Electronic Supplementary Information (ESI)

for

Facile In Situ Generation of Highly Active (Arylimido)Vanadium(V)-Alkylidene

Catalysts for Ring-Opening Metathesis Polymerization (ROMP) of Cyclic Olefins by

Immediate Phenoxy Ligand Exchange

Hitomi Hayashibara, Xiaohua Hou, and Kotohiro Nomura*

Department of Chemistry, Faculty of Science and Engineering, Tokyo Metropolitan

University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan.

Contents

1. General experimental procedure, synthesis and identification of $V(CHSiMe_3)(NC_6F_5)(O-2,6-^iPr_2C_6H_3)(PMe_3)_2$ (1) including selected NMR spectra.

2. Basic polymerization procedure of ROMP of cyclic olefins, and additional data for ROMP of norbornene (NBE) for optimization of reaction conditions, in the presence of 1-hexene.

3. Selected NMR data in some reaction chemistry.

*Corresponding Authors, tel.&fax: +81-42-677-2547, e-mail: ktnomura@tmu.ac.jp (K.N.)

1. General experimental procedure, synthesis and identification of V(CHSiMe₃)(NC₆F₅)-(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂ (1) including NMR spectra.

General Procedures. All experiments were carried out under a nitrogen atmosphere in a vacuum atmospheres drybox. Anhydrous grade, benzene, and *n*-hexane (Kanto Chemical Co., Inc.) were transferred into a bottle containing molecular sieves (a mixture of 3A 1/16, 4A 1/8, and 13X 1/16) in the drybox under N₂, and were passed through an alumina short column under a N₂ stream prior to use. Norbornene (TCI) was used after distillation in the presence of Na. Cyclopentene (Aldrich), cycloheptene (TCI) were dried in the presence of molecular sieves, and pass alumina short column prior to use. V(NC₆F₅)Cl₃(dme) was prepared according to the analogous procedure for synthesis of the other (arylimido)vanadium(V) trichloride complexes¹ and stabilized in dme.²

All NMR spectra were recorded on a Bruker AV500 spectrometer (500.13 MHz for ¹H, 125.77 MHz for ¹³C, 470.59 MHz for ¹⁹F, 202.47 MHz for ³¹P, 131.55 MHz for ⁵¹V). All spectra were obtained in the solvent indicated at 25 °C unless otherwise noted. Chemical shifts are given in ppm and are referenced to SiMe₄ (δ 0.00 ppm, ¹H, ¹³C). Coupling constants are given in Hz. Chemical shift was determined with reference to chloroform (7.26 ppm for ¹H, 77.16 ppm for ¹³C) and benzene-*d*₆ (7.16 ppm for ¹H, 128.06 ppm for ¹³C). Molecular weights and the molecular weight distributions of the resultant polymers were measured by gel-permeation chromatography (GPC). HPLC grade THF was used for GPC and was degassed prior to use. GPC was performed at 40 °C on a Shimadzu SCL-10A using a RID-10A detector (Shimadzu Co. Ltd.) in THF (containing 0.03 wt % of 2,6-di-*tert*-butyl-*p*-cresol, flow rate 1.0 mL/min). GPC columns (ShimPAC GPC-806, 804 and 802, 30 cm × 8.0 mm diameter, spherical porous gel made of styrene/ divinylbenzene copolymer, ranging from <10² to 2 × 10⁷ MW) were calibrated versus polystyrene standard samples.

Synthesis and identification of V(CHSiMe₃)(NC₆F₅)(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂ (1).

(i) Synthesis of V(NC₆F₅)(CH₂SiMe₃)₃. Into a THF solution containing LiCH₂SiMe₃ (203 mg, 2.16 mmol, 3.0 equiv.), V(NC₆F₅)Cl₃(dme) (311 mg, 0.72 mmol) was added at -30 °C. The reaction mixture was warmed slowly to room temperature and stirred for 1 h. A small amount of CH₂Cl₂ (ca. 1 mL) was added after the prescribed time, and the solution was then removed in *vacuo*. The resultant residue was extracted with *n*-hexane (ca. 30 mL). The *n*-hexane extract was then removed in *vacuo* to give deep brown oil. Yield: 110 mg (30 %). The product was characterized by NMR spectra. ¹H NMR (C₆D₆): δ 2.25 (br, 6H, -*CH*₂SiMe₃), -0.08 (s, 27H, -CH₂Si*Me₃*). ¹³C NMR: 144.7, 142.9, 139.6, 138.9, 137.7, 136.9, 135.8, 98.4 (b), 1.6. ¹⁹F NMR: δ -148.1 (d, *J* = 23.5 Hz), -161.4 (t, *J* = 25.8 Hz), -164.2 (t, *J* = 21.1 Hz). ⁵¹V NMR: δ 1198.4 ($\Delta v_{1/2}$ = 199 Hz). Anal. Calcd. for V(CH₂SiMe₃)₃(NC₆F₅), C₁₈H₃₃F₅NSi₃V: C, 43.80; H, 6.74; N, 2.84. Found: C, 44.08; H, 6.54; N, 2.94.

