Supporting Information

Palladium catalyzed selective arylation of o-carboranes via B(4)-H activation: amide induced regioselectivity reversal

Tao-Tao Xu¹, Ke Cao^{*,1}, Cai-Yan Zhang¹, Ji Wu¹, Linhai Jiang² and Junxiao Yang¹ ¹State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China ²Instrumental Analysis Center, Shenzhen University (Xili Campus), P. R. China E-mail: <u>caoke@swust.edu.cn</u>

Context

- 1. General information
- 2. Experimental
- 3. Spectroscopic date for products
- 4. Copies of ¹H NMR, ¹³C{¹H} NMR, and ¹¹B{¹H} NMR

General information

1a, 1r-1za were synthesized according to literature method^{1,2}. Other materials were purchased from Acros, J&K and Aladdin, and used as received unless otherwise specified. All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on gel F254 plates. The silica gel (200-300 meshes) is used for column chromatography, and the distillation range of petroleum ether is 60-90 °C. 1 H, 13 C{ 1 H} and 11 B{ 1 H} NMR spectra were recorded on the Bruker 600MHz instruments. All 1 H NMR and 13 C{ 1 H} NMR spectra data are reported in ppm relative to tetramethylsilane (TMS) as internal standard, and 11 B{ 1 H} NMR spectra data are referenced to external BF₃•Et₂O (Due to 1J(11 B- 1 H) coupling, the resonances corresponding to the B-H bonds display a broad peaks with low intensity, therefore, the B-H protons were not reported in the NMR data). HRMS data were measured with ESI techniques.

The calculations were performed using the DFT program Dmol3 in Materials Studio (Accelrys, San Diego, CA), in which the physical wave functions were expanded in terms of numerical basis sets. The double numerical basis set with polarisation function $(DNP)^{3,4}$, that is comparable to the 6-31G** basis set, was utilised during the calculations⁵. The core electrons were treated with DFT semicore pseudopotentials. The exchange-correlation energy was calculated using the PBE and GGA methods⁶. Special point sampling integration over the Brillouin zone was employed using Monkhorst-Pack schemes with a 5 × 5 × 1 k-point mesh⁷. A Fermi smearing of 0.005 Ha and a global orbital cutoff of 7 Å were employed. The convergence criteria for the geometric optimization and energy calculation were set as follows: (1) self-consistent field tolerance of 1.0×10^{-6} Ha/atom, (2) energy tolerance of 1.0×10^{-5} Ha/atom, (3) maximum force tolerance of 0.002 Ha/Å, and (4) maximum displacement tolerance of 0.005 Å.

Experimental

Typical procedure for synthesis of 1a:

To a 100 ml dried flask were sequentially added 9-I-*o*-carborane (1.35 g, 5 mmol), benzamide (1.817 g, 15mmol), Pd₂(dba)₃ (0.115 g, 0.125 mmol), Davephos (0.098 g,

0.25 mmol), K₃PO₄ (5.31 g, 25 mmol) and toluene (20 ml) under argon atmosphere. The reaction mixture was stirred at 100 °C for 2h, the color of system was changed from purple to orange. Then the mixture was filtered through a short silica gel column using ethyl acetate as eluent. After evaporation of the solvent, the residue was purified by column chromatography on 200-300 mesh silica gel with petroleum ether/EtOAc=8:1-5:1 (v/v) as eluent and afforded **1a** (1.32 g, 50 % yield).

Typical procedure for synthesis of 2a:

To a 10 ml dried flask were sequentially added 9-benzamide-*o*-carborane (52.6 mg, 0.20 mmol), THF (1 ml), PhB(OH)₂ (48.6 mg, 0.40 mmol), Pd(MeCN)₄(BF₄)₂ (8.8 mg, 0.02 mmol) ,Cu(OAc)₂ (72.8 mg, 0.40 mmol) and Cyclohexanecarboxylic acid (25.6 mg, 0.2 mmol) under an argon atmosphere. After the reaction mixture was stirred at 40 °C for 24h, the reaction mixture was cooled to room temperature and filtered through a short silica gel column using ethyl acetate as eluent. After evaporation of the solvent, the residue was purified by column chromatography on 200-300 mesh silica gel with petroleum ether/EtOAc=5:1-2:1 (v/v) as eluent to gave **2a** with 74 % yield (50 mg).

