Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Electrochemical Ruthenium-Catalyzed Alkyne Annulations by C–H/Het–H Activation of Aryl Carbamates or Phenols in Protic Media

Ruhuai Mei, Julian Koeller and Lutz Ackermann*

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität

Tammannstraße 2, 37077 Göttingen, Germany

Fax: +49/ 551-39-6777

Lutz.Ackermann@chemie.uni-goettingen.de

General Remarks	S-2
Optimization Studies	S-3
General Procedures for the Electrooxidative Ruthenium(II)-Catalyzed C-H/Het-H Annulations	S-5
Characterization Data of Products 3 and 5	S-6
Mechanistic Studies	S-19
References	S-25
¹ H-, ¹³ C- and ¹⁹ F-NMR Spectra	S-26

General Remarks

Catalytic reactions were carried out in undivided electrochemical cells under a N2 atmosphere using pre-dried glassware, if not noted otherwise. Naphthalene carbamates **1**^[1] and internal alkynes **2b-2h**^[2] were synthesized according to previously described methods. All the other chemicals were used as obtained by commercial sources. Platinum electrodes (10 mm × 15 mm × 0.25 mm, 99.9%; obtained from ChemPur® Karlsruhe, Germany) and RVC electrodes (10 mm \times 15 mm \times 6 mm, SIGRACELL®GFA 6 EA) were connected using stainless steel adapters. Electrolysis was conducted using an AXIOMET AX3003P potentiostat in constant current mode. Yields refer to isolated compounds, estimated to be >95% pure as determined by ¹H-NMR. Chromatography: Merck silica gel 60 (40-63 µm). NMR: Spectra were recorded on a Varian Unity 300, Mercury 300, Inova 500 or Bruker Avance III 300, Bruker Avance III HD 400 and Bruker Avance III HD 500 in the solvent indicated; chemical shifts (δ) are given in ppm relative to the residual solvent peak. All IR spectra were recorded on a Bruker FT-IR Alpha device. MS: EI-MS- and ESI-MSspectra were recorded with Finnigan MAT 95, 70 eV and Finnigan LCQ; High resolution mass spectrometry (HRMS) with APEX IV 7T FTICR. M. p.: Stuart melting point apparatus SMP3, Barloworld Scientific, values are uncorrected. Fluorescence excitation and emission data in solution were recorded on a Jasco® FP-8500 spectrofluorometer. The widths of excitation and emission slits were held constant at 2.5 and 5.0 nm, respectively. The scan speed was adjusted to 500 nm/min. The concentration in CH₃CN is given for each sample and the excitation wavelengths were selected at the strongest signal.

Optimization studies

Table S-1 Optimization of the Electrooxidative Ruthenium-Catalyzed C–H/N–H Activation with Aryl

 Carbamates 1a.

Entry	[TM]	Solvent	Electrolyte	Addtive	FE [%]	Yield
1	$[RuCl_2(p-cymene)]_2$	DMF	n-Bu ₄ NPF ₆	KOAc	9	35
2	$[RuCl_2(p-cymene)]_2$	t-AmOH	n-Bu ₄ NPF ₆	KOAc	13	51
3	[Cp*RhCl ₂] ₂	t-AmOH	n-Bu ₄ NPF ₆	KOAc		<5
4	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH/H ₂ O (3/1)	n-Bu ₄ NPF ₆	KOAc	15	61
5	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH/H ₂ O (3/1)		KOAc	7	27
6	$[RuCl_2(p-cymene)]_2$	DMF/H ₂ O (3/1)	n-Bu ₄ NPF ₆	KOAc	7	28
7	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	n-Bu ₄ NPF ₆	NaOPiv	14	57
8	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	n-Bu ₄ NPF ₆	Na ₂ CO ₃	3	12
9	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NOAc	KOAc	15	59
10	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NBF ₄	KOAc	15	58
11	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NCl	KOAc	14	57
12	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NClO ₄	KOAc	16	65
13	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NNO ₃	KOAc	12	47
14	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	Ferrocene	KOAc	11	43
15	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NClO ₄	KOAc	23	36 ^b
16	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NClO ₄	KOAc	39	77^c
17	[RuCl ₂ (<i>p</i> -cymene)] ₂	<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NClO ₄	KOAc	37	82^d
18		<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NClO ₄	KOAc		<5
19	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NClO ₄	KOAc		31 ^e
20	$[RuCl_2(p-cymene)]_2$	<i>t</i> -AmOH /H ₂ O (3/1)	<i>n</i> -Bu ₄ NClO ₄	KOAc		36 ^{<i>f</i>}

^{*a*} Reaction conditions: **1a** (0.60 mmol), **2a** (0.30 mmol), [TM] (10 mol %), additive (0.60 mmol), electrolyte (0.18 mmol), solvent (4.0 mL), 100 °C, 16 h, under N₂, constant current (CCE) at 4.0 mA, undivided cell, RVC anode (1.0×1.5 cm), Pt cathode (1.0×1.5 cm), isolated yield. ^{*b*} 10 mA. 2.5 h. ^{*c*} 2.0 mA, 16 h. ^{*d*} 1.5 mA, 24 h. ^{*e*} Without current, 24 h. ^{*f*} Without current, under air, 24 h.

 Table S-2 Optimization of the Electrooxidative Ruthenium-Catalyzed C–H/O–H Activation with

 Naphthol 4a.

Entry	[TM] (mol %)	Solvent	Electrolyte	T [°C]	FE [%]	Yield $[\%]^a$
1	$[RuCl_2(p-cymene)]_2 (5.0)$	<i>t</i> -AmOH/H ₂ O (3/1)		90	15	36
2	$[\operatorname{RuCl}_2(p\text{-cymene})]_2 (5.0)$	t-AmOH	<i>n</i> -Bu ₄ NPF ₆	90	25	59
3	$[\operatorname{RuCl}_2(p\text{-cymene})]_2 (5.0)$	<i>p</i> -xylene	<i>n</i> -Bu ₄ NPF ₆	90	28	68
4	$[\operatorname{RuCl}_2(p\text{-cymene})]_2 (5.0)$	CH ₃ CN	<i>n</i> -Bu ₄ NPF ₆	90	14	33
5	$[\operatorname{RuCl}_2(p\text{-cymene})]_2 (5.0)$	GVL	<i>n</i> -Bu ₄ NPF ₆	90	6	15
6	$[\operatorname{RuCl}_2(p\text{-cymene})]_2 (5.0)$	МеОН		70	5	11
7	$[\operatorname{RuCl}_2(p\text{-cymene})]_2 (5.0)$	TFE		70		<5
8	$[RuCl_2(p-cymene)]_2 (5.0)$	<i>m</i> -xylene/ <i>t</i> -AmOH (3/1)	<i>n</i> -Bu ₄ NPF ₆	100	29	70
9	[RuCl ₂ (<i>p</i> -cymene)] ₂ (5.0)	<i>m</i> -xylene/ <i>t</i> -AmOH (1/1)	<i>n</i> -Bu ₄ NPF ₆	100	35	84
10	$[RuCl_2(p-cymene)]_2$ (2.5)	<i>m</i> -xylene/ <i>t</i> -AmOH (1/1)	<i>n</i> -Bu ₄ NPF ₆	100	32	77
11	[Ru(MesCO ₂) ₂ (<i>p</i> -cymene)] (5.0)	<i>m</i> -xylene/ <i>t</i> -AmOH (1/1)	<i>n</i> -Bu ₄ NPF ₆	100	32	76
12	$[Cp*IrCl_2]_2$ (2.5)	<i>m</i> -xylene/ <i>t</i> -AmOH (1/1)	<i>n</i> -Bu ₄ NPF ₆	100		<5
13	[Cp*RhCl ₂] ₂ (2.5)	<i>m</i> -xylene/ <i>t</i> -AmOH (1/1)	<i>n</i> -Bu ₄ NPF ₆	100	8	20
14	Cp*Co(CO)I ₂ (10)	<i>m</i> -xylene/ <i>t</i> -AmOH (1/1)	<i>n</i> -Bu ₄ NPF ₆	100		<5
15		<i>m</i> -xylene/ <i>t</i> -AmOH (1/1)	<i>n</i> -Bu ₄ NPF ₆	100		<5
16	$[RuCl_2(p-cymene)]_2 (5.0)$	<i>m</i> -xylene/ <i>t</i> -AmOH (1/1)	<i>n</i> -Bu ₄ NPF ₆	100		8^b
17	$[RuCl_2(p-cymene)]_2 (5.0)$	<i>m</i> -xylene/ <i>t</i> -AmOH (1/1)	<i>n</i> -Bu ₄ NPF ₆	100		29 ^c