(ii) Synthesis of $V(NC_6F_5)(CH_2SiMe_3)_2(O-2,6^{-i}Pr_2C_6H_3)$. Into an *n*-hexane solution (30 mL) containing $V(NC_6F_5)(CH_2SiMe_3)_3$ (110 mg, 0.22 mmol) was added 2,6⁻ⁱPr_2C_6H_3OH (40 mg, 0.22 mmol, 1.0 equiv.) at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was stirred for 12 h. The solution was then removed in *vacuo* to give deep brown oil. (130

mg, 98%). ¹H NMR(C₆D₆): δ 7.04 (d, J = 10 Hz, 2H, -Ar), 6.95 (t, J = 10 Hz, 1H, -Ar), 3.68 (m, 2H, $-CH(CH_3)_2$), 3.13 (d, J = 4.0 Hz, 2H, $-CH_2SiMe_3$), 2.61 (d, J = 4.0 Hz, 2H, $-CH_2SiMe_3$), 1.28 (d, J = 4.0 Hz, 12H, $-CH(CH_3)_2$), 0.10 (s, 18H, $-CH_2SiMe_3$); ¹³C NMR: δ 137.7, 123.9, 123.2, 26.8, 23.2, 1.1; ¹⁹F NMR: δ -148.9 (dd, J = 23.5 Hz, J = 4.7 Hz), -159.0 (t, J = 21.2 Hz), -163.8 (dt, J = 23.5 Hz, J = 4.7 Hz); ⁵¹V NMR: δ 630 ($\Delta v_{1/2} = 443$ Hz). It was difficult to obtain the analytically pure sample probabluy due to difficulty to remove impurities and/or *n*-hexane completely, and the resiltant oil (mixture) is sutable for isolation of V(CHSiMe₃)(NC₆F₅)(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂ as pure microcrystalline in the next step.

(iii) Synthesis of V(CHSiMe₃)(NC₆F₅)(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂. Into an *n*-hexane solution (20 mL) containing V(NC₆F₅)(CH₂SiMe₃)₂(O-2,6-^{*i*}Pr₂C₆H₃) (130 mg, 0.22 mmol) was added PMe₃ (84 mg, 0.22 mmol, excessive, 5 equiv.) at -30 °C. The reaction mixture was warmed slowly to room temperature and was then kept in oil bath at 70 °C for 12 h. The solution was passed through a Celite pad, and the filtercake was washed with *n*-hexane. The combined solution (filtrate and wash) was placed in a rotary evaporator to remove the volatiles. The residue was then dissolved in small amount of *n*-pentane and placed in the freezer (-30 °C). Dark red crystalline solids were collected. (59 mg, 42%). ¹H NMR (C₆D₆): δ 17.12 (s, 1H, -V=*CH*SiMe₃), 7.17 (d, *J* = 10 Hz, 2H, -*Ar*), 6.93 (t, *J* = 10 Hz, 2H, -*Ar*), 3.71 (br, 2H, -*CH*(CH₃)₂), 1.34 (br, 12H, -CH(*CH*₃)₂), 0.86 (br, 18H, P*Me*₃), 0.31(s, 9H, -CHSi*Me*₃); ¹³C NMR: δ 346.2, 163.3, 144.3, 142.4, 139.1, 137.1, 135.6, 135.2, 123.3, 118.4, 27.0, 24.2, 16.2, 2.0; ¹⁹F NMR: -153.0 (d, *J* = 23.4 Hz), -165.7 (t, *J* = 20.4 Hz), -167.4 (t, *J* = 21.8 Hz); ³¹P NMR: δ -13.3 (br); ⁵¹V NMR: δ 1.00 (s, $\Delta v_{1/2}$ = 382 Hz); Anal. Calcd. for V(CHSiMe₃)(NC₆F₅)(O-2,6-ⁱPr₂C₆H₃)(PMe₃)₂, C₂₈H₄₅F₅NOP₂SiV: C, 51.93; H, 7.00; N, 2.16. Found: C, 52.18; H, 7.01; N, 2.09.

