Three-dimensional supramolecular polymerization based on pillar[n]arenes (n = 5, 6) and halogen bonding interactions

Chengyou Han,*a Dezhi Zhao and Shengyi Dong*b

^a Department of Chemistry, College of science, China University of Petroleum (East China), Qingdao, 266580, P. R. China. Email address: hanchengyou@upc.edu.cn;
^b College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China. E-mail: dongsy@hnu.edu.cn.

Electronic Supplementary Information (14 pages)

1.	Materials and Methods	<i>S2</i>
2.	¹ H NMR investigation of (DEP5 \supset G1•L) at different concentrations of L	<i>S3</i>
3.	¹⁹ F NMR investigation of (DEP5 \supset G1•L) at different concentrations of	<i>S3</i>
	DEP5_G1	
4.	¹ <i>H</i> NMR investigation of (DPP5 \neg G1 • L) at different concentrations	<i>S4</i>
5.	¹⁹ F NMR investigation of (DPP5 \supset G1 •L) at different concentrations	<i>S4</i>
6.	X-ray crystal data of (DEP5_G1•L)	<i>S5</i>
7	¹⁹ F NMR investigation of (DEP5 \supset G1 •L) at different concentrations	<i>S5</i>
8	The $\pi^{\bullet\bullet\bullet}\pi$ stacking interactions of (DEP5 \neg G1 •L)	<i>S6</i>
9	The crystal structure of ($DEP6 \supset G2$) in solid state	<i>S6</i>
10	(DEP6_G2•L) in different solvents	<i>S6</i>
11	The proposed $\pi^{\bullet\bullet\bullet\pi}$ stacking pattern of (DPP6 \neg G2•L) in solid state	<i>S</i> 7
12	Variable temperature ¹ H NMR spectra of (DPP6 \neg G2•L)	<i>S</i> 7
13	¹ H NMR tube of DPP6\negG2 and DEP5\negG1 mixture with adding of L	<i>S8</i>
14	The determination of the association constants of DEP6/DPP6 \supset G2	<i>S8</i>
15	Chemical shift changes of $H_{a,c}$ and $H_{b,c}$ at different concentrations of	SH

(**DEP5**⊃**G1**•**L**)

16	¹ H NMR spectra (400 MHz, CDCl ₃ , 22 °C) of DPP6 , toluene and their	r	<i>S12</i>
	mixing solution		
17	G2 and L in $CHCl_3$ solution	<i>S12</i>	
18	¹ H NMR spectra (400 MHz, CDCl ₃ , 22 °C) of DPP6 and DPP6•L mix	ing	
	solution	<i>S13</i>	
19	¹⁹ F NMR spectra (376 MHz, CDCl ₃ , 22 °C) of L and DPP6•L mixing		
	solution	<i>S13</i>	
	References	<i>S14</i>	

1. Materials and Methods:

Pillar[*n*]arenes^{S1a} (G1)^{S1b} and 1,4-di(1*H*-imidazol-1-yl)butane were synthesized according to literature procedures. The guest molecules 1,4diazabicyclo[2.2.2]octane (G2) and linker molecule 1,4diiodotetrafluorobenzene (L) were purchased from Shanghai Aladdin Bio-Chem Company and used without further purification. Solvents were either employed as purchased or dried according to procedures described in the literature. ¹H NMR spectra were collected on a Bruker AscendTM 400 MHz spectrometer. ¹³C NMR spectra were recorded on a Bruker AscendTM 400 MHz spectrometer at 100 MHz. ¹⁹F NMR spectra were recorded on a Bruker AscendTM 400 MHz spectrometer at 396 MHz.

2. ¹H NMR investigation of (**DEP5** \supset **G1**•**L**) at different concentrations of **L**

Fig.S1 Partial ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of (**DEP5**→**G1**•**L**) with **L** at different concentrations: 0.00 mmol; 0.50 mmol; 1.00 mmol; 1.50 mmol; 2.00 mmol; 4.00 mmol; 8.00 mmol; 12.0 mmol. (**DEP5**→**G1** was kept as constant at 2.00 mM)

3. ¹⁹F NMR investigation of (DEP5 –G1•L) at different concentrations of DEP5 –G1

Fig.S2 Partial ¹⁹F NMR spectra (396 MHz, CDCl₃, 22 °C) of (**DEP5** \rightarrow **G1**•**L**) with *DEP5* \rightarrow **G1** at different concentrations: 0.00 mmol; 1.00 mmol; 1.50 mmol; 2.00 mmol; 4.00 mmol; 8.00 mmol; 12.0 mmol. (**L** was kept as constant at 2.00 mM)

4. ¹*H* NMR investigation of (**DPP5** \supset **G1**•**L**) at different concentrations

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

Fig.S3 Partial ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of (**DPP5⊃G1•L**) (1/1/1) at different concentrations: (a) 1.00 mmol; (b) 8.00 mmol; (c) 16.0 mmol; (d) 32.0 mmol; (e) 62.5 mmol; (f) 125 mmol.