Typical procedure for synthesis of 3a:

To a 10 ml dried flask were sequentially added 2a (67.8 mg, 0.20 mmol), 1,4-dioxane (1 ml), Pd(OAc)₂ (4.6 mg, 0.02 mmol), AgOAc (66.7 mg, 0.40 mmol) and K₂CO₃ (27.6 mg, 0.2 mmol) under an argon atmosphere. After the reaction mixture was stirred at 100 °C for 24h, the reaction mixture was cooled to room temperature and filtered through a short silica gel column using ethyl acetate as eluent. After evaporation of the solvent, the residue was purified by column chromatography on 200-300 mesh silica gel with petroleum ether/EtOAc=8:1 (v/v) as eluent to gave the **3a** with 52% yield (24 mg).

Mulliken charge	9-benzamide-o-carborane	o-carborane
B4	-0.010	0.024
H4	0.023	-0.000
B5	0.004	0.025
H5	0.034	0.001
B8	-0.072	-0.031
H8	-0.007	-0.012
B10	-0.075	-0.030
H10	-0.006	-0.011
B12	-0.063	-0.012
H12	-0.015	-0.018

Table S1. Calculated Mulliken charge

Table S2. Detailed calculated Mulliken charge

9-benzamide-*o*-carborane:

			charge	spin
N	(1)	-0.427	0.000
0	(2)	-0.456	0.000
с	(3)	-0.262	0.000
C	(4)	-0.260	0.000
H	(5)	0. 171	0.000
H	(6)	0.175	0.000
С	(7)	0.419	0.000
Б	(8)	0.084	0.000
H	(9)	0.010	0.000
Б	(10)	0.004	0.000
Н	(11)	0.034	0.000
В	(12)	-0.010	0.000
H	(13)	0.023	0.000
Б	(14)	0.087	0.000
Н	(15)	0.010	0.000
Б	(16)	0.016	0.000
H	(17)	0.001	0.000
Б	(18)	-0.075	0.000
H	(19)	-0.006	0.000
Б	(20)	0.415	0.000
Б	(21)	-0.072	0.000
H	(22)	-0.007	0.000
В	(23)	0.014	0.000
H	(24)	0.000	0.000
Б	(25)	-0.063	0.000
H	(26)	-0.015	0.000
H	(27)	0.198	0.000
C	(28)	-0.083	0.000
¢	(29)	-0.079	0.000
¢	(30)	-0.106	0.000
С	(31)	-0.052	0.000
¢	(32)	-0.061	0.000
C	(33)	-0.082	0.000
H	(34)	0.085	0.000
H	(35)	0.085	0.000
H	(36)	0.086	0.000
H	5	37)	0.114	0.000
H	(38)	0.086	0.000

o-carborane:

_					
	Mulliken		atomic	charges:	
				charge	spin
	H	(1)	-0.018	0.000
	С	(2)	-0.252	0.000
	С	(3)	-0.254	0.000
	H	(4)	0.171	0.000
	H	(5)	0.171	0.000
	В	(6)	0.098	0.000
	H	(7)	0.008	0.000
	В	(8)	0.027	0.000
	H	(9)	-0.000	0.000
	В	(10)	0.022	0.000
	H	(11)	-0.000	0.000
	В	(12)	0.098	0.000
	H	(13)	0.008	0.000
	B	(14)	0.024	0.000
	H	(15)	-0.000	0.000
	В	(16)	-0.031	0.000
	H	(17)	-0.012	0.000
	B	(18)	-0.012	0.000
	В	(19)	-0.030	0.000
	H	(20)	-0.011	0.000
	В	(21)	0.025	0.000
	H	(22)	0.001	0.000
	В	(23)	-0.013	0.000
	H	(24)	-0.018	0.000
1					

Reference:

1. Mukhin, S. N.; Kabytaev, K. Z.; Zhigareva, G. G.; Glukhov, I. V.; Starikova, Z. A.;

Bregadze, V. I.; Beletskaya, I. P. Organometallics 2008, 27, 5937.

