Supporting Information for

Enantioselective Synthesis of Tetrahydroisoquinoline Derivatives via Chiral-at-Metal Rhodium Complex Catalyzed [3+2] Cycloaddition

Saira Qurban, ${ }^{\ddagger} \mathrm{Yu}$ Du, ${ }^{\ddagger}$ Jun Gong, Shao-Xia Lin, and Qiang Kang*
Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China

Table of contents

General Information S2
Synthesis of Substrates S3
General Procedure for the Catalytic Reactions S5
Synthetic Transformations S6
Characterization of Products. S8
NMR Spectra S33
HPLC Spectra S57
Stereochemistry Determination via Single Crystal X-Ray Diffraction S81
References 883

General Information

All non-aqueous reactions were performed in oven-dried glassware and standard Schlenk tubes under an atmosphere of nitrogen. 1,2-Dichloroethane (DCE) and dichloromethane (DCM) were distilled from CaH_{2} under inert atmosphere. Tetrahydrofuran (THF) and toluene (PhMe) were distilled from sodium and benzophenone under inert atmosphere. Rhodium catalysts rac-RhO, $\Delta-\mathbf{R h} \mathbf{1}^{1}, \Delta-\mathbf{R h} \mathbf{2}^{2}$, and $\boldsymbol{\Delta} \mathbf{- R h} \mathbf{3}^{3}$ were prepared according to the reported procedures. All other solvents and reagents were used as received unless otherwise noted. Thin layer chromatography was performed using silica gel 60 F-254 precoated plates ($0.2 \sim 0.3 \mathrm{~mm}$) and visualized by shortwave UV (254 nm) irradiation, potassium permanganate, or iodine stain. Column chromatography was performed with silica gel (200-300 mesh, Yantai Jiangyou Silica Gel Development Co., Ltd). The NMR spectra were obtained in CDCl_{3} using a Bruker Avance III spectrometer at 400 and 100 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively. Chemical shifts (δ) for ${ }^{1}$ HNMR spectra are recorded in parts per million from tetramethylsilane with the resonance of methyl group as the internal standard ($\delta 0.00 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{q} \mathrm{n}=$ quintet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad, $\mathrm{dd}=$ double doublet, hept $=$ heptet $)$, coupling constant in Hz , and integration. Chemical shifts for ${ }^{13}$ CNMR spectra are recorded in parts per million from tetramethylsilane using the central peak of deuterochloroform ($\delta 77.0 \mathrm{ppm}$) as the internal standard. The infrared spectra were recorded on a VERTEX 70 IR spectrometer as KBr pellets, with absorption reported in cm^{-} ${ }^{1}$. HRMS data were obtained on a Thermo Fisher Scientific LTQ FT Ultrasystem. Optical rotation was recorded on INESA SGW-1 polarimeter at concentrations of $0.5 \mathrm{~g} / 100 \mathrm{~mL}$ or $1.0 \mathrm{~g} / 100 \mathrm{~mL}$. Enantiomeric excess was determined by HPLC analysis on Chiralpak IA column and IC column (Daicel Chemical Industries, LTD) on Shimadzu LC-20AD. The crystallographic measurement was made on an Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer. The structure was solved by direct method and refined to convergence by least squares method on F2 using the SHELXTL-2014 software suit.

Synthesis of Substrates

Preparation of α, β-Unsaturated 2-acylimidazoles (1)

α, β-Unsaturated 2-acylimidazoles $\mathbf{1 a} \mathbf{- 1} \mathbf{s}$ were prepared according to reported procedures. ${ }^{4-6}$ Substrate $\mathbf{1 p}$ was prepared according to reported procedure. ${ }^{7}$

Preparation of C,N-Cyclic Azomethine Imines (2)

C,N-cyclic azomethine imines were prepared according to a general procedure. ${ }^{8,9}$ To a stirred solution of phenethylol (20 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), i-\mathrm{Pr}_{2} \mathrm{NEt}(6.97 \mathrm{~mL}, 40 \mathrm{mmol})$ and MOMCl ($2.28 \mathrm{~mL}, 30 \mathrm{mmol}$) were added to this solution at $0^{\circ} \mathrm{C}$. The reaction solution was then allowed to warm to room temperature and stirred for 12 h . The mixture was poured into 1 N HCl and extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give phenylethyl methoxymethyl ether.