^{*a*} Reaction conditions: **4a** (1.0 mmol), **2a** (0.50 mmol), $[RuCl_2(p-cymene)]_2$ (5.0 mol %), KOAc (1.0 mmol), electrolyte (0.30 mmol), solvent (3.0 mL), 16 h, under N₂, constant current (CCE) at 4.0 mA, undivided cell, RVC anode (1.0 × 1.5 cm), Pt cathode (1.0 × 1.5 cm), isolated yield. ^{*b*} Without current. ^{*c*} Without current, under air.

General Procedures for the Electrooxidative Ruthenium(II)-Catalyzed C–H/Het–H Annulations General Procedure (GP1) for the Ruthenium(II)-Catalyzed C–H/N–H Annulation with Aryl Carbamates 1.

The electrolysis was carried out in an undivided cell with a RVC anode (10 mm × 15 mm × 6 mm) and a platinum cathode (10 mm × 15 mm × 0.25 mm). Carbamate **1** (0.60 mmol, 2.0 equiv), alkyne **2** (0.30 mmol, 1.0 equiv), KOAc (59 mg, 0.60 mmol, 2.0 equiv), *n*-Bu₄NClO₄ (62 mg, 0.18 mmol, 0.60 equiv) and [RuCl₂(*p*-cymene)]₂ (9.2 mg, 5.0 mol %) were dissolved in *t*-AmOH/H₂O (3/1, 4.0 mL) under a N₂ atmosphere. Electrolysis was performed at 100 °C with a constant current of 1.5 mA which was then maintained for 24 h. At ambient temperature, the mixture was transferred to a flask and the RVC anode was washed with acetone (3×10 mL) in an ultrasonic bath. Then, silica gel (1.0 g) was added and the combined solvents were removed under reduced pressure. The residue was purified by column chromatography on silica gel (*n*-hexane or *n*-heptane/EtOAc = 40/1 to 20/1) affording the corresponding products **3**.

General Procedure (GP2) for the Ruthenium(II)-Catalyzed C–H/O–H Annulation with Naphthalol 4a.

The electrolysis was carried out in an undivided cell with a RVC anode (10 mm × 15 mm × 6 mm) and a platinum cathode (10 mm × 15 mm × 0.25 mm). Naphthalen-1-ol (**4a**) (1.0 mmol, 2.0 equiv), alkyne **2** (0.50 mmol, 1.0 equiv), KOAc (98 mg, 1.0 mmol, 2.0 equiv), *n*-Bu₄NPF₆ (110 mg, 0.30 mmol, 0.60 equiv) and [RuCl₂(*p*-cymene)]₂ (15.3 mg, 5.0 mol %) were dissolved in *t*-AmOH/*m*-xylene (1/1, 3.0 mL) under a N₂ atmosphere. Electrolysis was performed at 100 °C with a constant current of 4.0 mA which was then maintained for 16 h. At ambient temperature, the mixture was transferred to a flask and the RVC anode was washed with acetone (3×10 mL) in an ultrasonic bath. Then, silica gel (1.0 g) was added and the combined solvents were removed under reduced pressure. The residue was purified by column chromatography on silica gel (*n*-hexane or *n*-heptane/EtOAc = 40/1 to 30/1) affording the corresponding products **5**.

Characterization Data of Products 3 and 5

Ethyl 2,3-diphenyl-1H-benzo[de]quinoline-1-carboxylate (3aa)

The general procedure **GP1** was followed using 1,2-diphenylethyne (**2a**) (53.5 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3aa** (96.3 mg, 82%, FE: 37%) as a pale yellow solid. M. p. = 153–154 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.01 (dd, *J* = 5.5, 3.4 Hz, 1H), 7.54–7.44 (m, 3H), 7.33–7.20 (m, 4H), 7.19–7.14 (m, 4H), 7.13–7.05 (m, 3H), 6.74 (dd, *J* = 7.3, 1.0 Hz, 1H), 3.83 (q, *J* = 7.1 Hz, 2H), 0.75 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 154.3 (C_q), 139.2 (C_q), 136.6 (C_q), 136.6 (C_q), 131.9 (C_q), 131.0 (CH), 128.8 (CH), 128.4 (CH), 127.3 (CH), 127.1 (C_q), 126.9 (CH), 126.8 (CH), 126.5 (CH), 126.5 (CH), 126.5 (CH), 125.1 (CH), 122.0 (CH), 119.8 (CH), 114.8 (CH), 62.7 (CH₂), 13.3 (CH₃). IR (neat): 3097, 2926, 1713, 1462, 1210, 1122, 1013, 828, 695 cm⁻¹. MS (EI) m/z (relative intensity) 392 (15) [M+H]⁺, 391 (50) [M+H]⁺, 347 (30), 318 (100). HR-MS (EI) m/z calcd for C₂₇H₂₁NO₂ [M]⁺ 391.1572, found 391.1574. The analytical data correspond with those reported in the literature.^[1]

Ethyl 2,3-di-p-tolyl-1H-benzo[de]quinoline-1-carboxylate (3ab)

The general procedure **GP1** was followed using 1,2-di-*p*-tolylethyne (**2b**) (61.9 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3ab** (91.9 mg, 73%, FE: 33%) as a pale yellow solid. M. p. = 176–177 °C. ¹H NMR (600 MHz, CDCl₃) δ = 7.96 (dd, *J* = 6.2, 2.6 Hz, 1H), 7.50–7.43 (m, 3H), 7.19 (dd, *J* = 8.2, 7.4 Hz, 1H), 7.11 (d, *J* = 7.8 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 7.8 Hz, 2H), 6.72 (dd, *J* = 7.3, 1.0 Hz, 1H), 3.83 (q, *J* = 7.1 Hz, 2H), 2.34 (s, 3H), 2.24 (s, 3H),

0.77 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃) $\delta = 154.3$ (C_q), 136.6 (C_q), 136.5 (C_q), 136.3 (C_q), 136.3 (C_q), 136.3 (C_q), 133.7 (C_q), 133.6 (C_q), 132.3 (C_q), 130.8 (CH), 129.0 (CH), 128.6 (CH), 128.0 (CH), 126.6 (C_q), 126.5 (CH), 126.4 (CH), 124.7 (CH), 121.8 (CH), 119.6 (CH), 114.6 (CH), 62.7 (CH₂), 21.3 (CH₃), 21.2 (CH₃), 13.5 (CH₃). IR (neat): 2993, 1730, 1577, 1403, 1241, 1121, 1010, 771 cm⁻¹. MS (ESI) m/z (relative intensity) 420 (20) [M+H]⁺, 419 (60) [M+H]⁺, 375 (30), 346 (100), 331 (35). HR-MS (ESI) m/z calcd for C₂₉H₂₆NO₂ [M+H]⁺ 420.1958, found 420.1956.