2. Sevryugina, Y.; Julius, R. L.; Hawthorne, M. F. Inorg. Chem. 2010, 49, 10627.

3. Delley, B. J. Chem. Phys., 2000, 113, 7756-7764.

4. Delley, B. J. Chem. Phys., 1990, 92, 508-517.

5. Delley B. Phys. Rev. B. 2002, 66, 155125-155133.

6. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.

7. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B. 1976, 13, 5188-5192.

Spectroscopic data for products

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.62-7.60 (m, 4H), 7.42-7.39 (dd, 1H, J = 6 Hz), 7.34-7.28 (m, 5H), 5.69 (s, 1H), 3.74 (s, 1H), 3.72 (s, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.3, 135.8, 134.1, 132.9, 131.1, 128.9, 128.3, 128.0, 127.0, 52.3, 47.6; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.5 (1B), -2.3 (1B), -3.7 (2B), -9.8 (2B), -14.2 (1B), -17.4 (3B); HRMS: calculated for C₁₅B₁₀H₂₂NO⁺ (M+H)⁺ 340.2699, found 340.2706.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.61-7.58 (m, 4H), 7.43-7.41 (dd, 1H, *J* = 6 Hz,), 7.35-7.33 (dd, 2H, *J* = 6Hz), 6.99-6.96 (dd, 2H, *J* = 6 Hz,), 5.68 (s, 1H), 3.74 (s, 1H), 3.71 (s, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.4, 164.5-162.8 (d, *J* = 248 Hz), 136.1-136.0 (d, *J* = 8 Hz), 135.7, 131.2, 128.4, 127.0, 115.2-115.0 (d, *J* = 21 Hz), 52.6, 47.7; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.5 (1B), -2.3 (1B), -3.9 (2B), -9.7 (2B), -14.3 (1B), -16.9 (3B); HRMS: calculated for C₁₅H₁₉B₁₀FNO⁻ (M-H)⁻ 358.2387, found 358.2408.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.61-7.60 (d, 2H, J = 6 Hz), 7.43-7.41 (dd, 1H, J = 6 Hz), 7.37-7.33 (m, 3H), 7.30-7.23 (m, 2H), 7.01-6.99 (m, 1H), 5.70 (s, 1H), 3.77 (s, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.4, 163.3-161.7 (d, J = 246 Hz), 135.7, 131.2, 129.8-129.7 (m, J = 6 Hz), 128.4, 127.0, 120.6-120.4 (d, J = 20 Hz), 115.9-115.8 (d, J = 20 Hz), 52.4, 47. 8; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.5

(1B), -2.3 (1B), -4.4 (2B), -9.8 (2B), -14.2 (1B), -17.0 (3B); HRMS: calculated for $C_{15}H_{21}B_{10}FNO^{+}$ (M+H)⁺ 358.2605, found 358.2608.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.75-7.73 (d, 2H, *J* = 6 Hz), 7.63-7.61 (m, 2H), 7.54-7.53 (d, 2H, *J* = 6 Hz), 7.44-7.41 (dd, 1H, *J* = 6 Hz), 7.36-7.33 (dd, 2H, *J* = 6 Hz), 5.70 (s, 1H), 3.76 (s, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.3, 135.5, 134.4, 131.3, 131.2-130.6 (m, *J* = 30 Hz), 128.4, 127.0, 124.7-124.6 (d, *J* = 3 Hz), 52.4, 47.6; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.5 (1B), -2.3 (1B), -4.6 (2B), -9.8 (2B), -14.4 (1B), -17.0 (3B); HRMS: calculated for C₁₆B₁₀H₂₁NOF₃⁺ (M+H)⁺408.2573, found 408.2574.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.62-7.60 (m, 2H), 7.49-7.47 (m, 2H), 7.42-7.41 (m, 2H), 7.36-7.30 (m, 3H), 5.69 (s, 1H), 3.73 (s, 1H), 3.71 (s, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.3, 135.8, 134.1, 131.2, 131.1, 129.0, 128.4, 127.0, 123.9, 52.4, 47.6; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.5 (1B), -2.3 (1B), -4.0 (2B), -9.8 (2B), -14.3 (1B), -16.9 (3B); HRMS: calculated for C₁₅B₁₀H₁₉NOBr⁻ (M-H)⁻418.1586, found 418.1603.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.62-7.61 (d, 2H, *J* = 6 Hz), 7.55-7.54 (d, 2H, *J* = 6 Hz), 7.44-7.41(dd, 1H, *J* = 6 Hz), 7.36-7.33 (dd, 2H, *J* = 6 Hz), 7.27-7.25 (m, 2H), 5.68 (s, 1H), 3.73 (s, 1H), 3.70 (s, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.3, 135.6, 135.5, 135.4, 131.2, 128.4, 128.2, 127.0, 52.5, 47.6; ¹¹B{¹H} NMR (192

