71-2.65 (m, 1H, *J*=6Hz, -CH-), 1.99 (s, 1H, *Cage C-H*), 1.74 (s, 1H, *Cage C-H*), 1.21-1.20 (d, 6H, *J*=6Hz, -*CH*₃); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 190.9, 38.2, 35.6, 32.5, 18.7, 18.6; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.6 (1B), -4.3 (1B, *B-N*), -8.6 (1B), -14.8 (1B), -16.2 (1B), -21.9 (1B), -24.5 (1B), -25.7 (1B), -39.5 (1B); HRMS: calculated for C₆B₉H₁₇NO⁻ (M-H)⁻ 218.2153, found 218.2158.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.44 (brs, 1H, *N-H*), 1.97 (s, 1H, *Cage C-H*), 1.73 (s, 1H, *Cage C-H*), 1.65-1.59 (m, 1H), 1.27-1.24 (m, 1H), 1.20-1.11 (m, 3H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 187.1, 37.9, 35.9, 13.2, 10.8, 10.7; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.8 (1B), -4.4 (1B, *B-N*), -8.4 (1B), -14.2 (1B), -16.4 (1B), -21.9 (1B), -24.6 (1B), -25.6 (1B), -39.5 (1B); HRMS: calculated for C₆B₉H₁₅NO⁻ (M-H)⁻ 216.1996, found 216.2006.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.31 (brs, 1H, *N*-*H*), 2.41-2.36 (m, 1H), 1.98 (s, 1H, *Cage C-H*), 1.91-1.89 (m, 2H), 1.81-1.79 (m, 2H), 1.74-1.69 (m, 2H), 1.35-1.26 (m, 4H), 1.22-1.18 (m, 1H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 189.9, 41.3, 38.2, 35.4, 28.9, 28.8, 25.1, 24.9, 24.8; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.6 (1B), -4.3 (1B, *B-N*), -8.6 (1B), -14.8 (1B), -16.2 (1B), -21.9 (1B), -24.5 (1B), -25.7 (1B), -39.5 (1B); HRMS: calculated for C₉B₉H₂₁NO⁻ (M-H)⁻ 258.2466, found 258.2468.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.45-7.40 (m, 3H), 7.18-7.17 (m, 2H), 3.81-3.73 (m, 2H, $-CH_2$ -), 1.99 (s, 1H, *Cage C-H*), 1.76 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 185.9, 130.3, 129.9, 129.5, 129.0, 38.8, 38.4, 35.7; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.6 (1B), -4.2 (1B, *B-N*), -8.7 (1B), -14.9 (1B), -16.1 (1B), -21.9 (1B), -24.4 (1B), -25.6 (1B), -39.5 (1B); HRMS: calculated for $C_{10}B_9H_{19}NO^+$ (M+H)⁺ 266.23713, found 266.23724.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.94-7.93 (d, 2H, *J*=6Hz), 7.61-7.55 (m, 3H), 7.50-7.48 (dd, 1H, *J*=6Hz), 7.40-7.39 (d, 1H, *J*=6Hz), 7.08 (brs, 1H, *N-H*), 4.18 (s, 2H, *-CH*₂-), 1.97 (s, 1H, *Cage C-H*), 1.75 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 185.7, 134.1, 131.0, 130.2, 129.3, 129.2, 127.8, 126.9, 126.4, 125.6, 122.5, 38.5, 36.6, 35.9; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.7 (1B), -4.3 (1B, *B-N*), -8.9 (1B), -15.0 (1B), -16.1 (1B), -21.9 (1B), -24.5 (1B), -25.7 (1B), -39.6 (1B); HRMS: calculated for C₁₄B₉H₁₉NO⁻ (M-H)⁻ 316.2310, found 316.2325.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 8.02 (brs, 1H, *N*-*H*), 7.75 (s, 1H), 2.04 (s, 1H, *Cage C-H*), 1.80 (s, 1H, *Cage C-H*); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 171.3, 39.1, 35.7; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -2.5 (1B), -4.5 (1B, *B-N*), -9.1 (1B), -15.6 (1B), -16.4 (1B), -21.8 (1B), -24.3 (1B), -25.6 (1B), -39.4 (1B); HRMS: calculated for C₃B₉H₁₁NO⁻ (M-H)⁻ 176.1684, found 176.1679.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.85 (brs, 1H, *N*-*H*), 7.79-7.77 (m, 2H), 7.69-7.67 (m, 1H), 7.54-7.51 (m, 2H), 1.44 (s, 3H, -*CH*₃), 1.40 (s, 3H, -*CH*₃); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 178.8, 135.1, 129.4, 128.1, 125.5, 54.0, 52.3, 21.3, 20.3; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -1.0 (1B), -4.8 (1B, *B*-*N*), -7.4 (1B), -13.7 (1B), -15.8 (1B), -16.8 (1B), -20.8 (1B), -21.8 (1B), -38.2 (1B); HRMS: calculated for $C_{11}H_{21}B_9NO^+$ (M+H)⁺281.24915, found 281.24954.