1. For example, (a) D. D. Devore, J. D. Lichtenhan, F. Takusagawa and E. A. Maatta, J. Am. Chem. Soc., 1987, **109**, 7408-7416; (b) J. -K. F. Buijink, J. H. Teubin, H. Kooijman and A. L. Spek, Organometallics, 1994, **13**, 2922-2924.

2. NMR data for V(NC₆F₅)Cl₃, K. A. Rufanov, J. Kipke and J. Sundermeyer, *Dalton Trans.*, 2011, **40**, 1990–1997.

Figure S1-1. ¹H NMR spectrum (in C_6D_6) for $V(NC_6F_5)(CH_2SiMe_3)_3$.

Figure S1-2. ⁵¹V NMR spectrum (in C_6D_6) for $V(NC_6F_5)(CH_2SiMe_3)_3$.

Figure S1-3. ¹⁹F NMR spectrum (in C_6D_6) for $V(NC_6F_5)(CH_2SiMe_3)_3$.

Figure S1-4. ¹H NMR spectrum (in C_6D_6) for $V(NC_6F_5)(CH_2SiMe_3)_2(O-2,6-^iPr_2C_6H_3)$.

Figure S1-5. ⁵¹V NMR spectrum (in C_6D_6) for $V(NC_6F_5)(CH_2SiMe_3)_2(O-2, 6-{}^iPr_2C_6H_3)$.

Figure S1-6. ¹⁹F NMR spectrum (in C_6D_6) for V(NC₆F₅)(CH₂SiMe₃)₂(O-2,6-^{*i*}Pr₂C₆H₃). Resonances marked with * would be impurities that are difficult to separate at this step.

Figure S1-7. ¹H NMR spectrum (in C_6D_6) for V(CHSiMe₃)(NC₆F₅)(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂ (1).

Figure S1-8. ⁵¹V NMR spectrum (in C₆D₆) for V(CHSiMe₃)(NC₆F₅)(O-2, 6^{-i} Pr₂C₆H₃)(PMe₃)₂ (1).

Figure S1-9. ¹⁹F NMR spectrum (in C_6D_6) for V(CHSiMe₃)(NC₆F₅)(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂ (1).

Figure S1-10. ³¹P NMR spectrum (in C_6D_6) for V(CHSiMe₃)(NC₆F₅)(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂ (1).

2. Basic polymerization procedure of ROMP of cyclic olefins, and additional data for ROMP of norbornene (NBE).

ROMP of norbornene (NBE). Typical reaction procedure (Procedure A, Scheme S1) is as follows. Into a vial (10 mL scale) containing a stirred benzene solution (0.5 mL) of prescribed amount of phenol, benzene solution (0.5 mL) containing prescribed amount of $V(CHSiMe_3)(NC_6F_5)(O-2,6^{-i}Pr_2C_6H_3)(PMe_3)_2$ (1) was added. The solution was kept stirring at 25 °C (for 1 minute), and the solution was then added into a vial (10 mL scale) containing norbornene dissolved in benzene. The mixture was stirred for a prescribed time at 25 °C. The polymerization was then quenched by the addition of excess PhCHO, and the solution was stirred for an additional 1 h at room temperature. The mixture was then poured into methanol (ca. 100 mL). The resultant solid was collected by filtration, washed with methanol, and then dried in *vacuo* at room temperature.

Scheme S1. Polymerization procedure employed for ring-opening metathesis polymerization (ROMP) of norbornene (NBE): <u>Procedure A</u> was chosen in this study (ROMP of cyclic olefins).

1 (µmol)	phenol	procedure ^b	premix ^c	time	polymer	conv. ^d	TON ^e	TOF ^f	
			/ min	/ min	/ mg	/ %		min ⁻¹	
0.1	C ₆ F ₅ OH	В		1	34	17.0	3610	3620	
0.1	C_6F_5OH	А	1.0	1	207	>100	>21200	>21200	
0.05	C ₆ F ₅ OH	А	1.0	1	173	86.7	36800	36700	
0.05	C ₆ F ₅ OH	\mathbf{A}^{g}	1.0	1	218	54.5	46300	46300	
0.05	C ₆ F ₅ OH	\mathbf{A}^{g}	1.0	1	201	50.4	42700	42700	

 Table S2-1. Optimization of the reaction procedure.^a

^aReaction conditions: 1 and 1.0 equiv of phenol, norbornene (NBE) 2.12 mmol, benzene 4.8 mL (total), at 25 °C, ^bProcedure shown in Scheme S1. ^cThe ligand exchange reaction (premix) was conducted in benzene 0.1 mM (vanadium). ^dConversion of NBE. ^eTON (turnovers) = NBE reacted (μmol)/vanadium complex charged (μmol). ^fTOF = (TON)/time. ^gNBE 4.24 mmol, benzene 9.6 mL (total).