MHz, CDCl₃, *ppm*): δ 6.5 (1B), -2.3 (1B), -4.1 (2B), -9.8 (2B), -14.4 (1B), -17.0 (3B); HRMS: calculated for C₁₅H₁₉B₁₀ClNO⁻ (M-H)⁻ 374.2091, found 374.2134.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.83-7.82 (d, 2H, J = 6 Hz), 7.69-7.68 (d, 2H, J = 6 Hz), 7.60-7.59 (d, 2H, J = 6 Hz), 7.42-7.40 (dd, 1H, J = 6 Hz), 7.34-7.31 (dd, 2H, J = 6 Hz), 5.73 (s, 1H), 3.88 (s, 1H), 3.82 (s, 1H), 2.54 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 198.3, 169.3, 137.1, 135.6, 134.2, 131.3, 128.4, 127.6, 127.0, 52.5, 47.8, 26.7; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.4 (1B), -2.4 (1B), -4.5 (2B), -9.8 (2B), -14.4 (1B), -16.9 (3B); HRMS: calculated for C₁₇B₁₀H₂₄NO₂⁺ (M+H)⁺ 382.2805, found 382.2806.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.63-7.62 (d, 1H, J = 6 Hz), 7.59-7.58 (d, 2H, J = 6 Hz), 7.41-7.39 (dd, 1H, J = 6 Hz), 7.33-7.31 (dd, 2H, J = 6 Hz), 7.22-7.19 (m, 1H), 7.14-7.12 (dd, 2H, J = 6 Hz), 5.70 (s, 1H), 3.94 (s, 1H), 3.71 (s, 1H), 2.57 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.1, 142.2, 136.7, 135.9, 131.1, 131.0, 128.8, 128.3, 127.0, 125.5, 52.0, 47.4, 23.8; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.6 (1B), -3.1 (1B), -4.1 (2B), -9.6 (2B), -13.9 (1B), -17.0 (3B); HRMS: calculated for C₁₆B₁₀H₂₄NO⁺ (M+H)⁺ 354.2856, found 354.2859.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.62-7.61 (d, 2H, *J* = 6 Hz), 7.42-7.40 (m, 3H), 7.35-7.32 (dd, 2H, *J* = 6 Hz), 7.21-7.18 (dd, 1H, *J* = 6 Hz), 7.15-7.14 (m, 1H), 5.70 (s, 1H), 3.73 (s, 2H), 2.31 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.4, 137.4, 135.9, 134.8, 131.1, 129.7, 128.3, 128.0, 127.0, 52.3, 47.7, 21.4; ¹¹B{¹H}