5. ¹⁹F NMR investigation of (DPP5 –G1•L) at different concentrations

-117.94 -118.00 -118.06 -118.12 -118.18 -118.24 -118.30 -118.36 -118.42 **Fig.S4** Partial ¹⁹F NMR spectra (396 MHz, CDCl₃, 22 °C) of (**DPP5** \supset **G1**•**L**) (1/1/1) at different concentrations: (a) 1.00 mmol; (b) 8.00 mmol; (c) 16.0 mmol; (d) 32.0 mmol; (e) 62.5 mmol; (f) 125 mmol.

6. X-ray crystal data of (DEP5_G1•L)

Crystal data of (**DEP5** \supset **G1**•**L**): white, C₅₅H₇₀O₁₀•C₁₀H₁₄N₄•C₆F₄I₂, FW 1483.22, triclinic, space group P-1, a = 14.2852(6), b = 15.3486(7), c = 16.0133(7) Å, $\alpha = 87.769(4)^{\circ}$, $\beta = 85.092(4)^{\circ}$, $\gamma = 79.626(4)^{\circ}$, V = 3440.0(3) Å³, Z = 2, D_c = 1.432 g cm⁻³, T = 140(2) K, $\mu = 7.765$ mm⁻¹, 23749 measured reflections, 12272 independent reflections, 841 parameters, 1410 restraints, F(000) = 1520, R₁ = 0.1031, wR₂ = 0.2747 (all data), R₁ = 0.0967, wR₂ = 0.2607 [I > 2 σ (I)], max. residual density 2.902 e•Å⁻³, and goodness-of-fit (F2) = 1.041. CCDC-1865312.

7. ¹⁹F NMR investigation of (**DEP5** \supset **G1**•L) at different concentrations

Fig.S5 Partial ¹⁹F NMR spectra (376 MHz, CDCl₃, 22 °C) of (**DEP5** \supset **G1)**•L (1/1/1) at different concentrations: (a) 45.0 mmol; (b) 55.0 mmol; (c) 70.0 mmol; (d) 90.0 mmol; (e) 115 mmol; (f) 145 mmol; (g) 200 mmol.

8. The $\pi^{\bullet\bullet\bullet\pi}$ stacking interactions of (**DEP5** \neg **G1**•**L**)

Fig.S6 Top view of the $\pi \cdots \pi$ stacking pattern in the crystal structure.

9. The crystal structure of $(DEP6 \neg G2)$ in solid state

Fig.S7 The crystal structure of (**DEP6**⊃**G2**).

10. (DEP6_G2•L) in different solvents

Fig.S8 (DEP6⊃G2•L) in different solvents: (A) CHCl₃; (B) acetone; (C) DMF; (D) DMSO.

12. Variable temperature ¹H NMR spectra of (**DPP6\negG2•L**)

Fig.S10 Variable temperature ¹H NMR spectra (400 MHz, DMSO- d_6) of **(DPP6\supsetG2-L)** (**G2-L** is slightly excess) at different temperatures: (a) 30 °C; (b) 40 °C; (c) 50 °C; (d) 60 °C; (e) 70 °C. (No trace of DPP6 even at 70 °C).

13. ¹H NMR tube of **DPP6\negG2** and **DEP5\negG1** mixture with adding of **L**

Fig.S11 Photos of ¹H NMR tube of **DPP6** \supset **G2** (**DPP6** is slight excess) and **DEP5** \supset **G1** mixture at 10 mM with adding of L (a) 0 equiv.; (b) 0.5 equiv.; (c) 1.0 equiv.; (d) 2.0 equiv.; (e) 3.0 equiv.; (f) 4.0 equiv.

14. The determination of the association constants of $DEP6/DPP6 \supset G2$

(1) To determine the association constant for the complexation between **DEP6** and guest molecule (**G2**), NMR titrations were done with solutions which had a constant concentration of **DEP6** (3.00 mM) and varying concentrations of **G2**. By a non-linear curve-fitting method, the association constant (K_a) of **DEP6** \supset **G2** was estimated to be about 61.6 (± 4.8) M⁻¹.

