Supporting Information

Reduction of CO₂ with H₂S in simulated deep-sea hydrothermal vents

system

Runtian He[‡], Baoyun Hu[§], Heng Zhong^{‡, \parallel}, Fangming Jin^{‡, \parallel ,*, Junjie Fan[§], Yun Hang Hu[⊥] and Zhenzi Jing^{*}}

\$School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

§ School of Materials Science & Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, P. R. China

Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

 \perp Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, USA.

Table of Contents	Pages
1 Experimental	S2
Figure S1 2 Synthesis of metal sulphides	52 S3
Figure S2	S3
Figure S3	S4
Figure S4	S5
Figure S5	S6
Figure S6	S7
Figure S7	S8
Figure S8	S9
Figure S9	S10
3 Investigation on reduction of gaseous CO ₂ into formate	S11
Table S1	S11
Table S2	S12
Table S3	S13
Figure S10	S14
Table S4	S15
Figure S11	S16
Figure S12	S17
Figure S13	S18
Figure S14	S19
Figure S15	S20
Figure S16	S21
References	S22
22pages (including the cover page)	

16 Figures

4 Tables

1 Experimental Procedures

1.1 Materials

 $Na_2S\cdot 9H_2O$ was used as a source of HS⁻ and NaHCO₃ as CO₂ resource for experimental convenience in this study. NaHCO₃ (\geq 99.5%) and Na₂S·9H₂O (\geq 99.8%) were purchased from Sino-pharm Chemical Reagent Co., Ltd, Deuterium oxide (D₂O, 99.9% D) from Cambridge Isotope Laboratories (Inc. USA), formate (for mass spectrometry, 98%) from Sigma-Aldrich (Shanghai) Trading Co., Ltd, Gaseous N₂ (> 99.99%) from Shanghai Pujiang Special Gas Co., Ltd, Gaseous H₂ (> 99.999%) and CO₂ (> 99.99%) from Shanghai Poly-Gas Technology Co. Ltd, respectively. All of the raw materials used in the experiment were analytical grade without further purification. The solvent used in the experiment is distilled water.

1.2 Experimental section

The experiments were conducted in a SUS316 lined reactor with an internal volume of 42 mL. The certain amount of NaHCO₃ (CO₂ source), Na₂S·9H₂O (source of HS⁻) and degassed water (according to a certain water filling) were added into the SUS316 lined reactor first, and then the reactor was purged with nitrogen for 5 min. After that the reactor was put into an induced heating furnace and heated to a desired temperature with an increasing rate of 15 °C/min. The induced heating furnace was swayed of 20 times/min during the reaction. The water filling was defined as the volumetric ratio of the water put into the reactor to the inner volume of the reactor in the experiments. The reaction time was defined as the time started when the temperature reached to the desired temperature. After a desired reaction time, the reactor was removed from the furnace and cooled by electric fan. The detail of this reactor has been described in Jin's previous papers.^{1, 2}

1.3 Product analysis

After filtered through a 0.22-µm-filter film, liquid samples were analyzed by HPLC (High-performance Liquid Chromatography, Agilent Technologies 1260 Infinity) and GC-MS (Gas Chromatography-Mass spectroscopy, Agilent Technologies 7890) analyzer. HPLC was equipped with a Shodex RSpak KC-811 packing column (300 mm×8 mm i.d.) and a tunable UV detector (absorbance detector adjusted to 210 nm), and the flow rate of the eluent (2 mmol/L HClO₄ aq.) is 1.0 mL/min. GC-MS was analyzed with Agilent Technologies 5975C inert MSD with Tripe-Axis Detector (with 7890A GC system). The solid samples were washed by deionized water and ethanol separately, and then dried in an oven at 80 °C for 10 hours. The crystalline phases and morphology of the solid samples were characterized via X-ray powder diffraction (XRD, Shimadzu XRD-6100) and scanning electron microscope (SEM, S-4800). The XRD pattern was investigated with Cu K α radiation ($\lambda = 0.154056$ nm) and a scanning rate of 4 °/min at an acceleration voltage of 40 Kv and emission current of 40 mA.

Figure S1. GC-MS and HPLC chromatogram of the liquid samples after reaction (T: 300 °C, t: 3 h, NaHCO₃: 0.4 mol/L, Na₂S·9H₂O: 0.1 mol/L, Ni₃S₂: 0.05 mol/L, Water filling: 35%).