NMR (192 MHz, CDCl₃, *ppm*): δ 6.4 (1B), -2.5 (1B), -3.8 (2B), -9.8 (2B), -14.2 (1B), -16.8 (3B); HRMS: calculated for C₁₆B₁₀H₂₄NO⁺ (M+H)⁺ 354.2856, found 354.2858.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.63-7.61 (d, 2H, J = 6 Hz), 7.51-7.50 (d, 2H, J = 6 Hz), 7.42-7.40 (dd, 1H, J = 6 Hz), 7.35-7.32 (dd, 2H, J = 6 Hz), 7.12-7.11 (d, 2H, J = 6 Hz), 5.71 (s, 1H), 3.73 (s, 1H), 3.69 (s, 1H), 2.32 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.4, 138.8, 135.8, 135.7, 134.1, 131.1, 128.9, 128.3, 127.0, 52.4, 47.7, 21.3; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.4 (1B), -2.4 (1B), -3.6 (2B), -9.9 (2B), -14.3 (1B), -17.0 (3B); HRMS: calculated for C₁₆H₂₂B₁₀NO⁻ (M-H)⁻ 354.2637, found 354.2657.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.64-7.62 (d, 2H, *J* = 6 Hz), 7.56-7.55 (d, 2H, *J* = 6 Hz), 7.43-7.40 (dd, 1H, *J* = 6 Hz), 7.35-7.33 (dd, 4H, *J* = 6 Hz), 5.70 (s, 1H), 3.72 (s, 1H), 3.70 (s, 1H), 1.29 (s, 9H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.3, 151.9, 135.9, 134.0, 132.7, 131.1, 128.3, 127.1, 125.0, 52.4, 47.5, 34.6, 31.2; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 1.6 (1B), -7.2 (1B), -8.3 (2B), -14.6 (2B), -19.0 (1B), -21.6 (3B); HRMS: calculated for C₁₉B₁₀H₃₀NO⁺(M+H)⁺396.3325, found 396.3327.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.62-7.61 (d, 2H, *J* = 6 Hz), 7.54-7.53 (d, 2H, *J* = 6 Hz), 7.42-7.40 (dd, 1H, *J* = 6 Hz), 7.35-7.32 (dd, 2H, *J* = 6 Hz), 7.15-7.14 (d, 2H, *J* = 6 Hz), 5.71 (s, 1H), 3.74 (s, 1H), 3.70 (s, 1H), 2.64-2.60 (m, 2H), 1.23-1.20 (t, 3H, J = 6 Hz)

J = 6 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.4, 145.1, 135.8, 134.2, 132.9, 131.1, 128.3, 127.7, 127.1, 52.4, 47.7, 28.6, 15.3; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.5 (1B), -2.3 (1B), -3.5 (2B), -9.8 (2B), -14.2 (1B), -16.9 (3B); HRMS: calculated for C₁₇B₁₀H₂₆NO⁺ (M+H)⁺ 368.3012, found 368.3016.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.64-7.63 (d, 2H, J = 6 Hz), 7.43-7.40 (dd, 1H, J = 6 Hz), 7.35-7.32 (dd, 2H, J = 6 Hz), 7.24-7.21 (dd, 1H, J = 6 Hz), 7.19-7.18 (m, 2H), 6.87-6.86 (m, 1H), 5.71 (s, 1H), 3.74 (s, 3H), 3.72 (brs, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.2, 159.1, 135.8, 131.1, 129.2, 128.3, 127.0, 126.3, 119.5, 114.6, 55.1, 52.3, 47.5; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.5 (1B), -2.3 (1B), -3.8 (2B), -9.7 (2B), -14.1 (1B), -16.8 (3B); HRMS: calculated for C₁₆B₁₀H₂₂NO₂⁻ (M-H)⁻ 370.2786, found 370.2817.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.70-7.69 (d, 2H, J = 6 Hz), 7.65-7.63 (d, 2H, J = 6 Hz), 7.57-7.56 (d, 2H, J = 6 Hz), 7.54-7.53 (d, 2H, J = 6 Hz), 7.44-7.41 (m, 3H), 7.35-7.32 (m, 3H), 5.74 (s, 1H), 3.76 (s, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.3, 141.6, 140.7, 135.8, 134.6, 131.1, 128.8, 128.4, 127.5, 127.1, 127.0, 126.7, 52.5, 47.6; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.4 (1B), -2.4 (1B), -3.8 (2B), -9.8 (2B), -14.3 (1B), -17.1 (3B); HRMS: calculated for C₂₁B₁₀H₂₆NO⁺(M+H)⁺ 416.3012, found 416.3020.

¹H NMR (600MHz, CDCl₃, *ppm*): δ 8.74-8.73 (d, 1H, *J* = 6 Hz), 7.95-7.94 (d, 1H, *J*

= 6 Hz), 7.85-7.82 (dd, 2H, J = 6 Hz,), 7.52-7.49 (m, 3H), 7.47-7.45 (dd, 1H, J = 6 Hz), 7.42-7.40 (dd, 1H, J = 6 Hz), 7.35-7.33 (dd, 1H, J = 6 Hz), 7.25-7.23 (dd, 2H, J = 6 Hz), 5.70 (s, 1H), 3.92 (s, 1H), 3.70 (s, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.3, 136.1, 135.8, 133.8, 131.0, 130.2, 129.2, 128.2, 127.1, 127.0, 126.2, 125.4, 125.2, 52.6, 47.3; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.6 (1B), -2.8 (1B), -4.1 (2B), -9.5 (2B), -13.5 (1B), -16.7 (3B); HRMS: calculated for C₁₉H₂₂B₁₀NO⁻ (M-H)⁻ 390.2637, found 390.2665.