The non-linear curve-fitting was based on the equation ^{S2}:

 $\Delta \delta = (\Delta \delta_{\infty} / [H]_0) (0.5[G]_0 + 0.5([H]_0 + 1/K_a) - (0.5 ([G]_0^2 + (2[G]_0(1/K_a - [H]_0)) + (1/K_a + [H]_0)^2)^{0.5}))$ (Eq. S1)

Where $\Delta\delta$ is the chemical shift change of H₂ on **DEP6** at [G]₀, $\Delta\delta_{\infty}$ is the chemical shift change of H₁ when the host is completely complexed, [H]₀ is the fixed initial concentration of the host, and [G]₀ is the initial concentration of **G2**.

Fig. S12. Partial ¹H NMR spectra (400 MHz, CDCl₃, room temperature) of **DEP6** at a concentration of 3.00 mM upon addition of **G2** (15 mM): (1) 0.00 μ L, (2) 10.0 μ L to (1), (3) 10.0 μ L to (2), (4) 10.0 μ L to (3), (5) 10.0 μ L to (4), (6) 25.0 μ L to (5), (7) 25.0 μ L to (6), (8) 25.0 μ L to (7), (9) 50.0 μ L to (8), (10) 50.0 μ L to (9), (11) 50.0 μ L to (10), (12) 100 μ L to (11), (13) 100 μ L to (12).

Fig. S13. The chemical shift change of H_1 on DEP6 upon addition of G2. The red solid line was obtained from the non-linear curve-fitting using Eq. S1.

(2) To determine the association constant for the complexation between **DPP6** and guest molecules (**G2**), NMR titrations were done with solutions which had a constant concentration of **DPP6** (3.90 mM) and varying concentrations of **G2**. By a non-linear curve-fitting method, the association constant (K_a) of **DPP6** \supset **G2** was estimated to be about 27.8 (± 0.4) M⁻¹. The non-linear curve-fitting was based on the above equation S1.

Fig. S14. Partial ¹H NMR spectra (400 MHz, CDCl₃, room temperature) of **DPP6** at a concentration of 2.00 mM upon addition of **G2** (15 mM): (1) 0.00 μ L, (2) 10.0 μ L to (1), (3) 10.0 μ L to (2), (4) 10.0 μ L to (3), (5) 10.0 μ L to (4), (6) 25.0 μ L to (5), (7) 25.0 μ L to (6), (8) 25.0 μ L to (7), (9) 50.0 μ L to (8), (10) 50.0 μ L to (9), (11) 50.0 μ L to (10), (12) 100 μ L to (11), (13) 100 μ L to (12).

Fig. S15 The chemical shift change of H_2 on DPP6 upon addition of G2. The red solid line was obtained from the non-linear curve-fitting using Eq. S1.

15. Chemical shift changes of $H_{a,c}$ and $H_{b,c}$ at different concentrations of (DEP5_G1-L)

Fig. S16 Chemical shift changes of $H_{a,c}$ and $H_{b,c}$ at different concentrations of (DEP5 \supset G1•L) (1/1/1) (400 MHz, CDCl₃, 22 °C): (a) 1.00 mmol; (b) 8.00 mmol; (c) 16.0 mmol; (d) 32.0 mmol; (e) 62.5 mmol; (f) 125 mmol.

16. ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of **DPP6**, toluene and their mixing solution

Fig. S17 ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of DPP6, toluene and their mixing solution.

17. **G2** and L in CHCl₃ solution

Fig. S18 G2 and L in CHCl₃ solution.

18. ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of **DPP6** and **DPP6•L** mixing solution

Fig. S19 ¹H NMR spectra (400 MHz, CDCl₃, 22 °C) of **DPP6** and **DPP6•L** mixing solution. (No chemical shift changes were observed)

19. ¹⁹F NMR spectra (376 MHz, CDCl₃, 22 °C) of L and DPP6•L mixing solution

Fig. S20 ¹⁹F NMR spectra (376 MHz, CDCl₃, 22 °C) of L and **DPP6**•L mixing solution. (No chemical shift changes were observed)

References:

- S1. (a) H. Tao, D. Cao, L. Liu, Y. Kou, L. Wang and H. Meier, *Sci. China Chem.*, 2012, 55, 223; (b) J.-F. Ma, J. Yang, G.-L. Zheng, L. Li and J.-F. Liu, *Inorg. Chem.*, 2003, 42, 7531.
- K. A. Connors, Binding Constants; Wiley: New York, 1987; P. S. Corbin, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999; P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, *J. Am. Chem. Soc.*, 1996, **118**, 4931.