Supporting Information

Intramolecular cycloaddition/- rearrangement cascade from gold(III)catalysed reactions of propargyl aryldiazoesters with cinnamyl imines

Huang Qiu^a, Hadi Arman^b, Wenhao Hu^a, Michael P. Doyle^{b,*}

^aSchool of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.⁺

^bDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San

Antonio, TX 78249, USA

Corresponding author: michael.doyle@utsa.edu

Table of Contents

General Experimental Information	S2
Initial Surveys and General Procedures	S3
Mechanistic Investigations	S6
Kinetic Measurements	S 8
The Role of the Unsaturated Imines in Cycloheptene-1,4-dione-enamines Formation	S10
Characterization Data for New Compounds	S12
X-ray Crystal Structure Information for 4ha	S29
References	S33
¹ H- and ¹³ C-NMR Spectra of New Compounds	S34

General Experimental Information

General: Unless noted all reactions were carried out under an inert atmosphere of dinitrogen in oven-dried glassware with magnetic stirring using freshly distilled solvents. All solvents were purified and dried using standard methods. Analytical thin layer chromatography (TLC) plates were purchased from EM Science (silica gel 60 F₂₅₄ plates). High-resolution mass spectra (HRMS) were performed on a microTOF-ESI mass spectrometer using CsI as the standard. Accurate masses are reported for the molecular ion [M+Cs]⁺, [M+Na]⁺, or [M+H]⁺. Melting points were determined on an Electrothermo Mel-Temp DLX 104 device and were uncorrected. Column chromatography was performed on CombiFlash® Rf 200 purification system using normal phase disposable columns. IR spectra were recorded using a Bruker Vector 22 spectrometer. The gold signals were imaged using Hitachi SU-70 Schottky field emission gun Scanning Electron Microscope (FEG-SEM) at an operation voltage 10 kV. All NMR spectra were recorded on a Bruker spectrometer at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR) or an Agilent spectrometer at 500 MHz (¹H NMR) and 125 MHz (¹³C NMR). The HPLC analyses for the kinetic studies were carried on Agilent Technologies HPLC (1260 series). Chemical shifts are reported in ppm with the solvent signals as reference (in CDCl₃ as solvent), and coupling constants (J) are given in Hertz (Hz). The peak information was described as: br = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite of magnetically non-equivalent protons. The wavelength of maximum absorbance and molar extinction coefficients measurements were performed on a Carey 50 Bio UV-Vis spectrometer (200-800 nm) in DCM at room temperature.

Materials: AuCl(PPh₃), Au(JohnPhos)SbF₆, IPrAuBF₄ (IPr = 1,3-bis(2,6-diisopropylphenyl)-1,3dihydro-2*H*-imidazol-2-ylidene), and PicAuCl₂ (Pic = 2-pyridinecarboxylato) were purchased from Sigma-Aldrich; AuCl and AuCl₃(Pyr) and other gold catalysts were purchased from Strem Chemicals. Unsaturated imines¹ and propargylic diazoesters² were prepared according to the literature procedures. All other chemicals were obtained from commercial sources and used as received without further purification.

Initial Surveys and General Procedures

Initial attempts to form 3aa by the gold-catalyzed cycloaddition reaction of 1,1dimethylpropargyl phenyldiazoacetate with unsaturated imines.

Procedure: To a flame-dried 10-mL Schlenk flask charged with a magnetic stirring bar, *N*-arylimine **1a** (or **1b**) (0.20 mmol), the stated solvent (2.0 mL) and catalyst (0.01 mmol) were sequentially added under a nitrogen atmosphere. Propargyl phenyldiazoester **2a** (0.24 mmol) dissolved in 2.0 mL of DCE was added in one portion into the solution under a flow of nitrogen. The reaction mixture was stirred for the stated time at the stated temperature. The color of the reaction mixture turned dark yellow to red as the reaction progressed; NMR spectral analyses portray a complex mixture of reaction products. The yield of **4ba** (or **3aa**) was determined by ¹H NMR spectroscopy using 2,4,6-trimethoxybenzaldehyde as an internal standard. Other catalysts that included Pd(OAc)₂, (cod)₂(IrCl)₂, (Ph₃P)₃RuCl₂, Ru(acac)₃ and NiCl₂ did not exhibit any reaction with **2a** in the presence of **1d** over 4 h.

Table S1. Catalyst survey in attempts to form 3aa.

3	IPrAuBF ₄	2	>95	<5
4	AuCl ₃ (Pyr)	6	75	20
5	AuCl	2	>95	<5

^aReactions were performed with 5.0 mol% of the selected catalyst in 2.0 mL of solvent under a nitrogen atmosphere at 20 °C, and the resulting reaction mixture was stirred for the stated time. ^bThe percent conversion of **2a** was determined by ¹H NMR spectroscopy using 2,4,6-trimethoxy-benzaldehyde as an internal standard. ^cThe yield of **3aa** was determined by ¹H NMR analyses of characteristic absorptions.

Table S2. Optimization of the gold-catalyzed reaction of propargyl phenyldiazoacetate 2a with

 trans-cinnamyl-*N*-phenylimine 1b for the formation of 4ba.

H___Ph

	Ph ^N + 1b	Ph O Me Me	5 mol% [Au] solvent, temperature	→ Ph → O 4b	N Ph Me Me
entry ^a	[Au]	temperature(°C)	solvent	conversion	yield of
		/time (h)		of 2a ^b (%)	4ba ^c (%)
1	PicAuCl ₂	20/72	DCM	40	10
2	PPh ₃ AuSbF ₆ ^d	20/24	DCM	<10	<5
3	IPrAuBF4 ^d	20/24	DCM	<10	<5
4	[(2,4-	20/24	DCM	<10	<5
	$^{t}Bu)_{2}C_{6}H_{3}O]_{3}PAuSbF_{6}$				
5	AuCl	20/72	DCM	25	8
6	PicAuCl ₂	40/48	DCE	60	31
7	PicAuCl ₂	60/12	DCE	85	47
8	PicAuCl ₂	80/6	DCE	>95	65 (62) ^e
9	PicAuCl ₂	100/2	DCE	>95	57
10	PicAuCl ₂	80/6	toluene	>95	25
11	PicAuCl ₂	80/6	CH ₃ CN	80	38

$12 \qquad 1 \text{ Intracting} \qquad 00/0 \qquad \text{Divid} \qquad 20 \qquad \sqrt{3}$	12	PicAuCl ₂	80/6	DMF	<20	<5
--	----	----------------------	------	-----	-----	----

^aReactions were performed with 5.0 mol% of selected catalyst in 2.0 mL of the solvent under a nitrogen atmosphere at the stated temperature, and the resulting reaction mixture was stirred for the stated time. ^bThe percent conversion of **2a** was determined by ¹H NMR spectroscopy using 2,4,6-trimethoxybenzaldehyde as an internal standard. ^cThe yield of **4ba** was determined by ¹H NMR analyses of its characteristic absorptions. ^dReactions performed at higher temperatures resulted in complex product mixtures.