2 Synthesis of metal sulphides

The metal sulphides catalysts (Ni₃S₂, FeS₂, CuS, MoS and CoS) used in the experiment were prepared by solvothermal and hydrothermal method. In a typical synthesis process, 0.2 mol/L Ni(NO₃)₂·6H₂O, 0.2 mol/L (H₂N)₂CS and 18 mL ethylene glycol were added to a 30ml Teflon-lined autoclave with the filling ratio of 60% at room temperature. After heating at 200 °C for 24 h, reaction vessel was cooled to room temperature is air. Black precipitates were collected by filtration, and washed by deionized water and anhydrous ethanol for several times, respectively. Finally, the as-prepared powders were dried at 60 °C in air for 8h and then used as the CO₂ reduction catalyst. The preparation of FeS₂, CuS, MoS₂, MnS, CdS and CoS were performed by the partial substitution of an appropriate ratio of (H₂N)₂CS with FeCl₂·6H₂O, Cu(NO₃)₂·4H₂O, Na₂MoO₄·2H₂O, MnSO₄·H₂O, Cd(NO₃)₂·4H₂O or CoCl₂·6H₂O, respectively. All chemicals were purchased from Sino-pharm Chemical Reagent Co., Ltd and used without further purification. XRD patterns of obtained Ni₃S₂, FeS₂, CuS, MoS₂, MnS, CdS and CoS are shown in Fig. S2, S3, S4, S5, S6, S7 and S8, respectively.

Figure S2. XRD pattern of obtained FeS₂.

Figure S3. XRD pattern of obtained CoS.

Figure S4. XRD pattern of obtained Cu_2S and CuS.

Figure S5. XRD pattern of obtained MoS₂.

Figure S6. XRD pattern of the obtained MnS.

Figure S7. XRD pattern of obtained CdS.

Figure S8. XRD patterns of Ni_3S_2 before (a) and after (b) hydrothermal reactions.

Figure S9. SEM pictures of Ni_3S_2 synthesized by solvothermal(a) and hydrothermal(b) reactions.

3 Investigation on reduction of gaseous CO₂ into formate

After the investigation on the reduction of CO_2 with NaHCO₃ as a CO_2 source, further research with gaseous CO_2 were conducted so as to know whether the formation of the formate can also be achieved with the gaseous CO₂. Formate obtained with different amounts of gaseous CO₂ is shown in Table S1. The formate yield was few (65 mg/L) when 0.5 MPa CO₂ was injected into the autoclave for reducition (Table S2, Entry 1), however with increasing gaseous CO_2 into 1.0 and 2.0 MPa (Table S2, Entry 2 and Entry 3), the formate yields of 327 and 675 mg/L were produced, respectively, suggesting that the formation of formate depended on the amount of CO_2 , and the more the gaseous CO_2 used, the more the formate formed. As discussed previously, the formate may be formed via HCO3⁻ rather than CO2,^{3, 4} and a mildly alkaline pH was favorable to formate formation. When pumping plenitudinous CO_2 into alkaline solution, the reaction occurs as shown in Eq.1, while a deficient injection of CO₂, Eq.2 can be obtained. The low yield of formate achieved by a small gaseous CO₂ injected (Table S2, Entry 1) is likely that CO_3^{2-} is the main existing ions which results in a small yield of formate. With increasing the initial amount, plenitudinous gaseous CO₂ should be solved easily in alkaline solution to form more HCO₃⁻ in water, and the more HCO₃⁻ in turn leads to more formate formation (Table S2, Entry 2 and Entry 3). In order to further enhance the solubility of CO_2 in the alkaline solution, the solution with 2.0 MPa CO_2 injected (Table S2, Entry 4) was heated at 80°C for 3 h, and after the hydrothermal reaction, the yield of formate was found to reach up to 1079 mg/L. Although the yield is still not as high as the one obtained with NaHCO₃, from discussed above, we can draw the conclusion that gaseous CO_2 can be directly reduced into the formate with the Na₂S·9H₂O addition.

$$CO_2 + OH^2 \longrightarrow HCO_3^2$$
 (1)

$$CO_2 + 2OH^- \longrightarrow CO_3^{2-} + H_2O$$
 (2)

Entry	Reactor	T/°C	Time/h	catalyst	Formate (mg/L)
1	Teflon	250	24	None	0
2	Teflon	250	24	Ni ₃ S ₂	281
3 ^[a]	Teflon	250	24	Ni ₃ S ₂	0
4	quartz	300	2	None	0
5	quartz	300	2	Ni ₃ S ₂	2093
6 ^[b]	SUS316	300	3	None	24
7 ^[c]	SUS316	300	3	Ni ₃ S ₂	5986

Table S1. Reduction of CO₂ with H₂S in different reactors

Na2S•9H2O: 0.025 mol/L; NaHCO3: 1 mol/L; Water filling:55%; [a] No NaHCO3 ; [b][c] No Na2S•9H2O H2: 1MPa; NaHCO3: 0.4 mol/L; Water filling: 35%

Table S2. Yields of formate with gaseous CO_2 (T: 300 °C, t: 3 h, Water filling: 55%).