This crude material was diluted in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, and TMSOTf ($3.62 \mathrm{~mL}, 20 \mathrm{mmol}$) then added to this mixture at $0{ }^{\circ} \mathrm{C}$. The reaction solution was then allowed to warm to room temperature and stirred for 24 h . The mixture was then treated with aq. NaHCO_{3} and evaporated in vacuo to remove $\mathrm{CH}_{3} \mathrm{CN}$. The residue was extracted with ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel.

To a solution of thus-obtained isochroman (9.18 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added methanol (447 $\mu \mathrm{L}, 11.0 \mathrm{mmol})$ and $\mathrm{DDQ}(2.08 \mathrm{~g}, 9.18 \mathrm{mmol})$ at room temperature. After stirring for 48 h at room temperature, the suspension was filtered off to remove the insoluble waste. The filtrate was washed with saturated aqueous NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel.

To a solution of the resulting 1-methoxyisochroman (6.48 mmol) in toluene (6.5 mL) were added $\mathrm{Bu}_{4} \mathrm{NBr}(2.09 \mathrm{~g}, 6.48 \mathrm{mmol})$ and $\mathrm{TMSBr}(1.71 \mathrm{~mL}, 13.0 \mathrm{mmol})$. The reaction solution was then allowed to warm to $80^{\circ} \mathrm{C}$ and stirred for 4 h , then treated with saturated aqueous NaHCO_{3}, extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give 2-(2-bromoethyl)-benzaldehyde.

To a 0.5 M solution of the corresponding 2-(2-bromoethyl)-benzaldhyde (1.05 equiv) in MeOH was added benzoylhydrazine or sulfonylhydrazine (1 equiv) at room temperature. After the immediate formation of the insoluble material, this white suspension was heated to reflux and stirred for additional 1 h to give a clear solution. After cooling to room temperature, the reaction solution was treated with $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv), poured into water and stirred for 30 min to give a white precipitate (tentatively assigned as a methanol and/or water adduct of the corresponding betaine). This solid material was washed with cold ether and then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a yellow solution. This colored solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to give N -benzoylimino-3,4-dihydroisoquinolium betaine as a yellow solid 2a. By the above procedure all the substituted C,N-cyclic azomethine imines were prepared without any further purification.

General Procedure for the Catalytic Reactions

Synthesis of racemic products as HPLC references

General Procedure: A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2acylimidazoles $\mathbf{1}(0.1 \mathrm{mmol}), \mathrm{C}, \mathrm{N}$-cyclic azomethine imines $\mathbf{2}(0.12 \mathrm{mmol})$ and racemic catalyst $\boldsymbol{r a c}-\mathbf{R h O}(1.6 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE (0.2 mL) was added. The reaction mixture was stirred at room temperature for indicated time (monitored by TLC) under argon. the mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5: 1$ to $1: 1$) to afford racemic products as HPLC reference for determination of enantiomeric excess.

Substrate Scope

General Procedure for chiral product

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazoles 1 (0.1 mmol), C,N-cyclic azomethine imines $2(0.12 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta} \mathbf{- R h} 2(2.1 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE (0.2 mL) was added. The reaction mixture was stirred at room temperature for indicated time (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=5: 1$ to $1: 1$) to afford chiral products.