General procedure for the reactions of propargylic diazoesters with *N*-arylcinnamylimines catalyzed by PicAuCl₂:

To a flame-dried 10-mL Schlenk flask charged with a magnetic stirring bar, *N*-arylcinnamylimine **2** (0.20 mmol), DCE (2.0 mL) and AuPicCl₂ (3.9 mg, 0.010 mmol) were added sequentially under a nitrogen atmosphere. Propargyl diazoester **1** (0.24 mmol) dissolved in 2.0 mL of DCE was added in one portion into the solution under a flow of nitrogen. As the reaction progressed the color of the reaction mixture darkened considerably, and the presence of metallic gold was evident. The mixture was stirred for 6 h at 80 °C after which the solvent was evaporated, and products were purified by column chromatography (100:1 to 10:1 gradient of hexanes: ethyl acetate as eluents) to afford pure **4** as red solids or liquids.

Mechanistic Investigations

¹H-NMR study of the gold-catalyzed reaction of propargyl phenyldiazoacetate 2a with *N*-phenylcinnamylimine 1a.

Procedure: To a clean 5 mm NMR tube, imine **1b** (0.050 mmol), CDCl₃ (0.30 mL) and AuPicCl₂ (0.95 mg, 0.0025 mmol) were sequentially added under a nitrogen atmosphere. Propargyl phenyldiazoacetate **2a** (0.060 mmol) dissolved in 0.3 mL of CDCl₃ was added in one portion into the solution. The resulting reaction mixture was heated to 61° C and monitored by ¹H NMR spectroscopy. The observed NMR spectral characterization data corresponds to those for the compounds reported by Toste and co-workers.^[1]

Figure S1. ¹H NMR Progress of the Gold-Catalyzed Reaction. Box Colors Denote the Compound Being Observed.

Isolation of 3cb and control experiment

Procedure: To a flame-dried 10-mL Schlenk flask charged with a magnetic stir bar, *N*-arylcinnamylimine **1c** (0.20 mmol), DCE (2.0 mL) and AuPicCl₂ (3.9 mg, 0.010 mmol) were sequentially added under a nitrogen atmosphere. Propargyl diazoester **2b** (0.24 mmol) dissolved in 2.0 mL of DCE was added in one portion into the solution under the flow of nitrogen. The mixture was stirred for 5 min at 80 °C. As the reaction progressed the color of the reaction mixture darkened considerably, and the presence of metallic gold was evident. The reaction mixture was directly purified by column chromatography (100:1 to 10:1 gradient of hexanes: ethyl acetate as eluents) to afford pure **3cb** as a light-yellow oil in 36% isolated yield.

Procedure: To a flame-dried 10-mL Schlenk flask charged with a magnetic stir bar, **3cb** (0.10 mmol) dissolved in 2.0 mL of DCE was added under a nitrogen atmosphere. The reaction mixture was stirred for 6 h at 80 °C during which time the reaction solution turned the deep red

color of the reaction product **4cb**. Solvent was evaporated, and the product was purified by column chromatography on a CombiFlash R_f instrument (100:1 to 10:1 gradient of hexanes: ethyl acetate as eluents) to afford pure **4cb** in 90% isolated yield.

Procedure: To a flame-dried 10-mL Schlenk flask charged with a magnetic stir bar, **3cb** (0.1 mmol) dissolved in 2.0 mL of DCE and AuPicCl₂ (2.0 mg, 0.0050 mmol) were added under a nitrogen atmosphere. After 5 min at 80°C the reaction turned dark black, and the starting material **3cb** was completely consumed according to TLC analyses. The isolated yield of **4cb** was only 10%.

Kinetic Measurements

Procedure: To a flame-dried 10.0 mL Schlenk flask charged with a magnetic stir bar, **3cb** (0.20 mmol) and 2,4,6-trimethoxybenzaldehyde (internal standard, 0.20 mmol) dissolved in 4.0 mL of DCE was added under nitrogen atmosphere. The reaction temperature stated here was the temperature of solvent. For every 5 (or 10) minutes, 0.05 mL was removed from the reaction mixture and dissolved in 1.0 mL of CH₃CN for HPLC analysis. The amount of **3cb** was determined

by the analysis of HPLC traces of each aliquot. HPLC conditions: ZORBAX-C₁₈, ACN:H₂O = 90:10; 254 nm, 1 mL/min, 20 °C, t_R for **3cb** was 2.50 min; t_R for 2,4,6-trimethoxybenzaldehyde was 0.82 min (normalized as "1000"); t_R for **4cb** was 1.54 min. ^[3]

Figure S2 First-order Rate Determination at 61 °C.

Figure S4 First-order Rate Determination at 71 °C.

Figure S3 First-order Rate Determination at 65°C.

Figure S5 First-order Rate Determination at 75°C.

Table S3. Data for Arrhenius plot.

lnk	-6.5225	-6.8978	-7.6211	-7.9294	
1/T	0.002864	0.002906	0.002957	0.002993	

Figure S6. Arrhenius Plot: Activation Energy for the conversion of 3cb to 4cb.

The Role of the Unsaturated Imines in Cycloheptene-1,4-dione-enamine Formation

The [4+3]-cycloaddition product **3cb** undergoes a metal free rearrangement to form **4b**. However, the AuPicCl₂ catalyst, which is capable of undergoing dinitrogen extrusion from the [4+3]-cycloaddition product **3cb** or reacting with **3cb** by other means, exists in the reaction mixture. We speculated that there is a base, whose coordination with the catalyst prevented the gold species from decomposing the [4+3]-cycloaddition product **3cb**. Several control experiments were carried out, and four types of bases were tested in the presence of 5 mol% AuPicCl₂. From the results in Table S4 the following conclusions can be made: (a) adding base increased the yields of **4cb**; and (b) decreasing the amount of base resulted in a decreasing the yield of **4cb**. These results supported the conclusion that the imines also served as a ligand for gold, which assists in the formation of **4cb** in presence of 5.0 mol% AuPicCl₂. We also found the formation of metallic gold in the presence of imines (**A**₂ to **A**₄), which was confirmed by a SEM (Scanning Electron Microscope) of the solid obtained from the reaction mixture after filtration.