Figure S4. Crystal structure of 3q.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.89 (brs, 1H, *N*-*H*), 7.79-7.78 (d, *J*=6Hz, 2H), 7.69-7.67 (dd, *J*=6Hz, 1H), 7.54-7.51 (m, 2H), 1.91-1.80 (m, 2H, -*CH*₂-), 1.71-1.63 (m, 2H, -*CH*₂-), 1.04-0.99 (m, 6H, -*CH*₃); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 178.7, 135.0, 129.4, 128.1, 125.5, 60.6, 59.1, 26.6, 25.9, 14.9, 14.7; ¹¹B{¹H} NMR

(192 MHz, CDCl₃, *ppm*): δ -2.5 (1B), -4.6 (1B, *B*-*N*), -8.7 (1B), -15.7 (2B), -16.5 (1B), -21.5 (1B), -22.6 (1B), -38.5 (1B); HRMS: calculated for C₁₃B₉H₂₅NO⁺ (M+H)⁺ 309.28045, found 309.28076.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.81 (brs, 1H), 7.75-7.73 (d, *J*=6Hz, 2H), 7.68-7.66 (dd, *J*=6Hz, 1H), 7.52-7.49 (dd, *J*=6Hz, 2H), 7.15-7.13 (m, 2H), 7.10-7.08 (m, 1H), 7.05-7.04 (m, 1H), 3.24-3.20 (m, 2H), 2.98-2.89 (m, 2H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 178.8, 137.5, 137.1, 135.2, 129.4, 128.1, 127.1, 126.9, 126.3, 126.2, 125.3, 57.2, 55.2, 38.9, 37.9; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -0.8 (1B), -4.7 (1B), -7.1 (1B), -14.3 (1B), -15.9 (2B), -21.6 (1B), -22.8 (1B), -37.2 (1B); HRMS: calculated for C₁₇B₉H₂₁NO⁻ (M-H)⁻ 354.2466, found 354.2493.

Figure S1. Crystal structures of 3s-10.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 7.83 (brs, 1H), 7.75-7.74 (d, *J*=6Hz, 2H), 7.69-7.66 (dd, *J*=6Hz, 1H), 7.53-7.50 (dd, *J*=6Hz, 2H), 7.15-7.13 (m, 2H), 7.10-7.08 (m, 1H), 7.06-7.05 (m, 1H), 3.24-3.21 (m, 2H), 2.99-2.90 (m, 2H), -2.23 (brs, 1H); ¹³C{¹H} NMR (150MHz, CDCl₃, *ppm*): δ 178.8, 137.5, 137.1, 135.1, 129.4, 128.1, 127.1, 126.9, 126.3, 126.2, 125.4, 56.9, 55.2, 38.9, 37.9; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -0.9 (1B), -4.8 (1B), -7.2 (1B), -14.3 (1B), -16.0 (2B), -21.7 (1B), -22.9 (1B), -37.3 (1B); HRMS: calculated for C₁₇B₉H₂₁NO⁻ (M-H)⁻ 354.2466, found 354.2491.

Figure S2. Crystal structures of 3s-11.