Synthetic Transformations

Into aldehyde

In a round bottom flask, sodium borohydride $(0.16 \mathrm{mmol})$ was added portionwise to a solution of the substrate 3a (0.06 mmol in methanol, $\mathrm{c}=0.125 \mathrm{M}$). The reaction was stirred at room temperature for 2 h and monitored by TLC. After completion, water was added and the mixture was extracted with ethyl acetate. The organic layer was further washed with brine, dried over magnesium sulfate and concentrated under vacuum. The intermediate so obtained was dissolved with ethyl acetate $(c=0.05 \mathrm{M})$ and treated with methyl iodide $(0.45 \mathrm{mmol})$. The mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 16 h , cooled down to room temperature and concentrated to dryness. The crude residue was taken up in toluene ($\mathrm{c}=0.17 \mathrm{M}$), glycine (0.26 mmol) and 2 M NaOH solution $(0.58 \mathrm{mmol})$ were added. The mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h . At $80^{\circ} \mathrm{C}, 1 \mathrm{M} \mathrm{HCl}$ solution (0.58 mmol) was added and the mixture was stirred until lightening of the aqueous phase (from cloudy to clear). Then the mixture was cooled down to room temperature and ethyl acetate was added. The organic layer was washed with an aqueous solution of 1 M HCl and brine, dried over magnesium sulfate and concentrated under vacuum. The residue was purified by column chromatography to afford the desired product.

Into amine

In a round bottom flask, sodium borohydride $(0.18 \mathrm{mmol})$ was added portionwise to a solution of the substrate 3a $(0.07 \mathrm{mmol})$ in methanol $(0.36 \mathrm{~mL})$. The mixture was stirred at room temperature for 2 h and monitored by TLC. Water was added, the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and concentrated under vacuum. Ethyl acetate (0.56 mL) was added to the intermediate followed by methyl iodide (0.51 mmol). The mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 16 h , cooled down to room temperature and concentrated to dryness. The residue was taken up in toluene (0.36 mL), benzylamine (0.29 mmol) and 2 M NaOH solution $(0.36 \mathrm{mmol})$ were then added. The mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h and cooled down to room temperature. The organic layer was diluted with ethyl acetate, dried with brine and concentrated under vacuum. The residue was taken up in $\mathrm{MeOH}(0.36 \mathrm{~mL})$ and sodium borohydride $(0.73 \mathrm{mmol})$ was added at room temperature. The mixture was stirred at room temperature for 16 h . Water was added and the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over magnesium sulfate and concentrated under vacuum. The residue was purified by column chromatography (petroleum ether/EtOAc $=5: 1$ to $1: 1$) to afford desired product.