¹H NMR (600 MHz, DMSO, *ppm*): δ 9.36 (s, 1H), 7.74-7.73 (d, 2H, *J* = 6 Hz), 7.45-7.43 (dd, 1H, *J* = 6 Hz), 7.38-7.35 (m, 5H), 6.65-6.64 (d, 2H, *J* = 6 Hz), 4.96 (s, 2H); ¹³C{¹H} NMR (150 MHz, DMSO, *ppm*): δ 170.3, 168.3, 157.7, 135.8, 134.9, 130.7, 127.9, 127.5, 114.7, 53.2, 48.3; ¹¹B{¹H} NMR (192 MHz, DMSO, *ppm*): δ 6.2 (1B), -3.4 (3B), -10.2 (2B), -14.3 (1B), -16.9 (3B); HRMS: calculated for C₁₅H₂₀B₁₀NO₂⁻ (M-H)⁻ 356.2430, found 356.2453.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.65-7.64 (d, 2H, *J* = 6 Hz), 7.56-7.55 (m, 1H), 7.44-7.42 (dd, 1H, *J* = 6 Hz), 7.37-7.34 (d, 2H, *J* = 6 Hz), 7.30-7.29 (m, 1H), 7.26-7.24 (dd, 1H, *J* = 6 Hz), 5.71 (s, 1H), 3.69 (s, 1H), 3.66 (s, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.3, 135.8, 132.4, 132.1, 131.2, 128.4, 127.1, 125.8, 52.6, 47.1; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.3 (1B), -2.4 (1B), -5.8 (2B), -9.6 (2B), -14.0 (1B), -16.9 (3B); HRMS: calculated for C₁₃H₁₈B₁₀NOS⁻ (M-H)⁻ 346.2045, found 346.2073.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.62-7.61 (d, 2H, J = 6 Hz), 7.44 (s, 1H), 7.37 (brs, 1H), 7.34-7.28 (m, 3H), 7.22-7.21 (m, 2H), 5.68 (s, 1H), 3.73 (s, 1H), 3.71 (s, 1H), 2.32 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.5, 138.1, 135.8, 134.2, 131.8, 128.9, 128.2, 128.0, 127.9, 124.0, 52.4, 47.5, 21.3; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.5 (1B), -2.4 (1B), -3.7 (2B), -9.8 (2B), -14.3 (1B), -17.0 (3B); HRMS: calculated for C₁₆H₂₂B₁₀NO⁻ (M-H)⁻ 354.2637, found 354.2657.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 8.13-8.11 (m, 1H), 7.64-7.63 (d, 2H, J = 6 Hz), 7.49 (s, 1H), 7.35-7.30 (m, 4H), 7.00-6.97 (m, 1H), 6.82-6.81 (d, 1H, J = 6 Hz), 3.70 (brs, 2H), 3.56-3.55 (brs, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 166.9, 157.6, 134.2, 133.0, 132.5, 132.4, 128.8, 128.0, 121.1, 111.4, 55.6, 52.0, 47.5; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.7 (1B), -2.6 (1B), -4.3 (2B), -9.6 (2B), -14.0 (1B), -16.8 (3B); HRMS: calculated for C₁₆H₂₂B₁₀NO₂⁻ (M-H)⁻ 370.2587, found 370.2621.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.62-7.60 (d, 2H, J = 6 Hz), 7.34-7.29 (m, 3H), 6.74 (brs, 2H), 6.49 (brs, 1H), 5.64 (s, 1H), 3.75 (s, 6H), 3.72-3.68 (brs, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 169.1, 160.6, 138.1, 134.1, 129.0, 128.1, 104.9, 103.4, 55.5, 52.3, 47.6; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.3 (1B), -2.5 (1B), -3.8 (2B), -9.8 (2B), -14.3 (1B), -17.0 (3B); HRMS: calculated for C₁₇H₂₄B₁₀NO₃⁻ (M-H)⁻400.2692, found 400.2720.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.61-7.59 (d, 2H, *J* = 6 Hz), 7.54-7.53 (d, 2H, *J* = 6 Hz), 7.35-7.29 (m, 5H), 5.63 (s, 1H), 3.74 (brs, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 168.3, 137.3, 134.2, 134.1, 129.0, 128.6, 128.5, 128.1, 52.4, 47.8; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.3 (1B), -2.4 (1B), -3.7 (2B), -9.9 (2B), -14.4 (1B), -17.0 (3B); HRMS: calculated for C₁₅H₁₉B₁₀ClNO⁻(M-H)⁻ 374.2091, found 374.2123.