Ethyl 2,3-bis(4-methoxyphenyl)-1*H*-benzo[de]quinoline-1-carboxylate (3ac)

The general procedure **GP1** was followed using 1,2-bis(4-methoxyphenyl)ethyne (**2c**) (71.5 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3aa** (88.0 mg, 65%, FE: 29%) as a pale yellow solid. M. p. = $171-172 \, {}^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.94$ (dd, J = 5.7, 3.1 Hz, 1H), 7.50–7.41 (m, 3H), 7.19 (dd, J = 8.2, 7.3 Hz, 1H), 7.10 (d, $J = 8.8 \, \text{Hz}$, 2H), 7.06 (d, $J = 8.6 \, \text{Hz}$, 2H), 6.85 (d, $J = 8.7 \, \text{Hz}$, 2H), 6.73 (dd, J = 7.3, 1.0 Hz, 1H), 6.66 (d, $J = 8.8 \, \text{Hz}$, 2H), 3.85 (q, $J = 7.1 \, \text{Hz}$, 2H), 3.79 (s, 3H), 3.73 (s, 3H), 0.81 (t, $J = 7.1 \, \text{Hz}$, 3H). ¹³C NMR (125 MHz, CDCl₃) $\delta = 158.2 \, (C_q)$, 158.1 (C_q), 154.3 (C_q), 136.6 (C_q), 136.4 (C_q), 133.6 (C_q), 132.4 (C_q), 132.0 (CH), 131.6 (C_q), 129.9 (CH), 128.9 (C_q), 126.5 (CH), 126.3 (CH), 125.8 (C_q), 124.6 (CH), 121.8 (CH), 119.3 (CH), 114.4 (CH), 113.8 (CH), 112.7 (CH), 62.7 (CH₂), 55.1 (CH₃), 55.1 (CH₃), 13.5 (CH₃). IR (neat): 2954, 1712, 1607, 1508, 1284, 1241, 1172, 1022, 828 \, \text{cm}^{-1}. MS (ESI) m/z (relative intensity) 474 (100) [M+Na]⁺, 452 (40) [M+H]⁺. HR-MS (ESI) m/z calcd for C₂₉H₂₆NO₄ [M+H]⁺ 452.1856, found 452.1854. The analytical data correspond with those reported in the literature.^[1]

Ethyl 2,3-bis(4-isopropoxy-3-methoxyphenyl)-1H-benzo[de]quinoline-1-carboxylate (3ad)

The general procedure **GP1** was followed using 1,2-bis(4-isopropoxy-3-methoxyphenyl)ethyne (**2d**) (106.3 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 6:1) yielded **3ad** (120.9 mg, 71%, FE: 32%) as a pale yellow solid. M. p. = 154–155 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (dd, *J* = 5.9, 2.9 Hz, 1H), 7.49–7.40 (m, 3H), 7.20 (dd, *J* = 8.2, 7.3 Hz, 1H), 6.87–6.83 (m, 2H), 6.79 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.74 (dd, *J* = 8.1, 1.9 Hz, 1H), 6.68 (d, *J* = 8.4 Hz, 1H), 6.61 (d, *J* = 2.1 Hz, 1H), 6.58 (d, *J* = 1.9 Hz, 1H), 4.53–4.39 (m, 2H), 3.85 (q, *J* = 7.1 Hz, 2H), 3.62 (s, 3H), 3.52 (s, 3H), 1.35 (d, *J* = 6.1 Hz, 6H), 1.29 (d, *J* = 6.1 Hz, 6H), 0.78 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 154.5 (C_q), 150.5 (C_q), 149.3 (C_q), 146.1 (C_q), 126.6 (C_q), 136.6 (C_q), 136.5 (C_q), 133.8 (C_q), 132.5 (C_q), 132.1 (C_q), 120.3 (CH), 119.4 (CH), 115.6 (CH), 114.8 (CH), 114.8 (CH), 114.3 (CH), 113.6 (CH), 71.3 (CH), 71.2 (CH), 62.7 (CH₂), 55.8 (CH₃), 55.6 (CH₃), 22.0 (CH₃), 21.9 (CH₃), 13.4 (CH₃). IR (neat): 2979, 2932, 1713, 1576, 1507, 1231, 1106, 1032, 829 cm⁻¹. MS (ESI) m/z (relative intensity) 590 (100) [M+Na]⁺, 568 (60) [M+H]⁺. HR-MS (ESI) m/z calcd for C₃₅H₃₈NO₆ [M+H]⁺ 568.2694, found 568.2689.

Ethyl 2,3-bis{4-(trifluoromethyl)phenyl}-1H-benzo[de]quinoline-1-carboxylate (3ae)

The general procedure **GP1** was followed using 1,2-bis{4-(trifluoromethyl)phenyl}ethyne (**2e**) (94.3 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3ae** (63.3 mg, 40%, FE: 18%) as a pale yellow solid. M. p. = 141–142 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.01 (dd, *J* = 7.0, 1.9 Hz, 1H),

7.61–7.47 (m, 5H), 7.38 (d, J = 8.2 Hz, 2H), 7.30–7.18 (m, 5H), 6.66 (dd, J = 7.3, 1.0 Hz, 1H), 3.86 (q, J = 7.1 Hz, 2H), 0.76 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃) $\delta = 153.7$ (C_q), 142.5 (C_q), 139.9 (C_q), 135.9 (C_q), 135.4 (C_q), 133.6 (C_q), 131.3 (CH), 130.6 (C_q), 129.7 (q, ² $J_{C-F} = 32.6$ Hz, C_q), 129.1 (q, ² $J_{C-F} = 32.5$ Hz, C_q), 129.0 (CH), 127.7 (C_q), 126.6 (CH), 126.5 (C_q), 126.4 (CH), 126.1 (CH), 125.6 (q, ³ $J_{C-F} = 3.5$ Hz, CH), 124.5 (q, ³ $J_{C-F} = 3.6$ Hz, CH), 123.9 (q, ¹ $J_{C-F} = 271.7$ Hz, C_q), 123.8 (d, ¹ $J_{C-F} = 271.6$ Hz, C_q), 122.7 (CH), 120.4 (CH), 116.3 (CH), 63.0 (CH₂), 13.4 (CH₃). ¹⁹**F** NMR (376 MHz, CDCl₃) $\delta = -62.55$ (s, 3F), -62.60 (s, 3F). IR (neat): 1726, 1616, 1578, 1405, 1321, 1245, 1167, 1106, 1014 cm⁻¹. MS (ESI) m/z (relative intensity) 550 (60) [M+Na]⁺, 528 (10) [M+H]⁺, 437 (30), 381 (100). HR-MS (ESI) m/z calcd for C₂₉H₂₀F₆NO₂ [M+H]⁺ 528.1393, found 528.1389.