Characterization of Products

3a

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole 1a $(12.0 \mathrm{mg}$, 0.05 mmol), C,N-cyclic azomethine imine $\mathbf{2 a}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta}$-Rh2 $(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 3 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product 3a as white solid (24.3 mg , yield: 99%). Enantiomeric excess was determined by HPLC analysis, ee $=98 \%$ (Chiralpak column IA, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\operatorname{PrOH}=70: 30$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ minor $)=10.446 \mathrm{~min}, \operatorname{tr}($ major $)=$ $11.599 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-32.061 . \mathrm{Mp} \mathrm{185-188}{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.15(\mathrm{~m}, 9 \mathrm{H}), 7.04$ (brs, 3H), 6.84 $(\mathrm{m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{hept}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=7.8$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,170.9,142.9,141.3,135.6,133.3,132.9,130.6,130.2$, $128.6,128.5$ (2C), 128.4 (2C), 127.6 (2C), 127.2, 127.0, 126.3, 126.1 (2C), 125.7, 122.5, 68.9, 68.0, 61.2, 49.9, 49.6, 29.5, 23.8, 23.7.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2965,1664,1394,989,696$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 513.2261$, found: 513.2261.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole 1b $(12.9 \mathrm{mg}$, 0.05 mmol), C,N-cyclic azomethine imine 2a ($15 \mathrm{mg}, 0.06 \mathrm{mmol}$) and chiral catalyst $\boldsymbol{\Delta}$ - $\mathbf{R h} \mathbf{2}$ ($1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%$). The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 4 h (monitored by TLC) under argon. the mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 b}$ as white solid (22.8 mg , yield: 90%). Enantiomeric excess was determined by HPLC analysis, ee $=94 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\operatorname{PrOH}=80: 20$, flow rate: $0.6 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}$ (major) $=36.491 \mathrm{~min}, \operatorname{tr}($ minor $)=$ $45.281 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-11.832 . \mathrm{Mp} \mathrm{173-176}{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.20-$ $7.00(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.75 (hept, 1H), 5.09 (dd, $J=8.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~m}$, $1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.0(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 169.6,159.8(\mathrm{~d}, J=244 \mathrm{~Hz}), 143.1,135.2$, $132.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 130.3,130.0,128.7(\mathrm{~d},=8.1 \mathrm{~Hz}), 128.5(2 \mathrm{C}), 128.42,128.35,128.2$, 127.6 (2C), 127.2, 126.5, 126.2 (d, $J=3.9 \mathrm{~Hz}), 125.6,124.0(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 122.0,115.2(\mathrm{~d}, J=$ $21.2 \mathrm{~Hz}), 68.2,63.7,60.4,50.0,49.5,29.4,23.7,23.4$.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2952,1664,1488,1396,1255,991,757,696$.
HRMS (ESI, m / z) calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 531.2167, found: 531.2166.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole $1 \mathbf{c}(13.7 \mathrm{mg}$, 0.05 mmol), C,N-cyclic azomethine imine $\mathbf{2 a}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta}$-Rh2 $(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 4 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 c}$ as white solid (24.7 mg , yield: 95%). Enantiomeric excess was determined by HPLC analysis, ee $=96 \%$ (Chiralpak column IA, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\operatorname{PrOH}=80: 20$, flow rate: $0.6 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ minor $)=31.593 \mathrm{~min}, \operatorname{tr}($ major $)=$ $42.447 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-28.305 . \mathrm{Mp} 169-172{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.06(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (hept, 1H), $5.29(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=5.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ (ddd, $J=2.6,10.6,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{ddd}, J=5.0,12.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.55(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.6,170.8,142.8,139.9,135.3,133.1,132.9,132.8,130.6$, $130.4,128.6,128.5$ (2C), 127.7 (4C), 127.3, 126.2, 125.8, 122.6, 68.8, 67.6, 60.9, 50.0, 49.7, 29.4, 23.8, 23.7.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2927,1662,1545,1491,1395,1254,1013,990,764,737$.
HRMS (ESI, m / z) calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 547.1871, found: 547.1870.