ZCY-087-H

—2.05 —1.81

0.00

ZCY-087-H{B}

¹H{¹¹B}, CDCl₃, 298K

f1 (ppm) -10

ZCY-087-B{H}	
--------------	--

H N H ⁺	\neg
3a	

¹¹B{¹H}, CDCl₃, 298K

~--14.78 ~-16.02 ---21.87 ---24.42 ---25.60 --39.36 ~--2.49 ~--3.93 ---8.58

ZCY-087-B

~-38.96 ~-39.70 -21.45 -22.29 -24.02 -24.99 -25.98 --14.41 --15.14 --15.82 --16.24 --2.14 --2.89 --3.96 --8.21 --8.95

30 25 15 10 -5 fl (ppm) -35 -55 45 40 35 20 -10 -15 -20 -25 -30 -40 -45 -50 5 0

ZCY-250-H

¹H, CDCl₃, 298K

---2.45 ---2.04 ---1.79 ~-0.07 ~-0.00

ZCY-250-H{B}

¹H{¹¹B}, CDCl₃, 298K

ZCY-250-C H M^+ B^+ B^+ B^-	—178.90	 130.10 128.15 122.58 	77.21 77.00 76.79		21.85
				~ ^	

	1 1											· 1	1		, 1				· 1	· 1	· 1		-
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											f1 (ppm)											

ZCY-250-B{H}

¹¹B{¹H}, CDCl₃, 298K

-8.49 ~-21.90 ~-24.46 ~-25.59

ZCY-250-B

¹¹B, CDCl₃, 298K

-14.31 -15.03 -15.03 -15.88 -16.28 -21.55 -22.32 -22.32 -25.10 -2.24 -3.00 -4.04 -8.17 -8.94

-5 f1 (ppm) 55 50 35 30 2520 15 -45 -55 45 40 10 5 0 -10 -15 -20 -25 -30 -35 -40 -50 -60 -65

7.82 7.62 7.59 7.50 7.49 7.42

7.41 7.26

¹H, CDCl₃, 298K

---2.42 ---2.04 ---1.80 ~-0.07

ZCY-283-H{B}

¹H{¹¹B}, CDCl₃, 298K

---3.11

	1	· I	' ' '	' '	· · ·	· · ·	· · ·	' '		'	'	'	'	'	'	· ·	'	· ·	'	'	· I	' ' '
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm))										

ZCY-283-B{H}

ZCY-283-B

¹¹B, CDCl₃, 298K

-14.34-15.08 -15.82 -15.82 -16.22 -21.49 -22.31 -22.31 -25.01 -25.09 ~-39.02 ~-39.77 2.15
2.90
2.90
3.95
3.95
3.95
3.95
3.95

M M Λ٨

5 0 f1 (ppm) 35 25 20 -10 -15-25 -35 -45 65 60 55 50 45 40 30 15 10 5 -5 -20 -30 -40 -50 -55 -60

ZCY-212-H{B}

¹H{¹¹B}, CDCl₃, 298K

 $\begin{array}{c} 7.75 \\ 7.74 \\ 7.763 \\ 7.63 \\ 7.26 \\ 7.26 \\ 6.99 \\ 6.97 \end{array}$

---3.89

2.03 1.79 1.58 1.58 0.94 ____0.07

ZCY-212-C H^+ $G^ G^ G^-$	—178.32	—165.12	—130.42	 77.21 77.00 76.79	 ~38.10 ~35.76	

ZCY-212-B

¹¹B, CDCl₃, 298K

2.24 2.99 4.00		-14.03 -14.76 -15.86 -16.23	-21.53 -22.35 -24.07 -24.07 -25.05	
NIT	Ϋ́			Ϋ́Υ

---4.07

—2.03 —1.78

----0.00

ZCY-269-C $H \to 0$ H^+ 3e $^{13}C, CDCl_3, 298K$	—176.05	 	—121.70	~111.72	77.26 77.05 76.83	 	-0.02

ZCY-26

CY-269-B{H}	<u>38</u> 92	36	.60	.55	
H MeO				-22 -24 -25	
		,			

 \mathbf{H}^+ 3e ¹¹B{¹H}, CDCl₃, 298K

ZCY-269-B

¹¹B, CDCl₃, 298K

Mannh ٨٨

ZCY-260-H

¹H, CDCl₃, 298K

—7.26

6.87

6.87

6.71

---7.85

---3.83

—2.05 —1.80 -----0.00

ZCY-260-C $ \begin{array}{c} \stackrel{H}{\longrightarrow} \stackrel{OMe}{\longrightarrow} \stackrel{OMe}{\longrightarrow} \stackrel{I^{3}C, CDCl_{3}, 298K} \end{array} $	—178.84	—161.30	—126.97	~107.30 ~105.84	77.21 77.00 76.79	55.82	 0.03