Figure S7. Representative SEM of metallic gold obtained from the reaction of **1b** and **2a** under optimized reaction conditions (Table S2, entry 8). After the reaction solution was cooled to roon temperature for 1h, the reaction mixture was filtered, and washed with methanol for 3 times. The black solid (metallic gold) was submitted to SEM analysis.

Table S4. Control Experiments

entry ^a	additive	equiv of additive (mol%)	¹ H NMR yield (%)
1	A1	50	56
2	A2	50	40
3	A3	50	72
4	A4	50	73
5	A4	40	69
6	A4	30	63
7	A4	20	55
8	A4	10	45

^aReactions were performed on a 0.05 mmol scale: a solution of **3cb** (0.05 mmol) in 0.5 mL DCE was added to a solution of the stated amount of additive and 5.0 mol% of PicAuCl₂ in 0.5 mL of DCE under a nitrogen atmosphere at 20 °C. The resulting reaction mixture was stirred at 80 °C for 6 h. Yield was determined by ¹H NMR analyses of characteristic absorptions.

Characterization Data for New Compounds

2-Methylbut-3-yn-2-yl Phenyldiazoacetate 2a: 80% yield. Yellow solid, m.p. 70.2 – 71.4°C. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 8.5 Hz, 2H), 7.38 (t, J = 8.5 Hz, 2H), 7.19 (t, J = 8.5 Hz, 1H), 2.62 (s, 1H), 1.78 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 163.45, 128.84, 125.75,

125.44, 123.96, 84.51, 72.84, 72.77, 29.21. IR (neat) 2082, 1701, 1286, 1145 cm⁻¹; HRMS (ESI) m/z calculated for $C_{13}H_{12}N_2O_2Na^+$ [M+Na]+ 251.0791, found: 251.0796.

2-Methylbut-3-yn-2-yl (4-Methoxyphenyl)diazoacetate 2b: 75% yield. Red solid, 67.0 $- 68.5^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 9.1 Hz, 2H), 6.93 (d, J = 9.1 Hz, 2H), 3.80 (s, 3H), 2.59 (s, 1H), 1.76 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 164.03, 158.00, 125.89, 116.87, 114.54, 84.62, 72.71, 72.68, 55.34, 29.24. IR (neat) 2084, 1702, 1127, 903 cm⁻¹; HRMS (ESI) m/z calculated for C₁₄H₁₄N₂O₃Na [M+Na]⁺ 281.0897, found: 281.0900.

2-Methylbut-3-yn-2-yl *p*-**Tolyldiazoacetate 2c:** 78% yield. Yellow solid, $58.0 - 59.2^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 2.61 (s, 1H), 2.35 (s, 3H), 1.78 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 163.70, 135.60, 129.57, 124.08, 122.07, 84.58, 72.70, 29.22, 20.95. IR (neat) 2083, 1702, 1124, 906 cm⁻¹. HRMS (ESI) m/z calculated for C₁₄H₁₄N₂O₂Na⁺ [M+Na]⁺ 265.0947, found 265.0953.

2-Methylbut-3-yn-2-yl (4-Bromophenyl)diazoacetate 2d: 82% yield. Yellow solid, 90.1 – 91.5°C. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.6 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 2.62 (s, 1H), 1.77 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 163.08, 131.93, 125.33, 124.69, 119.28, 84.35, 73.12, 72.93, 29.20. IR (neat) 2087, 1703, 1126, 907 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₂N₂O₂BrNa⁺ [M+Na]⁺ 328.9896, found 328.9891.

2-Methylbut-3-yn-2-yl (4-Nitrophenyl)diazoacetate 2e: 65% yield. Yellow solid, 107.2 – 108.5°C. ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, *J* = 7.1 Hz, 2H), 7.68 (d, *J* = 7.1 Hz, 2H), 2.64 (s, 1H), 1.80 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 161.98, 145.00, 133.85, 124.19, 123.18, 84.00, 73.78, 73.28, 29.14. IR (neat) 2095, 1710, 1334, 904 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₁N₃O₄Na⁺ [M+Na]⁺ 296.0642, found 296.0634.

2-Methylbut-3-yn-2-yl (2-Bromophenyl)diazoacetate 2f: 65% yield. Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.35 (dd, J = 8.0, 7.7 Hz, 1H), 7.18 (dd, J = 7.8, 7.7 Hz, 1H), 2.60 (s, 1H), 1.74 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 163.58, 133.16, 132.73, 129.81, 127.44, 125.55, 124.13, 84.39, 72.88, 72.68, 29.05. IR (neat) 2091, 1699, 1117, 754 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₂N₂O₂BrNa⁺ [M+Na]⁺ 328.9896, found 328.9893.

2-Methylbut-3-yn-2-yl (2-Nitrophenyl)diazoacetate 2g: 52% yield. Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 8.2 Hz, 1H), 7.63 (dd, J = 7.9, 2.3 Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.46 (dd, J = 8.2, 2.3 Hz, 1H), 2.58 (s, 1H), 1.70 (s, 7H). ¹³C NMR (125 MHz, CDCl₃) δ 162.94, 147.17, 133.12, 130.96, 128.74, 125.60, 121.01, 84.18, 73.74, 72.94, 28.97. IR (neat) 2085, 1702, 1513, 1259, 903 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₁N₃O₄Na⁺ [M+Na]⁺ 296.0642, found 296.0637.

1-Ethynylcyclopentyl Phenyldiazoacetate 2h: 81% yield. Yellow solid, m.p. $31.8 - 33.0^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.39 – 7.35 (m, 2H), 7.20 – 7.15 (m, 1H), 2.64 (s, 1H), 2.37 – 2.30 (m, 2H), 2.27 – 2.20 (m, 2H), 1.82 – 1.76 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 163.64, 128.84, 125.75, 125.37, 123.91, 83.97, 81.27, 73.36, 40.59, 23.32. IR (neat) 2081, 1701, 1598, 1286, 907 cm⁻¹. HRMS (ESI) m/z calculated for C₁₅H₁₄N₂O₂Na⁺ [M+Na]⁺ 277.0947, found 277.0946.