3d
A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole 1d (15.96 mg , 0.05 mmol), C,N-cyclic azomethine imine $\mathbf{2 a}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta}$-Rh2 $(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 d}$ as off white solid (26.9 mg , yield: 95%). Enantiomeric excess was determined by HPLC analysis, ee $=92 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, n hexane $/ i-\operatorname{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=14.522 \mathrm{~min}, \operatorname{tr}($ minor $)=$ $17.334 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=+25.733 . \mathrm{Mp} \mathrm{170-172}{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{~m}, 3 \mathrm{H}), 6.85$ $(\mathrm{m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(h e p t, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=10.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{ddd}, J=3.0,10.4,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (ddd, $J=5.2,12.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 190.6,170.8,142.8,140.4,135.3,133.1,132.8,131.5$ (2C), $130.7,130.4,128.6,128.55$ (2C), 128.0 (2C), 127.7 (2C), 127.3, 126.2, 125.8, 122.7, 121.0, 68.8, $67.6,60.8,50.0,49.7,29.4,23.8,23.7$.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2931,1663,1489,1447,1395,1255,1163,1074,1010,990,766,670$.
HRMS (ESI, m / z) calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 591.1366, found: 591.1364.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole $\mathbf{1 e}(13.2 \mathrm{mg}$, 0.05 mmol), C,N-cyclic azomethine imine 2a ($15 \mathrm{mg}, 0.06 \mathrm{mmol}$) and chiral catalyst $\boldsymbol{\Delta}$ - $\mathbf{R h} \mathbf{2}$ $(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 4 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product 3 e as colorless oil (24.5 mg , yield: 96%). Enantiomeric excess was determined by HPLC analysis, ee $=93 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\operatorname{PrOH}=70: 30$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=16.823 \mathrm{~min}, \operatorname{tr}($ minor $)=$ $28.729 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-11.193$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.07(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.72 (hept, 1H), $5.28(\mathrm{dd}, J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.19-$ $2.99(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.1,170.9,143.0,142.7,134.8,132.8,132.7,130.9,130.8$, 130.7, 129.9, 129.3, 128.7 (2C), 127.7 (2C), 127.4, 126.2, 125.9, 123.0, 118.9, 112.5, 68.6, 67.4, 60.7, 50.2, 49.8, 29.4, 23.9, 23.6.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2979,2932,1662,1601,1395,1349,1255,1194,1088,991,732$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 538.2213$, found: 538.2213.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole $\mathbf{1 f}$ ($15.4 \mathrm{mg}, 0.05$ $\mathbf{m m o l}$), C,N-cyclic azomethine imine $\mathbf{2 a}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta} \mathbf{- R h} \mathbf{2}(1.03 \mathrm{mg}$, $2.0 \mathrm{~mol} \%$) . The tube was purged with argon and anhydrous DCE (0.1 mL) was added. The reaction mixture was stirred at room temperature for 4 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=$ 5:1 to $1: 1$) to afford chiral product $\mathbf{3 f}$ as white solid (27.5 mg , yield: 99%). Enantiomeric excess was determined by HPLC analysis, ee $=99 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$-hexane $/ i$ $\operatorname{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=7.534 \mathrm{~min}, \operatorname{tr}($ minor $\left.)=9.089 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-22.6 . \mathrm{Mp} \mathrm{130-133}{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.72 (hept, 1H), 5.32 (dd, $J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.16$ (ddd, $J=2.4,10.2,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=5.0,12.2,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.54(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 190.4,170.9,142.6,142.2,135.0,132.9,132.7,130.6,130.48(\mathrm{q}$, $J=32 \mathrm{~Hz}$), 130.46, 129.3, 128.9, 128.53, 128.51 (2C), 127.6 (2C), 127.2, 126.1, 125.8, 124.0 (q, $J=271 \mathrm{~Hz}), 123.9(\mathrm{q}, J=3.6 \mathrm{~Hz}), 123.0(\mathrm{q}, J=3.8 \mathrm{~Hz}), 122.8,68.3,67.8,60.7,49.9,49.6,29.3$, 23.7, 23.5.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2985,1656,1397,1325,1165,113,1068,768$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 581.2135, found: 581.2134.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2 -acylimidazole $\mathbf{1 g}(15.4 \mathrm{mg}$, 0.05 mmol), C,N-cyclic azomethine imine $\mathbf{2 a}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta}$-Rh2 $(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 g}$ as colorless oil (26.9 mg , yield: 97%). Enantiomeric excess was determined by HPLC analysis, ee $=99 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n-$ hexane $/ i-\operatorname{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=8.987 \mathrm{~min}, \operatorname{tr}($ minor $)=10.657$ $\min) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-22.786$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{~m}, 3 \mathrm{H}), 6.85$ $(\mathrm{m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{hept}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=10.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=3.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=2.6,10.2$, $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=4.8,12.2,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.4,170.8,145.3,142.7,135.1,132.9,132.7,130.7,130.5$, 129.3 (q, $J=32 \mathrm{~Hz}$), 128.6 (2C), 127.7 (2C), 127.3, 126.5 (2C), 126.2, 125.8, 125.4 (q, $J=3.7$ $\mathrm{Hz}), 124.1(\mathrm{q}, J=270 \mathrm{~Hz}), 122.7,68.8,67.6,60.8,50.0,49.7,29.4,23.8,23.6$.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2980,1751,1395,1324,1258,1068,764$.
HRMS (ESI, m / z) calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 581.2135, found: 581.2134.

