Moderate Supercritical Synthesis as a Facile Route to Mixed-Valent Uranium (IV,V) and (V,VI) Silicates

Kristen A. Pace,^{ab} Vladislav V. Klepov,^a Gregory Morrison,^{ab} and Hans-Conrad zur Loye^{*ab} ^a Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

^b Center for Hierarchical Wasteform Materials, University of South Carolina, Columbia, South Carolina 29208, United States

Email: zurloye@mailbox.sc.edu

Figure S1 An image of amber tablet crystals of $Rb_2Na[(UO_2)_2(Si_2O_7)]$.

Formula	$Cs_2Na(UO)_2Si_4O_{12}$	$Rb_2Na(UO)_2Si_4O_{12}$	$K_2Na[(UO)_2(Si_2O_6)_2]$	$Cs_2Na[(UO_2)_2(Si_2O_7)]$	$Rb_2Na[(UO_2)_2(Si_2O_7)]$
Formula Weight (g mol ⁻¹ F. U.)	1101.23	1006.35	913.61	997.05	902.17
Temperature (K)	300(2)	300(2)	300(2)	300(2)	300(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal System	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space Group	Cmmm	Cmmm	Imma	Pccn	Pccn
Unit cell parameters:					
<i>a</i> (Å)	8.3837(3)	8.3008(2)	8.3067(2)	13.8327(3)	13.6169(4)
<i>b</i> (Å)	11.4748(4)	11.3013(3)	11.1188(3)	7.4187(2)	7.3529(2)
c (Å)	7.4900(3)	7.4374(2)	14.7604(4)	11.5783(3)	11.4921(4)
Volume (Å ³)	720.55(5)	697.70(3)	1363.28(6)	1188.17(5)	1150.63(3)
Ζ	2	2	4	4	4
Density (mg m ⁻³)	5.076	4.790	4.451	5.574	5.208
Absorption coefficient (mm ⁻¹)	27.860	30.561	24.796	33.548	36.812
F(000)	946	874	1604	1684	1540
Crystal size (mm)	0.054 x 0.051 x 0.011	0.054 x 0.051 x 0.011	0.050 x 0.030 x 0.015	0.055 x 0.050 x 0.029	0.143 x 0.108 x 0.020
Theta range for data collection	2.719-32.499	2.739-29.991	3.665-33.123	3.579-33.138	3.546-33.128
Reflections	30 032	25 466	60 434	23 469	90 680
Independent reflections	769 ($R_{\rm int} = 0.0321$)	$604 \ (R_{\rm int} = 0.0294)$	1382 ($R_{\rm int} = 0.0286$)	2146 ($R_{int} = 0.0339$)	2156 ($R_{int} = 0.0572$)
Completeness	100% to theta = 25.242°	100% to theta = 25.242°	100% to theta = 26.000°	100% to theta = 25.242°	100% to theta = 25.242°
Data/restraints/parameters	770/0/49	607/0/49	1436/0/66	2247/0/86	2193/0/86
Goodness of fit on F^2	1.207	1.196	1.144	1.180	1.232
Final R indices	$R_1 = 0.0110 \text{ w} R_2 = 0.0284$	$R_1 = 0.0243 \text{ w} R_2 = 0.0701$	$R_1 = 0.0111 \text{ w} R_2 = 0.0350$	$R_1 = 0.0155 \text{ w}R_2 = 0.0351$	$R_1 = 0.0256 \text{ w} R_2 = 0.0636$
R indices (all data)	$R_1 = 0.0110 \text{ w}R_2 = 0.0284$	$R_1 = 0.0243 \text{ w} R_2 = 0.0701$	$R_1 = 0.0117 \text{ w}R_2 = 0.0354$	$R_1 = 0.0166 \text{ w} R_2 = 0.0355$	$R_1 = 0.0261 \text{ w} R_2 = 0.0639$
Extinction coefficient	-	-	0.00039(3)	0.00156(8)	0.00165(12)
Largest diff. peak and hole (e ⁻ Å ⁻³)	1.734 and -1.905	3.582 and -3.292	1.628 and -0.965	1.424 and -1.400	2.539 and -2.803