· 1	' 1	· ·									· [· 1	· 1						· 1			
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	90 1)	80	70	60	50	40	30	20	10	0	-10	

ZCY-260-B{H}	45 95	<u>.</u>	.79	.85	.45	.38
H O OMe	2.		-14	21	25	

3f ¹¹B{¹H}, CDCl₃, 298K

OMe

'N H⁺

ZCY-260-B

¹¹B, CDCl₃, 298K

2.12 2.86 -3.96	~8.27 ~-8.99	14.44 15.17 15.87	^-21.48 ~-22.25 ~-24.05 ~-25.00	
-----------------------	-----------------	-------------------------	---	--

~--39.00 ~--39.74

¹H, CDCl₃, 298K

¹H{¹¹B}, CDCl₃, 298K

7.187 7.75 7.74 7.74 7.51 7.51

ZCY-362-B

¹¹B, CDCl₃, 298K

 $M \sim M$

т 0 f1 (ppm) -5 -2565 60 55 50 45 40 35 30 25 20 15 10 5 -10-15 -20 -30 -35 -40 -45 -50-55 -60 -65

¹H, CDCl₃, 298K

—2.08 —1.83

ZCY-213-H{B}

 $\begin{array}{c|c} -3.05 \\ -3.05 \\ -2.30 \\ -2.30 \\ -1.72 \\ -1.72 \\ -1.72 \\ -1.08 \\ -0.99 \\ -0.99 \\ -0.89 \\ -0.89 \\ -0.89 \\ -0.89 \\ -0.80$

ZCY-213-C $\downarrow \qquad \qquad$	—177.69	~ 167.67 ~ 165.95	130.96 130.90 130	~121.72 ~117.05 ~116.91	77.21	- 38.64	0.02

f1 (ppm) -10

H O F	2.50 3.99 8.62	14.79 16.12	21.87 24.43 25.63	39.38	が 測试中心核磁 wust wust m
₩ 		\ /	/		NMR Teacher : Huang
¹¹ B{ ¹ H}, CDCl ₃ , 298K					Current Data Parameters NAME 20180327 EXPNO 122 PROCNO 1
					F2 - Acquisition Parameters Date_ 20180328 Time 6.17 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 85536 SOLVENT CDC13 NS 5126 DS 4 SWH 50000.000 Hz FIDRES 0.584549 Hz AQ 0.8553600 sec RG 172.47 DW 10.000 usec DE 6.50 usec TE 297.9 K D1 2.00000000 sec D1 0.03000000 sec TD0 1 ====== CHANNEL f1
					SF01 192.5526102 MHz NUC1 11B Pl 25.00 usec
				1	PLW1 180.0000000 W
					====== CHANNEL f2 ====== SFO2 600.1737063 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 70.00 usec PLW2 23.0000000 W PLW12 0.57832998 W PLW13 0.28338000 W
		IVI			F2 - Processing parameters SI 32768
					_ SF 192.5583870 MHz WDW EM SSB 0
) (LB 1.00 Hz GB 0
	0.94 1.15 1.00	1.01	0.98 1.07 1.12	1.1	PC 1.40
5 20 15 10 5	0 -5 -10	-15 -	20 -25 -3	0 -35 -40 -45 -50 ppm	ר ו

ZCY-213-B

¹¹B, CDCl₃, 298K

4 0 F	o 4	36 27 36 37 36 36 36 37 36 37 36 36 36 36 36 36 36 36 36 36 36 36 36	02 78
0.0 0.0 0.0	τ. Ο.	22,22,22,10,14,14 25,22,22,24,14 25,22,24,14	39. 39.
ちだ	52		52

25 5 0 f1 (ppm) 60 45 35 30 20 15 55 50 40 10 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -6

 $\int_{7.95}^{8.13} 7.95$ $\int_{7.81}^{7.95} 7.82$ -7.26

-2.08-1.83 ~0.07 ~-0.00

¹H, CDCl₃, 298K

3i

ZCY-265-H{B}

¹H{¹¹B}, CDCl₃, 298K

1 1	'	'			1					'	'	1	· 1				1 1	·			1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm)										