Entry	CO ₂ (MPa)	Na ₂ S·9H ₂ O (mol/L)	H₂O mL	Ni ₃ S ₂ (mol/L)	Fomic acid Yield (mg/L)
1	0.5	0.2	23.1	0.1	65 ª
2	1.0	0.2	23.1	0.1	327 ^a
3	2.0	0.2	23.1	0.1	675 ª
4	2.0	0.2	23.1	0.1	1079 ^b

[a] at room temperature.[b] The solution with gaseous CO2 was maintained for 3 h at 80°C before the hydrothermal reaction.

	Table S3.	Reduction	of CO ₂ to f	ormate with	H ₂ S using	different	metal sul	phides as	catalysts
--	-----------	-----------	-------------------------	-------------	------------------------	-----------	-----------	-----------	-----------

Entry	Cat	Formate (mg/L)	Entry	Cat	Formate (mg/L)
1	Ni ₃ S ₂	3477	7	MoS ₂	2916
2	CoS	2456	8	CdS	3455
3	CoS ₂	2337	9	Cu₂S	2535
4	FeS ₂ (Marcasite)	1651	10	CuS	616
5	FeS ₂ (Pyrite)	3026	11	ZnS	584
6	MnS	2659			

Catalyst: 0.1mol/L; Temp: 300 °C; time: 3 h; Na2S•9 H2O: 0.025 mol/L; Water filling: 55%; NaHCO3; 1.4 mol/L; Catalysts were synthesized by hydrothermal or solvothermal methods.

Figure S10. Typical capillary electropherograms of liquid samples after the reaction.

Table S4.Yield of $S0_4{}^{2-}$ and $S0_3{}^{2-}$ produced from H_2S

SO_4^{2-} 4.38 S^{2-} 0.74 SO_2^{2-} 19.26 HCOO ⁻ 75.44	lon ^[a]	Concentration ^[b] (mmol/L)	lon	Concentration (mmol/L)
SO ²⁻ 19.26 HCOO ⁻ 75.44	SO42-	4.38	S ²⁻	0.74
	SO_{3}^{2-}	19.26	HCOO-	75.44

[a] Reaction Condition: Ni₂S₃: 0.1mol/L; Temp: 300 °C; time: 3 h; Na₂S•9H₂O: 0.025 mol/L; Water filling: 55%; NaHCO₃; 1.4 mol/L. [b] Sample were measured by a Thermo Scientific Dionex ICS-5000+/900 Ion Chromatography with lonpac AS11-HC Analytical Column.

Figure. S11 ¹H- and ²H-NMR spectra of the solutions after the hydrothermal reduction of CO₂ with HS- or H₂S in D₂O (or with DS⁻ in H₂O) (T: 300 °C, t: 3 h, NaHCO₃: 1.4 mol/L, Ni₃S₂: 0.1 mol/L, Water filling: 55%).

Figure S12. Effect of water filling and NaHCO₃ concentration on the formate production (T: 300 °C; t: 3 h; Na₂S•9 H₂O: 0.2 mol/L; Ni₃S₂: 0.05 mol/L; 0.4 mol/L NaHCO₃ for water filling; 55% water filling for NaHCO₃).

Figure S13. Effects of Na2S•9H₂O concentration and addition amount of Ni₃S₂ on the formate production (T: 300 °C; t: 3 h; water filling: 55%; NaHCO₃: 1.0 mol/L; 0.05 mol/L Ni₃S₂ for Na2S•9H₂O; 0.2 mol/L Na2S•9H₂O for Ni₃S₂).

Figure S14. Effect of reused Ni₃S₂ on the formate yield (T: 300 °C; t: 3 h; NaHCO₃: 1.0 mol/L; Na₂S·9 H₂O: 0.2 mol/L; Ni₃S₂: 0.1 mol/L).

Figure S15. XRD patterns of (a) the original Ni_3S_2 , Ni_3S_2 recycled after (b) 1^{st} , (c) 2^{nd} , (d) 3^{rd} and (e) 4th times.

Figure S16. SEM images of (a) the original Ni_3S_2 , Ni_3S_2 recycled after (b) 1st, (c) 2nd, (d) 3rd times.

References

- 1
- Kishida H., Jin F. M., Zhou Z. Y, Moriya T., Enomoto H. *Chemistry Letters*, 2005, **34**, 1560-1561. Kishita A, Takahashi S.; Jin F, Yamasaki Y, Moriya T. Enomoto H. *J. Jpn. Petrol. Inst.*, 2005, **48**, 272-2 280.
- Lyu, L. Y.; Zeng, X.; Yun, J.; Wei, F.; and Jin, F. M. Environ .Sci. Technol., 2014, 48, 6003-6009. 3
- Jin, F. M.;; Zeng, X.; Liu, J. k.; Jin, Y. j.; Wang, L.Y.; Zhong, H.; Yao, G.D.; Huo, Z. B. Sci. Rep., 2014, 4 **4**, 4503.