3h
A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole 1 h (14.2 mg , 0.05 mmol), C,N-cyclic azomethine imine 2a ($15 \mathrm{mg}, 0.06 \mathrm{mmol}$) and chiral catalyst $\boldsymbol{\Delta}$ - $\mathbf{R h} \mathbf{2}$ $(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE (0.1 mL) was added. The reaction mixture was stirred at room temperature for 4 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 h}$ as yellow oil (25.0 mg , yield: 94%). Enantiomeric excess was determined by HPLC analysis, ee $=93 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$-hexane $/ i$ $\operatorname{PrOH}=70: 30$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=24.444 \mathrm{~min}, \operatorname{tr}($ minor $\left.)=27.461 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=+22.307$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72($ hept, 1 H$), 5.31(\mathrm{dd}, J=10.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ $(\mathrm{m}, 1 \mathrm{H}), 3.20-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.0,170.8,148.8,147.1,142.7,134.8,132.7,130.8,130.7$, 128.7 (2C), 127.8 (2C), 127.5, 127.2 (2C), 126.2, 125.9, 123.8 (2C), 123.0, 68.7, 67.7, 60.5, 50.2, 49.8, 29.4, 23.8, 23.7.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2932,1663,1601,1520,1493,1396,1345,1254,1109,990,816,748,736$, 696.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 558.2112$, found: 558.2112.

$3 i$
A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole $\mathbf{1 i}(12.7 \mathrm{mg}, 0.05$ $\mathbf{m m o l}), \mathrm{C}, \mathrm{N}$-cyclic azomethine imine $\mathbf{2 a}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta} \mathbf{- R h} \mathbf{2}(1.03 \mathrm{mg}$, $2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE (0.1 mL) was added. The reaction mixture was stirred at room temperature for 4 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=$ 5:1 to $1: 1$) to afford chiral product 3 Bi as white solid (24.6 mg , yield: 98%). Enantiomeric excess was determined by HPLC analysis, ee $=97 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$-hexane $/ i$ $\operatorname{PrOH}=80: 20$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ minor $)=27.737 \mathrm{~min}, \operatorname{tr}($ major $\left.)=35.721 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-28.152 . \mathrm{Mp} 166-168^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 5 \mathrm{H})$, $6.84(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(h e p t, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=$ $10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{ddd}, J=5.5,12.2,16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.1,170.8,142.9,138.3,136.6,135.7,133.3,132.9,130.5$, $130.2,129.1$ (2C), 128.6, 128.5 (2C), 127.6 (2C), 127.2, 126.3, 126.1 (2C), 125.7, 122.4, 68.8, 67.9, 61.1, 49.9, 49.6, 29.5, 23.8, 23.7, 21.0.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2948,1661,1395,1254,990,766$.
HRMS (ESI, m / z) calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 527.2417$, found: 527.2417.

3j
A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole $\mathbf{1 j}$ ($13.5 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{C}, \mathrm{N}$-cyclic azomethine imine $\mathbf{2 a}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta} \mathbf{- R h} \mathbf{2}(1.03 \mathrm{mg}$, $2.0 \mathrm{~mol} \%$). The tube was purged with argon and anhydrous DCE (0.1 mL) was added. The reaction mixture was stirred at room temperature for 4 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=$ $5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 j}$ as off white solid (25.4 mg , yield: 98%). Enantiomeric excess was determined by HPLC analysis, ee $=96 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\mathrm{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=28.347 \mathrm{~min}, \operatorname{tr}($ minor $)=$ $32.594 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-9.034 . \mathrm{Mp} \mathrm{173-175}{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{~m}, 3 \mathrm{H}), 6.88-$ $6.77(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (hept, 1H), 5.33 (dd, $J=$ $10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{ddd}, J=5.7$, $12.0,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.1,170.8,158.6,142.9,135.7,133.4,133.3,132.9,130.5$, $130.2,128.6,128.5$ (2C), 127.6 (2C), 127.5 (2C), 127.2, 126.3, 125.7, 122.4, 113.8 (2C), 68.7, 67.8, 61.1, 55.3, 49.95, 49.6, 29.5, 23.8, 23.7.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2932,1662,1512,1394,1250,1032,669$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 543.2367$, found: 543.2364.