(*Z*)-5,5-Dimethyl-2,6-diphenyl-7-[(phenylamino)methylene]cyclohept-2-ene-1,4dione 4ba: 63% yield. Red viscous oil. TLC $R_f = 0.3$ (10:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.60 (d, *J* = 12.3 Hz, 1H), 7.58 (d, *J* = 12.3 Hz, 1H), 7.41 – 7.34 (comp, 5H), 7.34 – 7.27 (comp, 6H), 7.26 – 7.21 (m, 1H), 7.08 (t, *J* = 7.4 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 2H), 6.55 (s, 1H), 4.10 (s, 1H), 1.50 (s, 3H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.6, 189.7, 149.2, 147.1, 140.0, 139.8, 138.9, 131.1, 129.8, 129.8, 128.7, 128.4, 128.3, 126.8, 124.2, 116.7, 111.4, 54.5, 52.5, 27.9, 23.2. IR (neat) 2977, 2248, 1625, 1596 cm⁻¹; HRMS (ESI) *m/z* calculated for C₂₈H₂₆NO₂⁺ [M+H]⁺ 408.1958, found: 408.1944. UV/Vis absorption spectrum of **4ba** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 308 nm, 411 nm, and corresponding molar extinction coefficients are $\varepsilon_{308} = 10362 \text{ M}^{-1} \text{ cm}^{-1}$, $\varepsilon_{411} = 9534 \text{ M}^{-1} \text{ cm}^{-1}$.

(Z)-7-[(4-hydroxyphenyl)amino]methylene-2-(4-methoxyphenyl)-5,5-dimethyl-6phenylcyclohept-2-ene-1,4-dione 4cb: 68% yield. Red viscous oil. TLC $R_f = 0.15$ (5:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 12.72 (d, J = 12.3 Hz, 1H), 7.47 (d, J = 12.3 Hz, 1H), 7.36 – 7.28 (comp, 4H), 7.28 – 7.23 (comp, 4H), 6.91 – 6.83 (comp, 4H), 6.78 – 6.73 (comp, 2H), 6.53 (d, J = 1.1 Hz, 1H), 5.86 (s, 1H), 4.10 (s, 1H), 3.81 (s, 3H), 1.48 (s, 3H), 1.21 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 207.32, 189.05, 160.19, 153.08, 149.13, 148.13, 140.06, 133.10, 131.12, 129.89, 129.88, 129.47, 128.35, 126.72, 118.49, 116.55, 113.82, 110.71, 55.34, 54.35, 52.77, 27.87, 23.06. HRMS (ESI) *m/z* calculated for C₂₉H₂₈NO₄⁺ [M+H]⁺ 454.2018, found: 454.2014; UV/vis absorption spectrum of **4cb** recorded at 20 °C in dichloromethane (DCM): UV (λ max) = 303 nm, 419 nm, and corresponding molar extinction coefficients are $\varepsilon_{303} = 9762$ M⁻¹ cm⁻¹, $\varepsilon_{419} = 8121$ M⁻¹ cm⁻¹.

4bc

(Z)-5,5-Dimethyl-6-phenyl-7-[(phenylamino)methylene]-2-(p-tolyl)cyclohept-2-ene-

1,4-dione 4bc: 65% yield. Red viscous oil. TLC $R_f = 0.25$ (10:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.61 (d, J = 12.2 Hz, 1H), 7.56 (d, J = 12.2 Hz, 1H), 7.37 – 7.28 (comp, 6H), 7.25 – 7.22 (m, 1H), 7.19 – 7.15 (comp, 4H), 7.08 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 7.5 Hz, 2H), 6.54 (s, 1H), 4.09 (s, 1H), 2.36 (s, 3H), 1.49 (s, 3H), 1.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.8, 189.9, 149.3, 147.0, 140.0, 139.9, 138.9, 136.0, 130.5, 129.8, 129.8, 129.0, 128.4, 128.3, 126.7, 124.2, 116.7, 111.5, 54.5, 52.5, 27.9, 23.2, 21.3. IR (neat) 2973, 1628, 1598 cm⁻¹. HRMS

(ESI) m/z calculated for C₂₉H₂₈NO₂⁺ [M+H]⁺ 422.2115, found: 422.2118. UV/Vis absorption spectrum of **4bc** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 311 nm, 405 nm, and corresponding molar extinction coefficients are ε_{311} = 9517 M⁻¹ cm⁻¹, ε_{405} = 8119 M⁻¹ cm⁻¹.

(Z)-2-(4-Bromophenyl)-5,5-dimethyl-6-phenyl-7-[(phenylamino)-methylene]-

cyclohept-2-ene-1,4-dione 4bd: 55% yield. Red viscous oil. TLC $R_f = 0.3$ (10:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.60 (d, J = 12.3 Hz, 1H), 7.59 (d, J = 12.3 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.35 – 7.28 (comp, 6H), 7.25 – 7.21 (m, 1H), 7.14 (d, J = 8.5 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 7.01 (d, J = 7.5 Hz, 2H), 6.50 (s, 1H), 4.04 (s, 1H), 1.50 (s, 3H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.2, 188.9, 148.2, 147.4, 139.9, 139.6, 137.8, 131.4, 131.3, 130.0, 129.8, 129.7, 128.4, 126.8, 124.4, 123.1, 116.8, 111.4, 54.6, 52.3, 27.9, 23.5. IR (neat) 2975, 1625, 1597 cm⁻¹. HRMS (ESI) *m/z* calculated for C₂₈H₂₅BrNO₂⁺ [M+H]⁺486.1063, found: 486.1052; UV/Vis absorption spectrum of **4bd** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 311 nm, 411 nm, and corresponding molar extinction coefficients are $\varepsilon_{311} = 14924$ M⁻¹ cm⁻¹, $\varepsilon_{411} = 11984$ M⁻¹ cm⁻¹.

(Z)-5,5-Dimethyl-2-(4-nitrophenyl)-6-phenyl-7-[(phenylamino)-methylene]cyclohept-2-ene-1,4-dione 4be: 43% yield. Red viscous oil. TLC $R_f = 0.4$ (5:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.61 (d, J = 12.4 Hz, 1H), 8.21 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 12.4 Hz, 1H), 7.40 (d, J = 8.8 Hz, 2H), 7.38 – 7.30 (comp, 6H), 7.29 – 7.22 (m, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 7.5 Hz, 2H), 6.53 (s, 1H), 4.00 (s, 1H), 1.53 (s, 3H), 1.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.6, 187.9, 148.0, 147.7, 147.3, 145.7, 139.8, 139.4, 132.8, 129.9, 129.6, 129.5, 128.5, 126.9, 124.7, 123.4, 117.0, 111.5, 54.7, 52.2, 27.9, 23.8; IR (neat) 2926, 1626, 1596 cm⁻¹; HRMS (ESI) *m/z* calculated for C₂₈H₂₅N₂O₄⁺ [M+H]⁺ 453.1809, found: 408.1813; UV/Vis absorption spectrum of **4be** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 288 nm, 420 nm, and corresponding molar extinction coefficients are $\varepsilon_{288} = 14841$ M⁻¹ cm⁻¹, $\varepsilon_{420} = 6549$ M⁻¹ cm⁻¹.