Ethyl 2,3-bis(4-fluorophenyl)-1*H*-benzo[de]quinoline-1-carboxylate (3af)

The general procedure **GP1** was followed using 1,2-bis(4-fluorophenyl)ethyne (**2f**) (64.3 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3af** (92.3 mg, 72%, FE: 32%) as a pale yellow solid. M. p. = 163–164 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.98 (dd, *J* = 6.3, 2.6 Hz, 1H), 7.56–7.44 (m, 3H), 7.22 (dd, *J* = 8.3, 7.3 Hz, 1H), 7.17–7.07 (m, 4H), 7.05–6.98 (m, 2H), 6.89–6.81 (m, 2H), 6.70 (dd, *J* = 7.3, 1.0 Hz, 1H), 3.89 (q, *J* = 7.1 Hz, 2H), 0.84 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.8 (d, ¹*J*_{C-F} = 246.6 Hz, C_q), 161.5 (d, ¹*J*_{C-F} = 247.4 Hz, C_q), 154.1 (C_q), 136.4 (C_q), 136.0 (C_q), 135.1 (d, ⁴*J*_{C-F} = 3.5 Hz, C_q), 133.7 (C_q), 132.6 (d, ³*J*_{C-F} = 7.9 Hz, CH), 132.3 (d, ⁴*J*_{C-F} = 3.6 Hz, C_q), 131.6 (C_q), 130.5 (d, ³*J*_{C-F} = 8.1 Hz, CH), 126.6 (C_q), 126.6 (CH), 126.5 (CH), 126.4 (C_q), 125.3 (CH), 122.2 (CH), 119.8 (CH), 115.6 (d, ²*J*_{C-F} = 21.5 Hz, CH), 115.2 (CH), 114.5 (d, ²*J*_{C-F} = 21.6 Hz, CH), 62.9 (CH₂), 13.4 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ = -(114.15–114.05) (m, 1F), -(114.52–114.43) (m, 1F). IR (neat): 3054, 2985, 1720, 1577, 1505, 1403, 1366, 1247, 1213 cm⁻¹. MS (ESI) m/z (relative intensity) 450 (80) [M+Na]⁺, 428 (30) [M+H]⁺, 381 (100). HR-MS (ESI) m/z calcd for C₂₇H₂₀F₂NO₂ [M+H]⁺ 428.1457, found 428.1456.

Ethyl 2,3-bis(4-chlorophenyl)-1H-benzo[de]quinoline-1-carboxylate (3ag)

The GP1 followed using 1,2-bis(4-chlorophenyl)ethyne (2g) general procedure was (74.1 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 20:1) yielded **3ag** (77.3 mg, 56%, FE: 25%) as a pale yellow solid. M. p. = 152–153 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.97 (dd, J = 6.7, 2.1 Hz, 1H), 7.57–7.43 (m, 3H), 7.29 (d, J = 8.4 Hz, 2H), 7.21 (dd, J = 8.3, 7.4 Hz, 1H), 7.14–7.03 (m, 6H), 6.68 (dd, J = 7.3, 1.0 Hz, 1H), 3.88 (q, J = 7.1 Hz, 2H), 0.82 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, $CDCl_3$) $\delta = 153.9 (C_a), 137.5 (C_a), 136.1 (C_a), 135.6 (C_a), 134.7 (C_a), 133.6 (C_a), 133.1 (C_a), 132.7$ (C_a), 132.2 (CH), 131.2 (C_a), 130.0 (CH), 128.8 (CH), 127.7 (CH), 126.7 (C_a), 126.5 (CH), 126.5 (C_a), 126.4 (CH), 125.6 (CH), 122.4 (CH), 120.0 (CH), 115.6 (CH), 63.0 (CH₂), 13.6 (CH₃). IR (neat): 3054, 2985, 1720, 1631, 1574, 1487, 1397, 1365, 1242 cm⁻¹. MS (ESI) m/z (relative intensity) 482 (30) $[M+Na]^+$, 460 (10) $[M+H]^+$, 437 (20), 381 (100). HR-MS (ESI) m/z calcd for $C_{27}H_{20}^{35}Cl_2NO_2$ $[M+H]^+$ 460.0866, found 460.0862; C₂₇H₂₀³⁵Cl³⁷ClNO₂ [M+H]⁺ 462.0838, found 462.0839. The analytical data correspond with those reported in the literature.^[1]

Ethyl 2,3-bis(4-bromophenyl)-1*H*-benzo[de]quinoline-1-carboxylate (3ah)

The general procedure **GP1** was followed using 1,2-bis(4-bromophenyl)ethyne (**2h**) (100.8 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3ah** (117.0 mg, 71%, FE: 32%) as a pale yellow solid. M. p. = 174–175 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.98 (dd, *J* = 6.6, 2.3 Hz, 1H), 7.55–7.42 (m, 5H), 7.30–7.26 (m, 2H), 7.21 (dd, *J* = 8.3, 7.3 Hz, 1H), 7.08–6.98 (m, 4H), 6.69 (dd, *J* = 7.3, 1.0 Hz, 1H), 3.89 (q, *J* = 7.1 Hz, 2H), 0.83 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ =

153.9 (C_q), 138.0 (C_q), 136.1 (C_q), 135.6 (C_q), 135.2 (C_q), 133.6 (C_q), 132.6 (CH), 131.8 (CH), 131.1 (C_q), 130.7 (CH), 130.4 (CH), 126.8 (C_q), 126.6 (CH), 126.5 (C_q), 126.5 (CH), 125.6 (CH), 122.4 (CH), 121.3 (C_q), 121.0 (C_q), 120.0 (CH), 115.7 (CH), 62.9 (CH₂), 13.5 (CH₃). IR (neat): 3053, 2981, 1722, 1629, 1574, 1485, 1404, 1366, 1242, 1008 cm⁻¹. MS (ESI) m/z (relative intensity) 572 (80) $[M+Na]^+$, 550 (20) $[M+H]^+$, 450 (30), 381 (100). HR-MS (ESI) m/z calcd for C₂₇H₂₀⁷⁹Br⁸¹Br NO₂ $[M+H]^+$ 549.9837, found 549.9826. The analytical data correspond with those reported in the literature.^[1]

Ethyl 2,3-dibutyl-1*H*-benzo[de]quinoline-1-carboxylate (3ai)

The general procedure **GP1** was followed using dec-5-yne (**2i**) (41.5 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3ai** (54.8 mg, 52%, FE: 23%) as a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.65 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.52 (dd, *J* = 8.2, 0.9 Hz, 1H), 7.46 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.42–7.38 (m, 1H), 7.38–7.34 (m, 1H), 7.18 (dd, *J* = 7.3, 1.0 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 2.80–2.74 (m, 2H), 2.58–2.53 (m, 2H), 1.57–1.42 (m, 6H), 1.40–1.30 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H), 0.96 (t, *J* = 7.2 Hz, 3H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ = 154.2 (C_q), 137.1 (C_q), 136.2 (C_q), 133.2 (C_q), 130.7 (C_q), 127.0 (C_q), 126.4 (CH), 125.7 (CH), 125.1 (C_q), 124.6 (CH), 122.3 (CH), 117.4 (CH), 117.4 (CH), 62.7 (CH₂), 31.6 (CH₂), 31.0 (CH₂), 30.9 (CH₂), 28.2 (CH₂), 23.0 (CH₂), 22.7 (CH₂), 14.2 (CH₃), 14.0 (CH₃), 14.0 (CH₃). IR (neat): 2955, 2928, 1713, 1634, 1578, 1403, 1270, 763 cm⁻¹. MS (ESI) m/z (relative intensity) 374 (40) [M+Na]⁺, 352 (100) [M+H]⁺. HR-MS (ESI) m/z calcd for C₂₃H₃₀NO₂ [M+H]⁺ 352.2271, found 352.2270.