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.61-7.60 (m, 4H), 7.35-7.29 (m, 3H), 7.01-6.98 (dd, 2H, *J* = 6 Hz), 5.62 (s, 1H), 3.73 (brs, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 168.3, 165.3-163.7 (d, *J* = 250Hz), 134.1, 129.4-129.3 (d, *J* = 9 Hz), 129.0, 128.1, 115.4-115.2 (d, *J* = 22 Hz), 52.4, 47.7; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.4 (1B), -2.4 (1B), -3.8 (2B), -9.8 (2B), -14.4 (1B), -17.0 (3B); HRMS: calculated for C₁₅H₁₉B₁₀FNO⁻ (M-H)⁻ 358.2387, found 358.2400.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.70-7.69 (d, 2H, J = 6 Hz), 7.62-7.61 (d, 2H, J = 6 Hz), 7.59-7.58 (d, 2H, J = 6 Hz), 7.36-7.30 (m, 3H), 5.67 (s, 1H), 3.75 (s, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 168.1, 139.2, 134.1, 133.1-132.4 (m, J = 30 Hz), 129.1, 128.1, 127.5, 125.4 (m, J = 3Hz), 52.4, 47.9; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.3 (1B), -2.4 (1B), -3.7 (2B), -9.8 (2B), -14.3 (1B), -16.9 (3B); HRMS: calculated for C₁₆H₁₉B₁₀F₃NO⁻ (M-H)⁻408.2355, found 408.2373.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.59-7.58 (d, 2H, *J* = 6 Hz), 7.37-7.31 (m, 3H), 5.00 (s, 1H), 3.70 (s, 1H), 3.65 (s, 1H), 1.85 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 172.4, 134.2, 133.7, 128.9, 128.0, 52.3, 47.4, 25.0; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.1 (1B), -2.5 (1B), -3.8 (2B), -9.9 (2B), -14.4 (1B), -17.0 (3B); HRMS: calculated for C₁₀B₁₀H₂₀NO⁺ (M+H)⁺ 278.2543, found 278.2546.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.57-7.56 (d, 2H, *J* = 6 Hz), 7.35-7.29 (m, 3H), 4.94 (s, 1H), 3.70 (s, 1H), 3.67 (s, 1H), 2.20-2.14 (m, 1H), 1.01-0.99 (d, 3H, *J* = 6 Hz), 0.95-0.94 (d, 3H, *J* = 6 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 179.3, 134.2, 128.9, 127.9, 52.3, 47.3, 36.8, 19.8, 19.5; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.3 (1B), -2.5 (1B), -3.7 (2B), -9.9 (2B), -14.5 (1B), -17.2 (3B); HRMS: calculated for C₁₂H₂₂B₁₀NO⁻ (M-H)⁻ 306.2637, found 306.2655.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.59-7.58 (d, 2H, *J* = 6 Hz), 7.37-7.31 (m, 3H), 5.17 (s, 1H), 3.68 (s, 1H), 3.64 (s, 1H), 1.19-1.15 (m, 1H), 0.88 (s, 1H), 0.81 (s, 1H), 0.62-0.56 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 175.6, 134.3, 128.9, 128.0, 52.3, 47.2, 16.0, 7.5, 7.3; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 6.2 (1B), -2.5 (1B), -3.9 (2B), -9.9 (2B), -14.4 (1B), -17.1 (3B); HRMS: calculated for C₁₂H₂₀B₁₀NO⁻ (M-H)⁻ 304.2481, found 304.2500.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 7.47-7.45 (d, 2H, *J* = 6 Hz), 7.37-7.34 (dd, 1H, *J* = 6 Hz), 7.29-7.26 (dd, 2H, *J* = 6 Hz), 7.20-7.19 (m, 3H), 6.99-6.98 (m, 2H), 4.97 (s, 1H), 3.66 (s, 1H), 3.63 (s, 1H), 3.44-3.42 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 173.4, 135.3, 134.0, 129.3, 128.9, 128.7, 128.0, 126.9, 52.2, 47.7, 45.0; ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ 1.4 (1B), -7.5 (1B), -8.8 (2B), -14.9 (2B), -19.3 (1B), -22.5 (3B); HRMS: calculated for C₁₆H₂₂B₁₀NO⁻ (M-H)⁻ 354.2637, found 354.2660.