(Z)-2-(2-Bromophenyl)-5,5-dimethyl-6-phenyl-7-[(phenylamino)-methylene]-

cyclohept-2-ene-1,4-dione 4bf: 52% yield. Red viscous oil. TLC $R_f = 0.2$ (10:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.44 (d, J = 12.3 Hz, 1H), 7.59 (s, 2H), 7.43 – 7.37 (comp, 3H), 7.37 – 7.34 (comp, 2H), 7.34 – 7.27 (comp, 4H), 7.25 – 7.21 (m, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 7.5 Hz, 2H), 6.46 (s, 1H), 4.37 (s, 1H), 1.49 (s, 3H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.6, 188.2, 149.5, 147.4, 140.7, 139.9, 139.8, 132.9, 132.5, 131.1, 130.0, 129.9, 129.7, 128.5, 127.5, 126.9, 124.1, 122.0, 116.6, 110.4, 54.3, 52.6, 27.5, 22.2. IR (neat) 2975, 1759, 1624, 1597 cm⁻¹. HRMS (ESI) *m/z* calculated for C₂₈H₂₅BrNO₂⁺ [M+H]⁺ 486.1063, found: 486.1020. UV/Vis absorption spectrum of **4bf** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 311 nm, 410 nm, and corresponding molar extinction coefficients are $\varepsilon_{311} = 8329$ M⁻¹ cm⁻¹, $\varepsilon_{410} =$ 8494 M⁻¹ cm⁻¹.

(Z)-5,5-Dimethyl-2-(2-nitrophenyl)-6-phenyl-7-[(phenylamino)-methylene]cyclohept-2-ene-1,4-dione 4bg: 55% yield. Red viscous oil. TLC $R_f = 0.3$ (5:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.30 (d, J = 12.4 Hz, 1H), 8.19 (dd, J = 8.2, 1.3 Hz, 1H), 7.72 (td,

J = 7.5, 1.3 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.52 – 7.44 (comp, 4H), 7.40 – 7.34 (comp, 2H), 7.31 – 7.26 (comp, 2H), 7.26 – 7.23 (m, 1H), 7.04 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 7.5 Hz, 2H), 6.58 (s, 1H), 1.49 (s, 3H), 1.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.5, 187.0, 148.4, 147.7, 147.5, 140.2, 139.6, 135.0, 134.0, 132.2, 131.5, 129.8, 129.7, 129.6, 128.6, 127.0, 124.6, 124.3, 116.8, 110.2, 27.2; IR (neat) 2976, 1623, 1597 cm⁻¹. HRMS (ESI) *m/z* calculated for C₂₈H₂₅N₂O₄+ [M+H]⁺ 453.1809, found: 453.1802. UV/Vis absorption spectrum of **4bg** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 292 nm, 413 nm, and corresponding molar extinction coefficients are $\varepsilon_{292} = 9321$ M⁻¹ cm⁻¹, $\varepsilon_{413} = 7601$ M⁻¹ cm⁻¹.

(*Z*)-7-[(4-Hydroxyphenyl)amino]methylene-5,5-dimethyl-2,6-diphenylcyclohept-2ene-1,4-dione 4ca: 64% yield. Red viscous oil. TLC $R_f = 0.2$ (5:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.71 (d, *J* = 12.3 Hz, 1H), 7.47 (d, *J* = 12.3 Hz, 1H), 7.39 – 7.32 (comp, 6H), 7.31 – 7.27 (comp, 3H), 7.26 – 7.21 (m, 1H), 6.88 (d, *J* = 8.9 Hz, 2H), 6.77 (d, *J* = 8.9 Hz, 2H), 6.53 (s, 1H), 5.23 (br, 1H), 4.06 (s, 1H), 1.49 (s, 3H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.9, 188.8, 152.8, 149.5, 148.2, 140.1, 139.1, 133.3, 130.9, 129.8, 128.7, 128.4, 128.4, 128.3, 126.7, 118.5, 116.5, 110.8, 54.6, 52.6, 27.8, 23.2. IR (neat) 3321, 2975, 1733, 1620 cm⁻¹. HRMS (ESI) *m/z* calculated for C₂₈H₂₆NO₃⁺ [M+H]⁺ 424.1907, found: 424.1889. UV/Vis absorption spectrum of **4ca** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 305 nm, 418 nm, and corresponding molar extinction coefficients are $\varepsilon_{305} = 9592 M^{-1} cm^{-1}$, $\varepsilon_{418} = 8307 M^{-1} cm^{-1}$.

(*Z*)-7-[(4-Methoxyphenyl)amino]methylene-5,5-dimethyl-2,6-diphenylcyclohept-2ene-1,4-dione 4da: 65% yield. Red viscous oil. TLC $R_f = 0.5$ (5:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.71 (d, *J* = 12.3 Hz, 1H), 7.47 (d, *J* = 12.3 Hz, 1H), 7.39 – 7.32 (comp, 6H), 7.31 – 7.27 (comp, 3H), 7.26 – 7.21 (m, 1H), 6.88 (d, *J* = 8.9 Hz, 2H), 6.77 (d, *J* = 8.9 Hz, 2H), 6.53 (s, 1H), 5.23 (br, 1H), 4.06 (s, 1H), 1.49 (s, 3H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.9, 188.8, 152.8, 149.5, 148.2, 140.1, 139.1, 133.3, 130.9, 129.8, 128.7, 128.4, 128.4, 128.3, 126.7, 118.5, 116.5, 110.8, 54.6, 52.6, 27.8, 23.2. IR (neat) 2919, 2850, 1622 cm⁻¹.. HRMS (ESI) *m/z* calculated for C₂₉H₂₈NO₃⁺ [M+H]⁺ 438.2064, found: 438.2057. UV/Vis absorption spectrum of 4da recorded at 20°C in dichloromethane (DCM): UV (λ max) = 305 nm, 420 nm, and corresponding molar extinction coefficients are ε_{305} = 10691 M⁻¹ cm⁻¹, ε_{420} = 9478 M⁻¹ cm⁻¹.