Ethyl 3-ethyl-2-phenyl-1*H*-benzo[de]quinoline-1-carboxylate (3aj)

Ethyl 2-ethyl-3-phenyl-1*H*-benzo[de]quinoline-1-carboxylate (3aj')

The general procedure **GP1** was followed using but-1-yn-1-ylbenzene (**2j**) (39.1 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3aj** and **3aj**' (62.8 mg, 9/1, 61%, FE: 27%) as a pale yellow solid. M. p. = 95–96 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 7.91 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.71 (dd, *J* = 7.5, 1.2 Hz, 0.11H), 7.56 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.50–7.46 (m, 3.33H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.43–7.38 (m, 3.33H), 7.35–7.31 (m, 1H), 7.28 (dd, *J* = 7.3, 1.0 Hz, 1H), 7.27–7.25 (m, 0.22H), 7.20 (dd, *J* = 8.2, 7.3 Hz, 0.11H), 6.49 (dd, *J* = 7.3, 1.0 Hz, 0.11H), 4.33 (q, *J* = 7.2 Hz, 0.22H), 3.82 (q, *J* = 7.2 Hz, 2H), 2.57 (q, *J* = 7.5 Hz, 0.22H), 2.53 (q, *J* = 7.5 Hz, 2H), 1.37 (t, *J* = 7.2 Hz, 0.33H), 1.16 (t, *J* = 7.5 Hz, 3H), 0.99 (t, *J* = 7.5 Hz, 0.33H), 0.83 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ = 154.1 (C_q), 139.3 (C_q), 136.2 (C_q), 135.4 (C_q), 133.7 (C_q), 130.5 (C_q), 129.0 (CH), 127.7 (CH), 127.3 (CH), 127.0 (C_q), 126.5 (CH), 126.1 (CH), 125.1 (C_q), 124.9 (CH), 121.7 (CH), 117.5 (CH), 114.4 (CH), 62.5 (CH₂), 21.9 (CH₂), 14.2 (CH₃), 13.5 (CH₃). IR (neat): 3055, 2966, 1715, 1632, 1577, 1402, 1367, 1237, 1173, 1022 cm⁻¹. MS (ESI) m/z calcd for C₂₃H₂₂NO₂ [M+H]⁺ 344.1645, found 344.1644.

Methyl 2,3-diphenyl-1*H*-benzo[de]quinoline-1-carboxylate (3ba)

The general procedure **GP1** was followed using 1,2-diphenylethyne (**2a**) (53.5 mg, 0.30 mmol) and carbamate **1b** (121 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3ba** (71.3 mg, 63%, FE: 28%) as a pale yellow solid. M. p. = 184–185 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.00 (dd, J = 6.2, 2.6 Hz, 1H), 7.56–7.46 (m, 3H), 7.35–7.24 (m, 3H), 7.23–7.07 (m, 8H), 6.76 (dd, J = 7.3, 1.0 Hz, 1H), 3.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 154.8 (C_q), 138.9 (C_q), 136.5 (C_q), 136.5 (C_q), 136.4 (C_q), 133.7 (C_q), 131.8 (C_q), 130.9 (CH),

128.6 (CH), 128.4 (CH), 127.4 (CH), 127.2 (C_q), 127.0 (CH), 126.8 (CH), 126.6 (CH), 126.5 (CH), 126.5 (Cq), 125.1 (CH), 122.1 (CH), 119.9 (CH), 114.8 (CH), 53.1 (CH₃). IR (neat): 3054, 1718, 1629, 1574, 1438, 1281, 1244, 1211, 697 cm⁻¹. MS (ESI) m/z (relative intensity) 400 (100) [M+Na]⁺, 378 (30) [M+H⁺]. HR-MS (ESI) m/z calcd for $C_{26}H_{20}NO_2$ [M+H]⁺ 378.1489, found 378.1484. The analytical data correspond with those reported in the literature.^[1]

Ethyl 7-methyl-2,3-diphenyl-1H-benzo[de]quinoline-1-carboxylate (3ca)

The general procedure **GP1** was followed using 1,2-diphenylethyne (**2a**) (53.5 mg, 0.30 mmol) and carbamate **1c** (137.6 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3ca** (96.1 mg, 79%, FE: 35%) as a pale yellow solid. M. p. = 143–144 °C. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.95 (d, *J* = 7.9 Hz, 1H), 7.62 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.36 (dd, *J* = 7.9, 0.9 Hz, 1H), 7.33–7.25 (m, 4H), 7.20–7.14 (m, 4H), 7.13–7.07 (m, 3H), 6.81 (dd, *J* = 7.3, 1.0 Hz, 1H), 3.84 (q, *J* = 7.1 Hz, 2H), 2.59 (s, 3H), 0.75 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ = 154.4 (C_q), 139.4 (C_q), 136.8 (C_q), 136.8 (C_q), 136.5 (C_q), 134.7 (C_q), 132.4 (C_q), 132.2 (C_q), 131.1 (CH), 128.9 (CH), 128.5 (C_q), 128.3 (CH), 127.3 (CH), 126.9 (CH), 126.8 (CH), 126.7 (CH), 126.3 (CH), 121.8 (CH), 120.0 (CH), 115.2 (CH), 62.6 (CH₂), 19.0 (CH₃), 13.3 (CH₃). IR (neat): 3059, 2982, 1711, 1580, 1400, 1366, 1247, 1106, 1023 cm⁻¹. MS (EI) m/z calcd for C₂₈H₂₃NO₂ [M+H]⁺ 405.1729, found 405.1737. The analytical data correspond with those reported in the literature.^[1]

Ethyl 2,3-diphenyl-1*H*-benzo[ij][2,7]naphthyridine-1-carboxylate (3da)

The general procedure **GP1** was followed using 1,2-diphenylethyne (**2a**) (53.5 mg, 0.30 mmol) and carbamate **1d** (130 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel

