Electronic Supplementary Information (ESI)

Highly efficient and stable air-processed hole-transport-material free

carbon based perovskite solar cells with caesium incorporation

Pei Liu^a, Youning Gong^a, Yuqing Xiao^a, Meng Su^a, Sen Kong^a, Fei Qi^a, Huijie Zhang^a, Shaofu Wang^a, Xiaohua Sun^{*b}, Changlei Wang^{*a}, Xing-Zhong Zhao ^{*a}

^a Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China

^b College of Materials and Chemical Engineering,Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China.

E-mail: xzzhao@whu.edu.cn; Tel: +86-27-8764 2784

Experimental section:

1. Materials

PbI₂ (TCI, 99.99%), MAI (MACKLIN, 99.5%), FAI (MACKLIN, 99.5%), CsI (Energy Chemical, 99%), Pb(SCN)₂ (Alfa Aesar, 99.99%), DMF (Aladdin, 99.8%) and DMSO (Aladdin, 99.8%) were employed directly without any treatment.

2. Cs_X(MA_{0.7}FA_{0.3})_{1-X}PbI₃ perovskite precursors

 $Cs_X(MA_{0.7}FA_{0.3})_{1-X}PbI_3$ precursors were prepared by mixing $MA_{0.7}FA_{0.3}PbI_3$ and $CsPbI_3$ precursors with different volume ratios and stirred at 65 °C for at least one hour before using 1M $MA_{0.7}FA_{0.3}PbI_3$ precursor was prepared by the dissolution of 461 mg PbI_2, 51.6 mg FAI and 111.3 mg MAI with 9.22 mg Pb(SCN)₂ additive in DMF/DMSO (volume ratio=4:1) mixed solvents. 1M CsPbI_3 precursor was prepared by dissolving 461 mg PbI_2 and 259.8 mg CsI in DMF/DMSO (volume ratio=7:3) mixed solvents.

3. Device Fabrication

The perovskite solar cells (PSCs) were fabricated with a structure of FTO/bl-TiO₂/mp-TiO₂/Perovskite/Carbon. The device fabrication process can be referred in our previous works except for the perovskite layer.¹⁻³ In brief, $(MA_{0.7}FA_{0.3}PbI_3)_{1-X}(CsPbI_3)_X$ was deposited onto the electronic transport layer (ETL) by a one-step method. The perovskite precursor solution was spin-coated in two-step program at 1000 rpm and 4000 rpm for 5 s and 60 s respectively. Then chlorobenzene as the antisolvent approach was poured onto the film at 5 s of the second step. After that, the asprepared perovskite films were annealed at 100°C for 10 min. All procedures above were completed under ambient environment with ~50% relative humidity.

4. Characterization

The surface morphologies of perovskite films were characterized with scanning electron microscopy (SEM, S-4800, Hitach, Japan). Absorbance spectra was detected by UV-vis spectrometer (Lambda 650S, PerkinElmer). The perovskite crystal structure was measured by an X-ray diffraction spectrometer (XRD, D8 Advance, Bruker AXS, Germany) with Cu Kα radiation. The current density-voltage curves

were recorded on a sunlight simulator (Newport, 91192) under one sun illumination (AM 1.5G, 100 mV cm⁻²). the J-V curves presented in the main text are obtained with a reverse scan direction from +1.1 V to -0.1 V with a scan rate of 0.05 v s⁻¹. Every *J-V* curve contains 1200 data points with a sample interval of 0.001 V, and the dwell time is 2 seconds. The element distribution was obtained by X-ray photoelectron spectroscopy (XPS, ESCALAB 250XL, Thermo Fisher, USA) with Al K α radiation of 1486.6 eV as the excitation source. The external quantum efficiency spectra was performed from 300 nm to 900 nm with a 300 W xenon lamp.

Fig. S1 Impedance spectra of MAFA and CsMAFA based devices

Fig. S2 Photovoltaic experiments of $Cs_X(MA_{0.7}FA_{0.3})_{1-X}PbI_3$ based devices with x varying from 0 to 15%. (a) *J-V* curves and (b) Statistical results of V_{OC} , short circuit current density (J_{SC}), fill factor (FF) and PCE of $Cs_X(MA_{0.7}FA_{0.3})_{1-X}PbI_3$ based devices.

Table S1 Parameters of V_{OC} , J_{SC} , FF and PCE of $Cs_X(MA_{0.7}FA_{0.3})_{1-X}PbI_3$ based devices. Statistical results were obtained by calculation of 30 devices for each concentration of Cs in perovskite precursor, and the error represents the standard deviation.

Device	$V_{\rm OC}({\rm mV})$	$J_{\rm SC}({\rm mA~cm^{-2}})$	PCE(%)	FF(%)
0% Cs	937±32	22.80±0.52	13.45±0.56	62.95±1.72
5% Cs	947±21	23.61±0.46	14.08±0.51	63.00±2.90
10% Cs	949±25	23.27±0.56	13.42±0.56	60.80±1.98
15% Cs	956±21	20.98±1.77	11.97±0.90	59.77±1.67

Fig. S3 the EQE curves of $Cs_X(MA_{0.7}FA_{0.3})_{1-X}PbI_3$ based devices.

Fig. S4 J-V curves measured under reverse and forward voltage scans with a scan rate of 50 mV s⁻¹.

Fig. S5 Comparison of stabilities between MAFA and CsMAFA based devices. (a) Steady-state photocurrent and PCE at the maximum power point with a voltage of 0.75 V under one sun illumination, (b) Thermal stability of devices aged under a temperature of 80 °C and humidity about 50%, (c) Long-term stability of devices stored in ambient air with relatively humidity about 50% of at room temperature.

References for supporting information:

- Y. Xiao, N. Cheng, K. K. Kondamareddy, C. Wang, P. Liu, S. Guo and X.-Z. Zhao, J Power Sources, 2017, 342, 489-494.
- Z. Yu, B. Chen, P. Liu, C. Wang, C. Bu, N. Cheng, S. Bai, Y. Yan and X. Zhao, *Adv. Funct. Mater.*, 2016, 26, 4866-4873.
- P. Liu, Z. Yu, N. Cheng, C. Wang, Y. Gong, S. Bai and X.-Z. Zhao, *Electrochim Acta*, 2016, 213, 83-88.