(*Z*)-7-[(4-Bromophenyl)amino]methylene-5,5-dimethyl-2,6-diphenylcyclohept-2-ene-1,4-dione 4ea: 61% yield. Red viscous oil,. TLC $R_f = 0.2$ (10:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.55 (d, *J* = 12.2 Hz, 1H), 7.49 (d, *J* = 12.2 Hz, 1H), 7.41 (d, *J* = 8.8 Hz, 2H), 7.39 – 7.31 (comp, 7H), 7.31 – 7.27 (comp, 2H), 7.26 – 7.22 (m, 1H), 6.86 (d, *J* = 8.8 Hz, 2H), 6.56 (s, 1H), 4.09 (s, 1H), 1.50 (s, 3H), 1.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.4, 190.2, 149.0, 146.4, 139.8, 139.0, 138.8, 132.7, 131.3, 129.8, 128.8, 128.4, 128.4, 128.3, 126.9, 118.2, 116.7, 111.9, 54.5, 52.4, 27.9, 23.2. IR (neat) 2976, 1623, 1590 cm⁻¹. HRMS (ESI) *m/z* calculated for $C_{28}H_{25}BrNO_2^+$ [M+H]⁺ 486.1063, found: 486.1035. UV/Vis absorption spectrum of **4ea** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 301 nm, 413 nm, and corresponding molar extinction coefficients are ε_{301} = 12017 M⁻¹ cm⁻¹, ε_{413} = 11837 M⁻¹ cm⁻¹.

(*Z*)-7-[(4-Chlorophenyl)amino]methylene-5,5-dimethyl-2,6-diphenylcyclohept-2-ene-1,4-dione 4fa: 60% yield. Red viscous oil. TLC $R_f = 0.2$ (10:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.57 (d, *J* = 12.1 Hz, 1H), 7.49 (d, *J* = 12.1 Hz, 1H), 7.39 – 7.36 (comp, 3H), 7.35 – 7.31 (comp, 4H), 7.31 – 7.27 (comp, 3H), 7.26 – 7.23 (comp, 2H), 6.92 (d, *J* = 8.9 Hz, 2H), 6.56 (s, 1H), 4.10 (s, 1H), 1.50 (s, 3H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.5, 190.1, 149.0, 146.6, 139.8, 138.8, 138.5, 131.3, 129.8, 129.8, 129.3, 128.8, 128.4, 128.4, 128.3, 126.9, 117.8, 111.8, 54.5, 52.4, 27.9, 23.2. IR (neat) 2976, 1623, 1595 cm⁻¹. HRMS (ESI) *m/z* calculated for C₂₈H₂₅ClNO₂⁺ [M+H]⁺ 442.1568, found: 442.1573. UV/Vis absorption spectrum of **4fa** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 300 nm, 410 nm, and corresponding molar extinction coefficients are $\varepsilon_{300} = 6217 \text{ M}^{-1} \text{ cm}^{-1}$, $\varepsilon_{410} = 5461 \text{ M}^{-1} \text{ cm}^{-1}$.

(Z)-7-[(4-Fluorophenyl)amino]methylene-5,5-dimethyl-2,6-diphenylcyclohept-2-ene-1,4-dione 4ga: 56% yield. Red viscous oil. TLC $R_f = 0.2$ (10:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.64 (d, J = 12.2 Hz, 1H), 7.47 (d, J = 12.2 Hz, 1H), 7.39 – 7.36 (comp, 3H), 7.35 – 7.33 (comp, 2H), 7.32 – 7.31 (m, 1H), 7.31 – 7.26 (comp, 3H), 7.25 – 7.22 (m, 1H), 7.06 – 6.98 (comp, 2H), 6.98 – 6.92 (comp, 2H), 6.55 (s, 1H), 4.09 (s, 1H), 1.50 (s, 3H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.5, 189.7, 159.55 (d, J = 244.2 Hz), 149.1, 147.5, 139.9, 138.9, 136.2 (d, J = 2.8 Hz), 131.2, 129.8, 128.8, 128.4, 128.4, 128.3, 126.8, 118.25 (d, J = 8.0 Hz), 116.59 (d, J = 23.1 Hz), 111.4, 54.5, 52.5, 27.9, 23.2. IR (neat) 2975, 1735, 1624, 1600 cm⁻¹. HRMS (ESI) *m/z* calculated for C₂₈H₂₅FNO₂⁺ [M+H]⁺ 426.1864, found: 426.1867. UV/Vis absorption spectrum of **4ga** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 299 nm, 408 nm, and corresponding molar extinction coefficients are $\varepsilon_{299} = 8565$ M⁻¹ cm⁻¹, $\varepsilon_{408} = 7098$ M⁻¹ cm⁻¹.

(*Z*)-5,5-Dimethyl-7-(naphthalen-1-ylamino)methylene-2,6-diphenylcyclohept-2-ene-1,4-dione 4ha: 68% yield. Red solid, 62.6 - 63.4 °C. TLC $R_f = 0.3$ (10:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 13.43 (d, *J* = 11.8 Hz, 1H), 8.16 - 8.08 (m, 1H), 7.89 - 7.81 (m, 1H), 7.77 (d, *J* = 11.8 Hz, 1H), 7.63 (d, *J* = 8.3 Hz, 1H), 7.55 - 7.50 (comp, 2H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.42 - 7.31 (comp, 9H), 7.29 - 7.23 (m, 1H), 7.16 (d, *J* = 7.5 Hz, 1H), 6.61 (s, 1H), 4.22 (s, 1H), 1.54 (s, 3H), 1.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.9, 190.2, 149.2, 148.3, 139.9, 138.8, 136.2, 134.2, 131.0, 129.9, 128.9, 128.5, 128.5, 128.4, 128.4, 126.8, 126.8, 126.8, 125.7, 124.9, 124.8, 121.1, 112.3, 111.7, 54.4, 52.8, 27.9, 23.0. IR (neat) 2975, 2268, 1616 cm⁻¹. HRMS (ESI) *m/z* calculated for C₃₂H₂₈NO₂⁺ [M+H]⁺ 458.2115, found: 458.2088. UV/Vis absorption spectrum of **4ha** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 325 nm, 424 nm, and corresponding molar extinction coefficients are $\varepsilon_{325} = 3967$ M⁻¹ cm⁻¹, $\varepsilon_{424} = 4629$ M⁻¹ cm⁻¹.