(*n*-hexane/EtOAc 20:1) yielded **3da** (74.2 mg, 63%, FE: 28%) as a pale yellow solid. M. p. = 101–102 °C. ¹H NMR (300 MHz, CDCl₃) δ = 8.44 (d, *J* = 4.8 Hz, 1H), 7.70 (dd, *J* = 7.4, 1.7 Hz, 1H), 7.67–7.55 (m, 2H), 7.30–7.20 (m, 3H), 7.19–7.04 (m, 7H), 6.39 (d, *J* = 4.8 Hz, 1H), 3.78 (q, *J* = 7.2 Hz, 2H), 0.74 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ = 153.5 (C_q), 151.6 (CH), 148.5 (C_q), 141.1 (C_q), 140.4 (C_q), 137.0 (C_q), 136.0 (C_q), 135.0 (C_q), 130.8 (CH), 129.7 (CH), 128.9 (CH), 128.5 (CH), 127.9 (CH), 127.6 (CH), 127.2 (CH), 121.8 (C_q), 121.6 (CH), 121.0 (C_q), 111.0 (CH), 109.7 (CH), 63.8 (CH₂), 13.2 (CH₃). IR (neat): 3062, 2891, 1735, 1622, 1578, 1224, 1016, 835, 759 cm⁻¹. MS (ESI) m/z (relative intensity) 393 (100) [M+H]⁺, 381 (10). HR-MS (ESI) m/z calcd for C₂₆H₂₁N₂O₂ [M+H]⁺ 393.1598, found 393.1602. The analytical data correspond with those reported in the literature.^[1]

Ethyl 7-bromo-2,3-diphenyl-1*H*-benzo[de]quinoline-1-carboxylate (3ea)

The general procedure **GP1** was followed using 1,2-diphenylethyne (**2a**) (53.5 mg, 0.30 mmol) and carbamate **1e** (176 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3ea** (112.9 mg, 80%, FE: 36%) as a pale yellow solid. M. p. = 183–184 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.87 (d, *J* = 8.5 Hz, 1H), 7.85 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.75 (d, *J* = 8.5 Hz, 1H), 7.35–7.24 (m, 4H), 7.20–7.08 (m, 7H), 6.81 (dd, *J* = 7.4, 1.0 Hz, 1H), 3.83 (q, *J* = 7.2 Hz, 2H), 0.75 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 154.0 (C_q), 138.7 (C_q), 136.4 (C_q), 136.4 (C_q), 132.3 (C_q), 132.0 (C_q), 131.0 (CH), 130.2 (CH), 128.8 (CH), 128.5 (CH), 127.8 (CH), 127.7 (C_q), 127.4 (CH), 127.1 (CH), 127.0 (CH), 126.5 (C_q), 124.2 (CH), 120.4 (CH), 115.5 (C_q), 114.8 (CH), 63.0 (CH₂), 13.2 (CH₃). IR (neat): 3053, 1722, 1597, 1573, 1403, 1365, 1235, 1212, 1017, 685 cm⁻¹. MS (ESI) m/z (relative intensity) 492 (100) [M+Na]⁺, 472 (30) [M+H]⁺. HR-MS (ESI) m/z calcd for C₂₇H₂₁⁷⁹BrNO₂ [M+H]⁺ 470.0750, found 470.0745. The analytical data correspond with those reported in the literature.^[1]

Ethyl 2,3-diphenyl-1*H*-fluoreno[2,1,9-def]quinoline-1-carboxylate (3fa)

The general procedure **GP1** was followed using 1,2-diphenylethyne (**2a**) (53.5 mg, 0.30 mmol) and carbamate **1f** (174 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3fa** (75.4 mg, 54%, FE: 24%) as a light yellow solid. M. p. = 203–204 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.23 (d, *J* = 8.0 Hz, 1H), 8.16 (dd, *J* = 7.7, 1.0 Hz, 1H), 8.13 (dd, *J* = 7.2, 1.0 Hz, 1H), 8.06 (d, *J* = 7.5 Hz, 1H), 8.04 (d, *J* = 7.9 Hz, 1H), 7.52 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.48 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.33–7.30 (m, 2H), 7.29–7.23 (m, 3H), 7.22–7.14 (m, 5H), 7.04 (d, *J* = 7.4 Hz, 1H), 3.87 (q, *J* = 7.1 Hz, 2H), 0.80 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ = 154.2 (C_q), 137.8 (C_q), 137.7 (C_q), 137.2 (C_q), 136.5 (C_q), 136.5 (C_q), 135.9 (C_q), 131.8 (C_q), 131.1 (CH), 131.0 (C_q), 130.7 (C_q), 129.6 (CH), 128.3 (CH), 127.6 (CH), 127.5 (CH), 127.3 (C_q), 127.0 (CH), 126.2 (CH), 125.5 (CH), 123.4 (C_q), 132.1 (CH₃). IR (neat): 3053, 1731, 1615, 1553, 1440, 1365, 1215, 1107, 1035, 750 cm⁻¹. MS (EI) m/z calcd for C₃₃H₂₃NO₂ [M]⁺ 465.1729, found 465.1742. UV-Vis λ_{max} (2.1 mg/L in CH₃CN) = 251 nm. $E_m\lambda_{max}$ (21 µg/L in CH₃CN) = 505 nm. The analytical data correspond with those reported in the literature.^[1]

Ethyl 2,3,7-triphenyl-1H-benzo[de]quinoline-1-carboxylate (3ga)

The general procedure **GP1** was followed using 1,2-diphenylethyne (**2a**) (53.5 mg, 0.30 mmol) and carbamate **1g** (175 mg, 0.60 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 20:1) yielded **3ga** (85.6 mg, 61%, FE: 27%) as a pale yellow solid. M. p. = 175–176 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.10 (d, J = 8.0 Hz, 1H), 7.62 (dd, J = 8.6, 1.0 Hz, 1H), 7.54–7.46 (m, 5H), 7.44–7.40 (m, 1H), 7.34–7.30 (m, 2H), 7.29–7.25 (m, 1H), 7.23–7.17 (m, 5H), 7.15–7.08 (m, 3H), 6.81 (dd, J = 7.3, 1.0 Hz, 1H), 3.87 (q, J = 7.1 Hz, 2H), 0.78 (t, J = 7.1 Hz, 3H). ¹³C

NMR (125 MHz, CDCl₃) $\delta = 154.2$ (C_q), 140.5 (C_q), 139.1 (C_q), 136.6 (C_q), 136.3 (C_q), 135.9 (C_q), 134.5 (C_q), 132.0 (C_q), 131.7 (C_q), 131.0 (CH), 129.8 (CH), 128.8 (CH), 128.3 (CH), 128.3 (CH), 127.4 (CH), 127.3 (CH), 127.2 (C_q), 127.0 (CH), 126.9 (CH), 126.8 (C_q), 126.7 (CH), 126.5 (CH), 123.4 (CH), 120.1 (CH), 114.9 (CH), 62.8 (CH₂), 13.4 (CH₃). IR (neat): 3056, 1720, 1628, 1575, 1411, 1256, 1104, 1014, 697 cm⁻¹. MS (ESI) m/z (relative intensity) 468(20) [M+H]⁺, 467 (60) [M]⁺, 423 (20), 394 (100), 317 (20). HR-MS (EI) m/z calcd for C₃₃H₂₅NO₂ [M]⁺ 467.1885, found 467.1884.