ZCY-265-B{H}	80	\sim	13 08	81	58	32
H _	-2.3 -3.9	-8.7	-15. -16.	-21.	-24.	-39.
CF3			17			

3i ¹¹B{¹H}, CDCl₃, 298K

 \hat{H}^+

ZCY-265-B

¹¹B, CDCl₃, 298K

55

60

50

45

40

35

30

25

20

15

10

5

<u>ω</u> 4 ω	ب 0	52	8 0 8 0 8 8 0 8 0 8	95 70
σ́ Ň œ	ω÷-	4.0		
$\overline{\gamma}$ $\overline{\gamma}$ $\overline{\gamma}$	ထုတ္	<u> </u>	$\dot{\mathbf{Q}}$	ကို ကို
S/Z	57	57		57

-30

-35

-40

-45

-50

-55

-60

-10

-15

-20

-25

ZCY-206-H

∕_2.24 __1.99 ∕_1.76

ZCY-206-C $i \rightarrow j$ j j j j j j j	-183.49		~-38.48 ~-35.92 19.32	0.02
210 200 190	0 180 170 160 150 140 130 120 110 f	100 90 80 70 60 50 fl (ppm)	40 30 20 10	0 -10

ZCY-206-B{H}

--39.58

ZCY-206-B

2.29 3.07 4.35	~-8.39 ~-9.16	 14.47 15.21 16.09 16.54 	21.50 22.36 24.15 25.05 26.11	
γ / γ	17	\searrow	$\gamma \gamma \gamma \gamma$	\mathbf{Y}

2.68 2.68 2.68 2.68 2.68 2.68 1.09 1.100 0.11 1.24 0.81 0.81 <0.06 <0.06

1 1	1		· 1			1 1		1 1		·		1	· 1					· 1					-
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	90 1)	80	70	60	50	40	30	20	10	0	-10	

ZCY-339-B{H}

	2.61 4.34		14.78 16.18	21.93 24.53 25.65	
--	--------------	--	----------------	-------------------------	--

--39.45

ZCY-339-B

-14.50 -15.23 -15.23 -16.05 -16.48 -21.58 -22.43 -22.43 -25.14 -26.14 ~-39.17 ~-39.92

MM M

				· · ·	, <u>, , , ,</u>		· · · · ·		· · · ·	- I - I	·	<u> </u>	· · · ·	· · · ·			· · · · ·	·	· · · ·	· · · ·	· · · · ·				· · · · ·
65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	-60
	f1 (ppm)																								

ZCY-325-H{B}

---7.41 --7.26

ZCY-325-C H $OH^+H^+31^{13}C, CDCl_3, 298K$	—187.13	77.21 77.00 76.79	~37.95 ~35.88	13.1910.67	0.02
				11	1

Т f1 (ppm) -10 ZCY-325-B{H}

¹¹B{¹H}, CDCl₃, 298K

---21.92 ---24.58 ---25.57 ----2.77 ----4.43 ---8.44

ZCY-325-B

00000	93 04 04 04 04 04 04 04 04 04 04 04 04 04	8 53
4 5 4 8 9 4 5 6 9 7 6	26.22.22.23	ର ର
1155		57

ZCY-301-H

ZCY-301-H{B}

~7.34 ~7.26

ZCY-301-C $H \rightarrow H^+$ H^+ 3m $^{13}C, CDCl_3, 298K$ $P \rightarrow P \rightarrow P$	77.21 77.00 76.79	41.29 38.23 35.44 28.87 28.87 24.91 24.88	0.03	
				-

Т f1 (ppm) -10 ZCY-301-B{H}

~--21.94 _--24.49 _--25.70 ----2.63 ----4.32

ZCY-301-B

Н

H⁺ **3m** ¹¹B, CDCl₃, 298K

100	0 00	23 7 42 48 20 3 48 49 48 20 5 48 20 5 48 20 5 48 20 5 48 20 5 48 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	19 19
10.4 0.0	မှ ဝ ဂ	-14. -15. -25. -25. -25. -25. -25.	
siż.	ŚŻ		ŚŻ

MMMM 0 f1 (ppm) 60 -5 55 50 45 35 30 25 20 15 10 -10 -15 -20 -25 -30 -35 -40 -50 40 5 -45 -55 -60 ZCY-297-H