(*Z*)-7-(Mesitylamino)methylene-5,5-dimethyl-2,6-diphenylcyclohept-2-ene-1,4-dione 4ia: 70% yield. Red viscous oil. TLC $R_f = 0.3$ (10:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.13 (d, *J* = 12.5 Hz, 1H), 7.41 – 7.34 (comp, 5H), 7.34 – 7.26 (comp, 4H), 7.24 – 7.18 (m, 1H), 7.06 (d, *J* = 12.5 Hz, 1H), 6.87 (s, 2H), 6.57 (s, 1H), 4.19 (s, 1H), 2.26 (s, 3H), 2.16 (s, 6H), 1.49 (s, 3H), 1.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.8, 189.1, 155.2, 149.0, 140.3, 138.8, 135.9, 135.9, 131.7, 130.3, 129.9, 129.5, 128.7, 128.4, 128.4, 128.3, 126.6, 109.3, 53.8, 53.2, 27.7, 22.3, 20.8, 18.5. IR (neat) 2974, 1622, 1602 cm⁻¹. HRMS (ESI) *m/z* calculated for C₃₁H₃₂NO₂+ [M+H]⁺ 450.2428, found: 450.2401. UV/Vis absorption spectrum of **4ia** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 300 nm, 393 nm, and corresponding molar extinction coefficients are ε_{300} = 12797 M⁻¹ cm⁻¹, ε_{393} = 7917 M⁻¹ cm⁻¹.

(Z)-6-(4-methoxyphenyl)-5,5-dimethyl-2-phenyl-7-[(phenylamino)methylene]-

cyclohept-2-ene-1,4-dione 4ja: 67% yield. Red viscous oil. TLC $R_f = 0.30$ (10:1 hexanes/EtOAc.). ¹H NMR (500 MHz, CDCl₃) δ 12.60 (d, J = 12.1 Hz, 1H), 7.57 (d, J = 12.1 Hz, 1H), 7.41 – 7.36 (comp., 3H), 7.35 – 7.30 (comp., 4H), 7.30 – 7.25 (comp., 4H), 7.10 – 7.07 (m, 1H), 7.01 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 6.56 (s, 1H), 4.10 (s, 1H), 3.81 (s, 3H), 1.48 (s, 3H), 1.21 (s, 3H)... ¹³C NMR (125 MHz, CDCl₃) δ 206.90, 189.82, 158.22, 149.17, 147.05, 139.87, 138.91, 131.88, 130.96, 130.85, 129.79, 128.76, 128.44, 128.33, 124.21, 116.76, 113.76, 111.56, 55.25, 53.71, 52.79, 27.83, 22.85. IR (neat) 2927, 1621, 1427 cm⁻¹.. HRMS (ESI) *m/z*

calculated for $C_{29}H_{28}NO_3^+$ [M+H]⁺438.2064, found: 438.2061.UV/Vis absorption spectrum of **4ja** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 301 nm, 391 nm, and corresponding molar extinction coefficients are ε_{296} = 17213 M⁻¹ cm⁻¹, ε_{413} = 16721 M⁻¹ cm⁻¹.

(*Z*)-5,5-Dimethyl-6-(4-nitrophenyl)-2-phenyl-7-[(phenylamino)methylene]cyclohept-2-ene-1,4-dione 4ka: 59% yield. Red viscous oil. TLC $R_f = 0.15$ (10:1 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.66 (d, *J* = 12.3 Hz, 1H), 8.15 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 12.3 Hz, 1H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.40 – 7.32 (comp, 5H), 7.25 – 7.20 (comp, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 7.06 (d, *J* = 7.9 Hz, 2H), 6.53 (s, 1H), 4.01 (s, 1H), 1.52 (s, 3H), 1.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.8, 188.9, 149.9, 148.1, 147.5, 146.4, 139.4, 138.8, 131.4, 130.3, 129.9, 129.0, 128.4, 128.3, 124.8, 123.4, 117.0, 110.6, 55.1, 51.6, 28.0, 24.4; IR (neat) 2925, 1625, 1595 cm⁻¹. HRMS (ESI) *m/z* calculated for C₂₈H₂₅N₂O₄⁺ [M+H]⁺ 453.1809, found: 453.1810. UV/Vis absorption spectrum of **4ka** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 296 nm, 413 nm, and corresponding molar extinction coefficients are ε_{296} = 36223 M⁻¹ cm⁻¹, ε_{413} = 23233 M⁻¹ cm⁻¹.

(Z)-8,11-Diphenyl-10-[(phenylamino)methylene]spiro[4.6]undec-7-ene-6,9-dione 4bh: 65% yield. Red viscous oil. TLC $R_f = 0.2$ (10:0 hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 12.53 (d, J = 12.3 Hz, 1H), 7.61 (d, J = 12.3 Hz, 1H), 7.40 – 7.33 (comp, 2H), 7.31 – 7.28 (m, 1H), 7.27 – 7.21 (comp, 6H), 7.17 – 7.11 (comp, 4H), 7.06 – 7.01 (comp, 2H), 6.21 (s, 1H), 3.72 (s, 1H), 2.89 – 2.79 (m, 1H), 2.08 – 1.96 (m, 1H), 1.93 – 1.83 (comp, 3H), 1.78 – 1.67 (comp, 2H), 1.66 – 1.55 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 205.0, 189.2, 149.8, 147.1, 141.5, 139.8, 139.7, 132.2, 129.8, 128.3, 128.3, 128.3, 128.1, 128.0, 126.2, 124.2, 116.7, 112.5, 62.2, 54.9, 40.0, 38.2, 26.3, 24.8. IR (neat) 2949, 1625, 1595 cm⁻¹. HRMS (ESI) *m/z* calculated for C₃₀H₂₈NO₂⁺ [M+H]⁺ 434.2115, found: 434.2134. UV/Vis absorption spectrum of **4bh** recorded at 20°C in dichloromethane (DCM): UV (λ max) = 298 nm, 419 nm, and corresponding molar extinction coefficients are $\varepsilon_{298} = 8390 \text{ M}^{-1} \text{ cm}^{-1}$, $\varepsilon_{419} = 5328 \text{ M}^{-1} \text{ cm}^{-1}$.

1-(4-Hydroxyphenyl)-4,4-dimethyl-5-phenyl-4,5-dihydro-1H-azepin-3-yl (4-Meth-oxyphenyl)diazoacetate 3cb: 36% yield. Yellow oil.¹H NMR (500 MHz, CDCl₃) δ 7.33-7.21 (comp., 7H), 7.09 (d, *J* = 8.9 Hz, 2H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.79 (d, *J* = 8.9 Hz, 2H) . 6.39 (d, *J* = 9.9 Hz, 1H), 6.37 (s, 1H), 5.33 (br, 1H), 4.92 (dd, *J* = 9.9, 6.6 Hz, 1H), 3.80 (s, 3H), 3.57 (d, *J* = 6.6 Hz, 1H), 1.19 (s, 3H), 1.04 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.96, 158.08, 152.62, 144.09, 140.75, 138.84, 129.65, 129.17, 127.69, 126.27, 125.86, 124.75, 122.96, 116.62, 115.85, 114.63, 107.79, 55.35, 54.90, 43.75, 28.36, 25.01. IR (neat) 3406, 2086, 1671, 1152, 1253 cm⁻¹. HRMS (ESI) *m/z* calculated for C₂₉H₂₈N₃O₄⁺ [M+H]⁺ 482.2080, found: 482.2086.