2,3-Diphenylbenzo[de]chromene (5aa)

The general procedure **GP2** was followed using 1,2-diphenylethyne (**2a**) (89.1 mg, 0.50 mmol) and naphthalen-1-ol (**4a**) (144 mg, 1.0 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 40:1) yielded **5aa** (134.6 mg, 84%, FE: 35%) as a pale yellow solid. M. p. = 111–112 °C. ¹H NMR (600 MHz, CDCl₃) δ = 7.40–7.36 (m, 3H), 7.35–7.30 (m, 4H), 7.27 (ddd, *J* = 7.9, 7.9, 1.2 Hz, 3H), 7.23–7.17 (m, 3H), 7.15 (dd, *J* = 8.4, 7.3 Hz, 1H), 6.88 (dd, *J* = 7.5, 1.1 Hz, 1H), 6.47 (dd, *J* = 7.3, 0.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ = 152.5 (C_q), 149.3 (C_q), 135.4 (C_q), 134.1 (C_q), 131.8 (C_q), 130.9 (CH), 128.9 (CH), 128.8 (CH), 128.3 (CH), 127.6 (CH), 127.5 (CH), 127.4 (CH), 127.3 (CH), 123.6 (CH), 122.8 (C_q), 119.1 (CH), 117.5 (C_q), 115.6 (CH), 106.9 (CH). IR (neat): 3053, 1633, 1577, 1488, 1441, 1362, 1105, 1030, 689 cm⁻¹. MS (ESI) m/z (relative intensity) 321 (40) [M+H]⁺, 320 (100) [M]⁺, 289 (30), 276 (10), 215 (20). HR-MS (EI) m/z calcd for C₂₄H₁₆O [M]⁺ 320.1201, found 320.1202. The analytical data correspond with those reported in the literature.^[3]

2,3-Bis(4-methoxyphenyl)benzo[de]chromene (5ac)

The general procedure **GP2** was followed using 1,2-bis(4-methoxyphenyl)ethyne (**2c**) (119.2 mg, 0.50 mmol) and naphthalen-1-ol (**4a**) (144 mg, 1.0 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 40:1) yielded **5ac** (110.3 mg, 58%, FE: 24%) as a pale

yellow solid. M. p. = 146–147 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.34 (dd, J = 8.4, 0.9 Hz, 1H), 7.29 (dd, J = 8.2, 7.5 Hz, 1H), 7.26–7.22 (m, 3H), 7.18–7.10 (m, 3H), 6.92 (d, J = 8.8 Hz, 2H), 6.84 (dd, J = 7.6, 1.1 Hz, 1H), 6.71 (d, J = 9.0 Hz, 2H), 6.44 (dd, J = 7.3, 0.9 Hz, 1H), 3.83 (s, 3H), 3.75 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ = 159.2 (C_q), 158.7 (C_q), 152.6 (C_q), 149.1 (C_q), 134.7 (C_q), 132.4 (C_q), 132.0 (CH), 130.1 (CH), 127.9 (C_q), 127.6 (CH), 127.2 (CH), 126.7 (C_q), 123.2 (CH), 122.7 (C_q), 118.9 (CH), 116.0 (C_q), 115.2 (CH), 114.5 (CH), 113.0 (CH), 106.7 (CH), 55.2 (CH₃), 55.2 (CH₃). IR (neat): 3113, 2978, 1649, 1607, 1509, 1463, 1169, 1126, 832 cm⁻¹. MS (ESI) m/z (relative intensity) 403 (70) [M+Na]⁺, 381 (100) [M+H]⁺, 353 (10), 305 (10). HR-MS (ESI) m/z calcd for C₂₆H₂₁O₃ [M+H]⁺ 381.1485, found 381.1475; C₂₆H₂₀O₃Na [M+Na]⁺ 403.1305, found 403.1302. The analytical data correspond with those reported in the literature.^[3]

2,3-Bis(4-iso-propoxy-3-methoxyphenyl)benzo[de]chromene (5ad)

The general procedure **GP2** was followed using 1,2-bis(4-iso-propoxy-3-methoxyphenyl)ethyne (**2d**) (177.2 mg, 0.50 mmol) and naphthalen-1-ol (**4a**) (144 mg, 1.0 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 40:1) yielded **5ad** (158.9 mg, 64%, FE: 27%) as a pale yellow solid. M. p. = 143–144 °C. ¹H NMR (600 MHz, CDCl₃) δ = 7.34 (dd, *J* = 8.4, 0.9 Hz, 1H), 7.31–7.27 (m, 1H), 7.25–7.22 (m, 1H), 7.17–7.12 (m, 1H), 7.04 (ddd, *J* = 8.4, 2.2, 0.8 Hz, 1H), 6.91 (d, *J* = 8.1 Hz, 1H), 6.85 (dd, *J* = 7.6, 1.0 Hz, 1H), 6.79–6.76 (m, 2H), 6.75–6.73 (m, 2H), 6.51 (dd, *J* = 7.3, 0.9 Hz, 1H), 4.56–4.47 (m, 2H), 3.72 (s, 3H), 3.52 (s, 3H), 1.42–1.29 (m, 12H). ¹³C NMR (125 MHz, CDCl₃) δ = 152.5 (C_q), 150.9 (C_q), 148.8 (C_q), 148.8 (C_q), 147.2 (C_q), 146.5 (C_q), 134.7 (C_q), 132.2 (C_q), 128.7 (C_q), 127.6 (CH), 127.2 (CH), 126.7 (C_q), 123.2 (CH), 123.1 (CH), 126.7 (C_q), 121.2 (CH), 119.0 (CH), 116.2 (CH), 115.3 (CH), 114.6 (CH), 114.0 (CH), 112.7 (CH), 106.7 (CH), 71.3 (CH), 71.1 (CH) , 56.0 (CH₃), 55.5 (CH₃), 22.2 (CH₃), 22.1 (CH₃). IR (neat): 3113, 2973, 1647, 1608, 1507, 1462, 1262, 1215, 1133, 940 cm⁻¹. MS (ESI) m/z calcd for C₃₂H₃₃O₅ [M+H]⁺ 497.2323, found 497.2317.

2,3-Bis(4-fluorophenyl)benzo[de]chromene (5ae)

The general procedure **GP2** was followed using 1,2-bis(4-fluorophenyl)ethyne (**2e**) (107.1 mg, 0.50 mmol) and naphthalen-1-ol (**4a**) (144 mg, 1.0 mmol, 2.0 equiv). Purification by column chromatography on silica gel (*n*-hexane/EtOAc 40:1) yielded **5ae** (96.2 mg, 54%, FE: 23%) as a pale yellow solid. M. p. = 138–139 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 7.37 (dd, *J* = 8.4, 0.9 Hz, 1H), 7.31 (dd, *J* = 8.2, 7.5 Hz, 1H), 7.28–7.23 (m, 3H), 7.21–7.16 (m, 2H), 7.14 (dd, *J* = 8.3, 7.2 Hz, 1H), 7.09–7.05 (m, 2H), 6.91–6.86 (m, 2H), 6.85 (dd, *J* = 7.6, 1.2 Hz, 1H), 6.40 (dd, *J* = 7.3, 0.9 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ = 162.3 (d, ¹*J*_{C-F} = 249.2 Hz, C_q), 162.1 (d, ¹*J*_{C-F} = 246.7 Hz, C_q), 152.3 (C_q), 148.7 (C_q), 134.7 (C_q), 132.6 (d, ³*J*_{C-F} = 8.0 Hz, CH), 131.5 (C_q), 131.2 (d, ⁴*J*_{C-F} = 3.5 Hz, C_q), 130.8 (d, ³*J*_{C-F} = 8.3 Hz, CH), 130.1 (d, ⁴*J*_{C-F} = 21.3 Hz, CH), 115.5 (CH), 114.8 (d, ²*J*_{C-F} = 21.7 Hz, CH), 107.0 (CH). ¹⁹**F NMR** (376 MHz, CDCl₃) δ = -(111.79–112.72) (m, 1F), -(113.90–113.82) (m, 1F). IR (neat): 3054, 2851, 1891, 1639, 1598, 1504, 1217, 1155, 1104, 1004 cm⁻¹. MS (EI) m/z calcd for C₂₄H₁₄F₂O [M]⁺ 356.1013, found 356.1015. The analytical data correspond with those reported in the literature.^[3a]