 Table S1 Crystallographic data and refinement information

Table S2. Bond Lengths and U B.V.S.	Representative Interatomic Distances(Å)		B.V.S. (v.u.)	Ref.
ŭ	U(1)-O(1) x 2 2.229(3)			
(1) $Cs_2Na(UO)_2Si_4O_{12}$	U(1)-O(2) x 2	2.239(3)	U(1) = 4.54	present
	U(1)-O(4) x 2	2.1280(10)		WOIK
	U(1)-O(1) x 2	2.234(7)		present
(2) $Rb_2Na(UO)_2Si_4O_{12}$	U(1)-O(2) x 2	2.227(6)	U(1) = 4.60	
	U(1)-O(0AA) x 2	2.114(3)		WOIK
	U(1)-O(00A)	2.1265(5)	U(1) = 4.63	
(2) K Ne[(UO) (S; O)]	U(1)-O(007)	2.0641(6)		present work
(3) \mathbf{K}_{21} Na[(UU) ₂ (S1 ₂ U ₆) ₂]	U(1)-O(008) x 2	2.2403(15)		
	U(1)-O(009) x 2	2.2351(17)		
	U(1)-O(3) x 2	2.039(2)	U(1) = 5.05	present
	U(1)-O(6) x 2	2.194(3)		
$(\mathbf{A}) \subset \mathbf{A} \cdot \mathbf{N} \circ [(\mathbf{U} \cap \mathbf{A}) \cdot (\mathbf{S} \cdot \mathbf{A})]$	U(1)-O(7) x 2	2.207(3)		
(4) CS2Na[(002)2(SI207)]	U(2)-O(2) x 2	2.214(2)		work
	U(2)-O(3) x 2	2.251(2)	U(2) = 5.84	
	U(2)-O(4) x 2	1.838(2)		
	U(1)-O(1) x 2	2.039(4)		present
	U(1)-O(2) x 2	2.201(5)	U(1) = 5.11	
(5) D M_{2} [(10) (6 ; 0)]	U(1)-O(5) x 2	2.178(5)		
(5) $KO_2Na[(UO_2)_2(SI_2O_7)]$	U(2)-O(1) x 2	2.236(3)		work
	U(2)-O(4) x 2	1.838(4)	U(2) = 5.85	
	U(2)-O(6) x 2	2.222(4)		
	U(3)-O(3)	2.141		
	U(3)-O(4)	2.082		
	U(3)-O(7)	2.076		
CaU(UO ₂) ₂ (CO ₃)O ₄ (OH)(H ₂ O) ₇	U(3)-O(8)	2.063	U(3) = 5.07	4
	U(3)-O(9)	2.432		
	U(3)-O(11)	2.479		
	U(3)-O(14)	2.475		
	U(1)-O(1)	2.41(3)		
	U(1)-O(2)	2.44(2)	U(1) = 4.91	
	U(1)-O(3) x 4	2.059(7)		
$[U(H_{2}O)_{2}(UO_{2})^{2}O_{2}(OH)](H_{2}O)_{2}$	U(2)-O(3) x 2	2.364(7)		7
[0(1120)2(002)204(011)](1120)4	U(2)-O(3) x 2	2.393(7)		,
	U(2)-O(4)	1.784(13)	U(2) = 6.07	
	U(2)-O(5)	1.788(11)		
	U(2)-O(6)	2.312(6)		
	U(11)-O(10) x 2	2.13(1)		18
$K_{13}[(UO_2)_{19}(UO_4)(B_2O_5)_2(BO_3)_6(OH)_2O_5] \cdot H_2O$	U(11)-O(17) x 2	1.99(1)	U(11) = 5.30	
	U(11)-O(32) x 2	2.33(3)		
$Cs_2K(UO)_2Si_4O_{12}$	U(1)-O(2) x 4	2.234(3)	U(1) = 4.56	13
	U(1)-O(4) x 2	2.12320(17)	0(1) 4.50	1.5
	U(1)-O(1) x 4	2.196(4)	U(1) = 5.00	15
	U(1)-O(5) x 2	2.058(6)	0(1) 0.00	
$C_{s_4}(I_1O)(I_1O)_2(S_{i_2}O_2)_2$	U(2)-O(2) x 2	2.246(4)		
00/(00/20120/)2	U(2)-O(3) x 2	2.217(4)	U(2) = 4.47	
	U(2)-O(5)	2.179(6)	S(2) 1.17	
	U(2)-O(6)	2.1301(6)		

*Bond valence sums for compositions presented in this work were calculated using the parameters $r_o = 2.051$ and B = 0.519.

Figure S2 The IR spectra of $K_2Na[(U^{IV,V}O)_2(Si_2O_6)_2]$ (3), $Cs_2Na[(U^{V,VI}O_2)_2(Si_2O_7)]$ (4), and $Rb_2Na[(U^{V,VI}O_2)_2(Si_2O_7)]$ (5).

Figure S3 TGA-DTA thermogram of $K_2Na[(U^{IV,V}O)_2(Si_2O_6)_2]$ (3), heated in air from room temperature to 900°C at 10°C per minute.

Figure S4 TGA-DTA thermogram of $Cs_2Na[(U^{V,VI}O_2)_2(Si_2O_7)]$ (4), heated in air from room temperature to 800°C at 10°C per minute.

Figure S5 TGA-DTA thermogram of $Rb_2Na[(U^{V,VI}O_2)_2(Si_2O_7)]$ (5), heated in air from room temperature to 800°C at 10°C per minute.

Figure S6 PXRD pattern of $K_2Na[(UO)_2(Si_2O_6)_2]$ (3) in black, compared to the calculated pattern derived from the .cif in red.

Figure S7 PXRD pattern of $Cs_2Na[(UO_2)_2(Si_2O_7)]$ (4) in black, compared to the calculated pattern derived from the .cif in red.

Figure S8 PXRD pattern of $Rb_2Na[(UO_2)_2(Si_2O_7)]$ (5) in black, compared to the calculated pattern derived from the .cif in red.