—1.99 —1.76 ---0.00

¹H, CDCl₃, 298K

ZCY-297-H{B}

---0.00

Т f1 (ppm) -10 ZCY-297-B{H}

¹¹B{¹H}, CDCl₃, 298K

---2.60 ---4.23 ---4.23 ---16.06 ---16.06 ---16.06 ---39.46

ZCY-297-B

ZCY-349-H{B}

¹H{¹¹B}, CDCl₃, 298K

∕_0.09 ∕_0.02

4.18
 4.18

ZCY-349-C	—185.67		[134.11 [131.03 [[130.23	129.27 129.19 127.81 126.87 126.35	L125.58 L122.52		₹77.21 ₹77.00 76.79		~38.47	36.62			0.02	
N [´] H ⁺ 30 C, CDCl ₃ , 298K														
							I							
										I				
	l									~hh		nga ding tangka tan se	L	ng niti ng ng niti ng
210	190	170	150	130	110 fl (pp	90 m)	80 70	60	50 4	0 30	20	10	0 -	10

ZCY-349-B

¹¹B, CDCl₃, 298K

-8.05 -7.95 -7.72 -7.72

¹H{¹¹B}, CDCl₃, 298K

2010100

—171.34

77.21 77.00 76.79 ---0.02

210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10

ZCY-318-B{H}

2.54 4.45			~-21.84 ~-24.31 ~-25.59	
1 1	1	۱ſ	())	

ZCY-318-B

¹¹B, CDCl₃, 298K

ZCY-199-H

¹H, CDCl₃, 298K

₹ 1.40 1.40 ____0.07 ____0.00

H ⁺ 3q ¹³ C, CDCl ₃ , 298K	

110 100 90 fl (ppm) 160 150 -10

ZCY-199-B{H}

3q ¹¹B{¹H}, CDCl₃, 298K

		20.80 21.78	
--	--	----------------	--

¹¹B, CDCl₃, 298K

ZCY-266-H

99.02.03 98.88.88.88.89 99.02.03 99.02.03 99.02.03 99.02.03 99.02.03 99.02.03 99.02.03 99.02.03 99.03 99.03 90.030	.07 0.00

¹H, CDCl₃, 298K

ZCY-266-H{B}

¹H{¹¹B}, CDCl₃, 298K

 $\begin{array}{c} -3.19 \\ -2.40 \\$

ZCY-266-C $Et \xrightarrow{H}_{0} \xrightarrow{N}_{0}$ 3r $^{13}C, CDCl_{3}, 298K$	 - 135.04 - 129.39 - 128.06 - 125.48	77.21 77.90 76.79 -60.64 -59.13	<pre>26.59 <25.94 <14.99 <14.74 <14.74 <100 <-0.02</pre>

	, 1					1 1	1 1	1 1			· · ·		· 1	·	· · · ·	· 1			·	· 1	· 1	· 1	-
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											fl (ppm)												

ZCY-266-B{H}

¹¹B{¹H}, CDCl₃, 298K

ZCY-266-B

¹¹B, CDCl₃, 298K

0 f1 (ppm) 55 45 40 30 2520 15 -5 -15 -20 -25 -30 -35 -45 60 50 35 10 5 -10 -40 -50 -55 -60

ZCY-351-B10-H{B}

¹H{¹¹B}, CDCl₃, 298K

H⁺ 3s-10

¹¹B{¹H}, CDCl₃, 298K

ZCY-351-B10-B

¹¹B, CDCl₃, 298K

|--|

~-36.93 ~-37.68

fl (ppm)

ZCY-351-B11-H{B}

 $\stackrel{\scriptstyle <}{}^{\scriptstyle 0.02}_{\scriptstyle 0.00}$

 $^{11}B{}^{1}H$, CDCl₃, 298K

0.92 4.79 7.19 14.30	~21.70
-------------------------------	--------

ZCY-351-B11-B

¹¹B, CDCl₃, 298K

--0.47 --1.15 --1.15 --1.15 --1.15 --1.13.93 --14.75 --14.75 --15.69 --15.69 --15.69 --15.69 --15.69 --23.28 ~-36.92 ~-37.67

M

20 15 10 5 -15 -25 -30 -35 0 -5 -10 -20 -40 -45 fl (ppm)