Table S5. Maximum absorption wavelengths and molar absorptivities for 1,4-enedione-ketoenamines^a

Structure	λ_{1max} (nm)	$\xi_{\lambda 1 max}$	$\lambda_{2max}(nm)$	$\xi_{\lambda 2max}$
		$(M^{+} cm^{+})$		$(M^{+} cm^{+})$

S27

The maximum absorption wavelengths for 4 were recorded by a Carey 50 Bio UV-Vis spectrometer, and according to the Beer–Lambert law, the molar absorptivities were calculated via the equation ξ = A/*cl. Procedure*: 0.05 mmol of Compounds 4 and 5.0 mL of DCM were added in a 5.0 mL oven-dried volumetric flask, and 1.0mL of red solution was 249.0 mL of DCM were added into a 250.0 mL oven-dried volumetric flask, and then the resulting solution was directly used in further analysis.

X-ray Crystal Structure Information for 4ha

Crystal Structure Report for 4ha

A specimen of $C_{32}H_{27}NO_2$, approximate dimensions 0.07 mm × 0.08 mm × 0.47 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker APEX-II CCD system equipped with a graphite monochromator and a MoK α sealed tube ($\lambda = 0.71073$ Å). Data collection temperature was 150 K.

The total exposure time was 17.78 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinicunit cell yielded a total of 15657 reflections to a maximum θ angle of 24.99° (0.84 Å resolution), of which 4299 were independent (average redundancy 3.642, completeness = 100.0%, $R_{int} = 7.86\%$) and 2251 (52.36%) were greater than $2\sigma(F^2)$. The final cell constants of a = 18.041(4)Å, b = 12.292(3) Å, c = 11.066(2) Å, $\beta = 94.663(3)^{\circ}$, V = 2445.9(9) Å³, are based upon the refinement of the XYZ-centroids of 1326 reflections above 20 σ (I) with 5.328° < 2 θ < 41.67°. Data were corrected for absorption effects using the multi-scan method (SADABS). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8840 and 0.9940. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P2_1/c$, with Z = 4 for the formula unit, $C_{32}H_{27}NO_2$. The final anisotropic full-matrix least-squares refinement on F^2 with 404 variables converged at $R_1 = 5.44\%$, for the observed data and $wR_2 = 9.80\%$ for all data. The goodness-of-fit was 1.069. The largest peak in the final difference electron density synthesis was $0.199 \text{ e}^{-1}/\text{Å}^{3}$ and the largest hole was $-0.182 \text{ e}^{-1}/\text{Å}^{3}$ with an RMS deviation of 0.043 e⁻/Å³. On the basis of the final model, the calculated density was1.243 g/cm³ and F(000), 968 e⁻.

APEX2 Version 2010.11-3 (Bruker AXS Inc.). SAINT Version 7.68A (Bruker AXS Inc., 2009).
SADABS Version 2008/1 (G. M. Sheldrick, Bruker AXS Inc.). XPREP Version 2008/2 (G. M. Sheldrick, Bruker AXS Inc.). XS Version 2008/1 (G. M. Sheldrick, *Acta Cryst.* (2008). A64, 112-122). L Version 2012/4 (G. M. Sheldrick, (2012) University of Gottingen, Germany). Platon (A. L. Spek, *Acta Cryst.* (1990). A46, C-34).

Identification code	2608		
Chemical formula	$C_{32}H_{27}NO_2$		
Formula weight	457.54		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal size	$0.07 \times 0.08 \times 0.47 \text{ mm}$		
Crystal system	monoclinic		
Space group	$P2_1/c$		
Unit cell dimensions	a = 18.041(4) Å	$\alpha = 90^{\circ}$	
	b = 12.292(3) Å	$\beta = 94.663(3)^{\circ}$	
	c = 11.066(2) Å	$\gamma = 90^{\circ}$	
Volume	2445.9(9) Å ³		
Z	4		
Density (calculated)	1.243 Mg/cm ³		
Absorption coefficient	0.077 mm ⁻¹		
F(000)	968		

Table S6. Sample and crystal data for 4ha.

Table S7. Data collection and structure refinement for 4ha.

Diffractometer	Bruker APEX-II CCD
Radiation source	sealed tube, MoKa
Theta range for data collection	2.01 to 24.99°
Index ranges	$-20 \le h \le 21$, $-14 \le k \le 14$, $-13 \le l \le 13$

Reflections collected	15657		
Independent reflections	4299 [R(int) = 0.0786]		
Coverage of independent reflections	100.0%		
Absorption correction	multi-scan		
Max. and min. transmission	0.9940 and 0.8840		
Structure solution technique	direct methods		
Structure solution program	ShelXS-97 (Sheldrick, 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	ShelXL-2014 (Sheldrick, 2014)		
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$		
Data / restraints / parameters	4299 / 0 / 404		
Goodness-of-fit on F ²	1.069		
Final R indices	2251 data; I>2σ(I)	$R_1 = 0.0544, wR_2 = 0.0797$	
	all data	$R_1 = 0.1294, wR_2 = 0.0980$	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.01 P=(F_o^2 +2 F_c^2)/3	50P) ² +0.7500P],	
Largest diff. peak and hole	0.199 and -0.182 eA	À -3	
R.M.S. deviation from mean	0.043 eÅ ⁻³		
$R_{int} = \Sigma F_o^2 - F_o^2(\text{mean}) / \Sigma$	$[F_0^2]$		

 $\mathbf{R}_1 = \Sigma ||F_{\rm o}| - |F_{\rm c}|| / \Sigma |F_{\rm o}|$

GOOF = S = { $\Sigma[w(F_o^2 - F_c^2)^2] / (n - p)$ }^{1/2} wR₂ = { $\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]$ }^{1/2}

References

- [1] (a) M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 3741; (b)Shapiro, N. D.; Toste, F.
- D. J. Am. Chem. Soc. 2008, 130, 9244.
- [2] Qiu, H.; Srinivas, H. D.; Zavalij, P. Y.; Doyle, M. P. J. Am. Chem. Soc. 2016, 138, 1808.
- [3] Eyring, H. J. Chem. Phys. 1935, 3, 107.

¹H- and ¹³C-NMR Spectra of New Compounds

70 60 50

30 20 10

40

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

--500

0 -10