Table S2-2. Additional polymerization data: ring opening metathesis polymerization (ROMP) of norbornene (NBE) in the presence of 1-hexene using V(CHSiMe₃)(NC₆F₅)(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂ (1) – 2,6-Cl₂C₆H₃OH catalyst system.^{*a*}

run	phenol	1-hexene	time	yield ^{b}	conv. ^c	TON^d	TOF ^e	M_{n}^{f}	$M_{ m w}/$
		/ mol%	/ min	/ mg	/ %		$/ \min^{-1}$	×10 ⁻⁴	M_n^f
1			10	291	72.8	1550	155	112	2.04
9	2,6-Cl ₂ C ₆ H ₃ OH		1	115	28.8	12200	12200	insoluble	
10	2,6-Cl ₂ C ₆ H ₃ OH		1	101	25.3	10700	10700	insoluble	
11	2,6-Cl ₂ C ₆ H ₃ OH		3	298	74.6	31700	10600	insoluble	
S 1	2,6-Cl ₂ C ₆ H ₃ OH	10	1	73.8	36.9	7840	7840	11.46 ^g	1.45 ^g
S2	2,6-Cl ₂ C ₆ H ₃ OH	30	1	72.9	36.5	7740	7740	4.62 ^g	1.46 ^g

^{*a*}Reaction Conditions: V(CHSiMe₃)(NC₆F₅)(O-2,6^{*i*}Pr₂C₆H₃)(PMe₃)₂ (1) 0.10 µmol, initial NBE conc. 0.44 M [NBE 4.24 mmol and benzene 9.6 mL (runs 1,9-11) or 2.12 mmol and benzene 4.8 mL (runs S1 and 2)], 25 °C. The catalyst solution was prepared *in situ* by premixing 1 with 1.0 equiv of 2,6-Cl₂C₆H₃OH for 1 min at 25 °C (0.10 mmol/mL V, 200 rpm). ^{*b*}Isolated yield after precipitation into MeOH. ^{*c*}Conversion on the basis of polymer yield. ^{*d*}TON (turnovers) = monomer reacted (mmol)/vanadium complex (mmol). ^{*e*}TOF (min⁻¹) = TON/time. ^{*f*}GPC data in THF *vs* polystyrene standards. ^{*g*}GPC data in *o*-dichlorobenzene *vs* polystyrene standards.

3. Selected NMR data in some reaction chemistry.

Figure S3-1. ¹H NMR spectra (in C_6D_6 at 25 °C) for (a) V(CHSiMe₃)(NC₆F₅)(O-2,6-ⁱPr₂C₆H₃)(PMe₃)₂ (1), and (b,c) reaction of 1 with 1.0 equiv of C₆F₅OH (b) after 10 min, (c) 5 h.

Figure S3-2. ¹H NMR spectra (in C₆D₆ at 25 °C, expanded 2.6-4.6 ppm) for (a) $V(CHSiMe_3)(NC_6F_5)(O-2,6^{-i}Pr_2C_6H_3)(PMe_3)_2$ (1), and (b,c) reaction of 1 with 1.0 equiv of C₆F₅OH (b) after 10 min, (c) 5 h.

Figure S3-3. ¹H NMR spectra (in C₆D₆ at 25 °C, expanded 13-21 ppm, resonances corresponding to alkylidene protons) for (a) V(CHSiMe₃)(NC₆F₅)(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂ (1), and (b,c) reaction of 1 with 1.0 equiv of C₆F₅OH (b) after 10 min, (c) 5 h.

Figure S3-4. ³¹P NMR spectra (in C₆D₆ at 25 °C) for (a) V(CHSiMe₃)(NC₆F₅)(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂ (1), and (b,c) reaction of 1 with 1.0 equiv of C₆F₅OH (b) after 10 min, (c) 5 h.

Figure S3-5. ⁵¹V NMR spectra (in C_6D_6 at 25 °C) for (a) V(CHSiMe₃)(NC₆F₅)(O-2,6-^{*i*}Pr₂C₆H₃)(PMe₃)₂ (1), and (b,c) reaction of 1 with 1.0 equiv of C₆F₅OH (b) after 10 min, (c) 5 h.