Mechanistic studies

Competition Experiments

The general procedure **GP1** was followed using alkyne **2b** (61.9 mg, 0.30 mmol), **2e** (94.3 mg, 0.30 mmol) and carbamate **1a** (129 mg, 0.60 mmol). Electrolysis was performed at 100 °C using a constant current of 1.5 mA which was maintained for 6 h. At ambient temperature, the reaction mixture was dry loaded onto silica gel and purified by column chromatography (*n*-hexane/EtOAc = 20:1) to afford a mixture of **3ae** and **3ab** (66.4 mg). This mixture was analyzed by ¹H-NMR using 1,3,5-trimethoxybenzene (5.6 mg, 0.033 mmol) as internal standard, which showed a product distribution of 7.7/1 in favour of **3ae**.

Figure S-1: ¹H-NMR spectra of the mixture of **3ab** and **3ae**.

¹H NMR yield with 1,3,5-(MeO)₃C₆H₃ as the internal standard.

The general procedure **GP1** was followed using carbamate **1c** (68.8 mg, 0.30 mmol), **1e** (88.2 mg, 0.30 mmol) and alkyne **2a** (53.4 mg, 0.30 mmol). Electrolysis was performed at 100 °C using a constant current of 1.5 mA which was maintained for 6 h. At ambient temperature, the reaction mixture was dry loaded onto silica gel and purified by column chromatography (*n*-hexane/EtOAc = 20:1) to afford a mixture of **3ea** and **3ca** (68.6 mg). This mixture was analyzed by ¹H-NMR using 1,3,5-trimethoxybenzene (16.8 mg, 0.10 mmol) as the internal standard, which showed a product distribution of 4/1 in favour of **3ea**.

Figure S-2: ¹H-NMR spectra of the mixture of 3ca and 3ea.

Deuteration Experiment

The general procedure **I** was followed using alkyne **2a** (53.4 mg, 0.30 mmol) and carbamate **1a** (258 mg, 1.20 mmol). Electrolysis was performed at 100 °C and a constant current of 1.5 mA in a solvent mixture of *t*-AmOH/D₂O (3/1, 4.0 mL) for 6 h. At ambient temperature, the mixture was transferred to a flask and the electrodes were rinsed with acetone (3×5.0 mL). Then silica gel (1.0 g) was added and the combined solvent was removed under reduced pressure. The residue solid was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 30/1 to 15/1) yielding the desired product [D]_n-**3aa** (44.6 mg, 38%) as a pale yellow solid and the reisolated starting material [D]_n-**1a** (228 mg, 88%) as a white solid.

Figure S-3: ¹H-NMR spectra of [D]_n-1a from the deuteration study.

Figure S-4: ¹H-NMR spectra of $[D]_n$ -3aa from the deuteration study.

KIE Studies

Preparation of [D]₇-1a^[4]

NaNO₃ (570 mg, 6.7 mmol) was dissolved in TFA (28 mL), and [D]₈-naphthalene (99% D, 1.0 g, 7.35 mmol) was added in several portions at ambient temperature under air. The mixture was stirred for 5 h at the same temperature, cooled to 0 °C, and then neutralized with aq NaOH (6 M). The mixture was extracted with Et₂O (4 \times 50 mL) and evaporated under reduced pressure. The crude [D]₇-1-nitronaphthalene obtained was used for the next step without further purification. To a mixture of the above [D]₇-1-nitronaphthalene and concentrated aq HCl (ca. 11.4 M, 7.0 mL) in EtOH (15 mL), Sn powder (3.50 g, 29.0 mmol) was added in several portions, and the resulting mixture was stirred at ambient temperature under air. After 6 h, volatile materials were evaporated in vacuo. The residue was dissolved in H₂O and Et₂O. The mixture was neutralized with saturated aq K₂CO₃ and then filtered through a pad of Celite. The filtrate was extracted with EtOAc (3×50 mL), concentrated under reduced pressure, and purified by column chromatography (n-hexane/EtOAc, 3/1) on silica gel to afford $[D]_{7}$ -1-naphthylamine (751 mg, 68%) in a two-step sequence. The deuterium content at each position in the naphthalene ring was determined by ¹H and ²H NMR analysis, as follows: 92% D at C₂; >95% D at all the other aromatic C-H bond. The attachment of the ethyl carbonochloridate to 1naphthylamine-d₇ was performed according to a literature reported method,^[1] and purification by chromatography (n-hexane/EtOAc, 15/1) furnished [D]7-1a (1.02 g, 92%) as a white solid.

Figure S-5: ¹H-NMR spectra of [D]₇-1a.

Parallel experiment

Two independent reactions following the general procedure **GP1** were carried out. Carbamates **1a** (215 mg, 1.0 mmol) or $[D]_7$ -**1a** (222 mg, 1.0 mmol), 1,2-bis(4-fluorophenyl)ethyne (**2f**) (107 mg, 0.50 mmol) and 4'-(trifluoromethyl)acetophenone (37.6 mg, 0.20 mmol, as the internal standard) were dissolved in *t*-AmOH/H₂O (6/2, 8.0 mL) under a N₂ atmosphere. After 10 minutes to reach a stable constant current of 1.5 mA, aliquots of 0.1 mL were removed from each cell every 10 minutes. The mixture was diluted immediately with EtOAc (3.0 mL) and filtered through a silica pad. After evaporation of the solvent, each sample was analyzed by ¹⁹F-NMR.

Time [min]	10	20	30	40	50	60
3af [%]	5.2	6.9	9.2	12.1	14.3	15.8
[D] ₆₋ 3af [%]	4.2	6.1	7.8	10.0	11.2	13.2

Figure S-6: Parallel experiment for KIE study.

References

- [1] X. Zhang, W. Si, M. Bao, N. Asao, Y. Yamamoto and T. Jin, Org. Lett., 2014, 16, 4830–4833.
- [2] (a) M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth and P. A. Grieco, *Org. Lett.*, 2002, 4, 3199–3202; (b) R. Mei, S.-K. Zhang and L. Ackermann, *Synlett*, 2017, 28, 1715–1718.
- [3] (a) V. S. Thirunavukkarasu, M. Donati and L. Ackermann, *Org. Lett.*, 2012, 14, 3416–3419; (b)
 S. Mochida, M. Shimizu, K. Hirano, T. Satoh and M. Miura, *Chem. Asian J.*, 2010, 5, 847–851.
- [4] R. Odani, K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2013, 78, 11045–11052.

100 90 f1 (ppm)

S-32

100 90 f1 (ppm)

S-37

S-43