¹H NMR (600 MHz, CDCl₃, *ppm*): δ 8.09 (brs, 1H), 7.80-7.79 (d, 2H, *J* = 6 Hz), 7.71-7.66 (m, 3H), 7.54-7.52 (d, 2H, *J* = 6 Hz), 7.32-7.29 (m, 3H), 2.37 (s, 1H), 2.07 (s, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃, *ppm*): δ 179.1, 135.2, 134.6, 129.4, 128.2, 127.5, 127.3, 125.3, 42.5, 38.0. ¹¹B{¹H} NMR (192 MHz, CDCl₃, *ppm*): δ -8.3 (1B), -9.7 (1B), -11.9 (1B), -18.6 (1B), -19.9 (1B), -20.5 (1B), -25.7 (1B), -29.6 (1B), -43.3 (1B); HRMS: calculated for C₁₅H₁₉B₉NO⁻ (M-H)⁻ 328.2310, found 328.2328.

-6.5 --2.3 ~-3.7 --9.8 --14.2 ~-17.4

Х-233-В

-6.5

 $2^{-1.9}$ -2.7 -2.7 -3.7 -3.7 -3.7 -10.1 -14.7 -14.7 -16.5 -17.2

45 40 35 30 25 20 15 10 5 0 -5 -10 -20 -30 -40 fl (ppm)

-6.5

~-2.3 ~-3.9 --9.7 --14.3 --16.9

-3.77

-0.00

 $X-253-B{H}$

---9.8 ---14.2 ---17.0 --2.3 --4.4

-3.76

-0.00

-0.00

-6.5

~-2.3 ~-4.0 --9.8 --14.3 --16.9

-6.5

--2.3 --4.1 --9.8 --14.4 --17.0

---14.4 ---16.9 --2.4 --4.5 ---9.8

~-3.1 ~4.1 --9.6 --13.9 --17.0

-3.73

-2.31

√0.01 -0.01 \0.01

---9.9 ---14.3 ---17.0 ∽-2.4 ~-3.6

---14.2 ---16.9 ---9.8 ~-2.3

--14.3 --17.1 ~-2.4 ~-3.8 ---9.8

 $X-274-B\{H\}$

__9.5 ___13.5 __16.7 ∽-2.8 ~-4.1

---14.0 ---16.9 _-2.4 --5.8 _-9.6

~-2.4 ~-3.7 ---9.8 --14.3 --17.0

--6.7

^-9.6 --14.0 --16.8 ~-2.6 ~-4.3

-6.3

~-2.5 ~-3.8 ---9.8 --14.3 --17.0

-3.74

-0.00

-6.3

---9.9 ---14.4 ---17.0 ~-2.4 ~-3.7

-6.4

---9.8 ---14.4 --17.0 ~-2.4 ~-3.8

-3.75

-0.00

-6.3

---9.8 ---14.3 ---16.9 ~-2.4

---14.4 --17.0 ~-2.5 ---9.9

X-306-C $\downarrow \downarrow H$ $_{O}$ $_{O}$ $_{D}$ $_{$	-179.3	7134.2 7128.9 7127.9	$\overbrace{76.8}^{77.2}$	752.3 747.3 736.8	$\begin{cases} 19.8 \\ 19.5 \end{cases}$	0.0

H N

ö

--0.00

fl (ppm)

 $X-363-B{H}$

~-8.3 ~-9.7 ~-11.9 ~-11.9 ~-19.9 ~-20.5 --25.7 --23.3