3k
A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole $\mathbf{1 k}$ (14.5 mg , 0.05 mmol), C,N-cyclic azomethine imine 2a ($15 \mathrm{mg}, 0.06 \mathrm{mmol}$) and chiral catalyst $\boldsymbol{\Delta}$ - Rh2 ($1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%$). The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 k}$ as yellow solid (25 mg , yield: 93%). Enantiomeric excess was determined by HPLC analysis, ee $=95 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\mathrm{PrOH}=80: 20$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=25.076 \mathrm{~min}, \operatorname{tr}($ minor $)=$ $32.961 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=+38.135 . \mathrm{Mp} 180-183{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.35$ $(\mathrm{m}, 5 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.74$ (hept, 1H), $5.47(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.22(\mathrm{~m}$, 2 H), 3.04 (ddd, $J=5.3,12.2,16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.57 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,171.1,142.9,138.8,135.6,133.3,132.9,132.7,130.6$, $130.3,128.6,128.57$ (2C), 128.2, 128.1, 127.6 (2C), 127.5, 127.2, 126.3, 126.0, 125.8, 125.7, 124.8 (2C), 122.5, 68.9, 68.3, 61.0, 50.0, 49.7, 29.5, 23.8, 23.7.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2931,1660,1493,1448,1395,1255,1163,1075,991,916,838,766,697$, 667, 477.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 563.2417$, found: 563.2416.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole $1 \mathbf{1 1}(1.5 \mathrm{mg}, 0.05$ $\mathbf{m m o l}$), C,N-cyclic azomethine imine $\mathbf{2 a}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta} \mathbf{- R h 2}(1.03 \mathrm{mg}$, $2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE (0.1 mL) was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=$ $5: 1$ to $1: 1$) to afford chiral product 31 as light brown solid (22.9 mg , yield: 96%). Enantiomeric excess was determined by HPLC analysis, ee $=96 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n-$ hexane $/ i-\mathrm{PrOH}=60: 40$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=7.842 \mathrm{~min}, \operatorname{tr}($ minor $)=12.669$ $\min) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-31.422 . \mathrm{Mp} 195-198{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.08$ (brs, 2H), 7.01 $(\mathrm{s}, 1 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.66(\mathrm{hept}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=8.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H})$, $3.25(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.2,170.0,152.3,142.8,142.1,135.3,133.3,133.0,130.5$, $130.3,128.6,128.5$ (2C), 127.6 (2C), 127.2, 126.4, 125.8, 122.4, 110.5, 108.4, 67.6, 61.5, 58.4, 49.6, 49.3, 29.4, 23.80, 23.6.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2968,1662,1448,1396,1255,1011,768$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 503.2054$, found: 503.2054.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole 1m (12.3 mg, 0.05 mmol), C,N-cyclic azomethine imine 2a ($15 \mathrm{mg}, 0.06 \mathrm{mmol}$) and chiral catalyst $\boldsymbol{\Delta}$ - $\mathbf{R h} \mathbf{2}$ ($1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%$). The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 m}$ as white solid (23.2 mg , yield: 94%). Enantiomeric excess was determined by HPLC analysis, ee $=95 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\operatorname{PrOH}=80: 20$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=21.846 \mathrm{~min}, \operatorname{tr}($ minor $)=$ $26.315 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-31.661 . \mathrm{Mp} 200-202^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H})$, 7.12-7.04 (m, 3H), 6.92-6.83 (m, 2H), $6.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ (hept, 1H), $5.56(\mathrm{dd}, J=10.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ (ddd, $J=3.3,10.8$, $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (ddd, $J=1.8,5.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (ddd, $J=5.4,12.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.3,170.5,145.6,142.9,135.3,133.2,132.9,130.6,130.3$, 128.7, 128.5 (2C), 127.6 (2C), 127.3, 126.6, 126.3, 125.8, 125.0, 124.9, 122.6, 68.6, 64.0, 60.9, 50.0, 49.6, 29.5, 23.8, 23.6.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2932,1661,1493,1447,1396,1164,988,917,847,767,698$.
HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 519.1825$, found: 519.1822.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole 1n ($8.9 \mathrm{mg}, 0.05$ $\mathbf{m m o l}), \mathrm{C}, \mathrm{N}$-cyclic azomethine imine $\mathbf{2 a}(15.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta}$ - $\mathbf{R h} \mathbf{2}(1.03$ $\mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE (0.1 mL) was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=$ 5:1 to $1: 1$) to afford chiral product $\mathbf{3 n}$ as colorless oil (19.6 mg , yield: 95%). Enantiomeric excess was determined by HPLC analysis, ee $=99.6 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$-hexane $/ i$ $\operatorname{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=15.490 \mathrm{~min}, \operatorname{tr}($ minor $\left.)=21.922 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-25.836$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 3 \mathrm{H})$, $6.95(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67$ (hept, 1H), 4.96 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=$ $7.7,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dq}, J=7.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{ddd}, J=5.2$, $12.4,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.8,168.9,143.0,135.7,134.3,133.0,130.4,130.0,128.5$, 128.4 (2C), 127.6 (2C), 127.1, 126.2, 126.1, 122.4, 65.4, 61.6, 60.8, 50.3, 49.6, 29.6, 23.8, 23.6, 22.7.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2974,2931,1665,1573,1449,1395,1255,1127,1019,916,829,766,712$, 669.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 451.2104, found: 451.2104.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole $1 \mathbf{1 0}$ ($9.6 \mathrm{mg}, 0.05$ $\mathbf{m m o l}), \mathrm{C}, \mathrm{N}$-cyclic azomethine imine $\mathbf{2 a}(15.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta} \mathbf{- R h 2}(1.03$ $\mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=$ $5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 o}$ as colorless oil (19.8 mg , yield: 90%). Enantiomeric excess was determined by HPLC analysis, ee $=99 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, n-hexane $/ i$ $\operatorname{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=12.521 \mathrm{~min}, \operatorname{tr}($ minor $\left.)=13.649 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-50.371$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 3 \mathrm{H})$, $6.87(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{hept}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=8.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dt}, J=5.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{ddd}, J=5.1$, $12.3,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.51(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.4,170.5,142.9,136.1,133.8,133.0,130.3,129.9,128.5$, 128.2 (2C), 127.5 (2C), 127.1, 126.3, 125.8, 122.3, 67.6, 67.5, 59.5, 49.9, 49.6, 30.9, 30.3, 29.6, 23.7, 11.3.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2963,1678,1550,1396,1092,850,730$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 465.2261$, found: 465.2260.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole 1p (13.3 mg , 0.05 mmol), C,N-cyclic azomethine imine $\mathbf{2 a}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst Δ-Rh2 ($1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%$). The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 p}$ as white solid (25.4 mg , yield: 99%). Enantiomeric excess was determined by HPLC analysis, ee $=97 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, n hexane $/ i-\mathrm{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}$ (major) $=8.206 \mathrm{~min}, \operatorname{tr}($ minor $)=9.840$ $\min) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-203.00 . \mathrm{Mp} 165-167{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{qn}$, $1 \mathrm{H}), 5.38(\mathrm{dd}, J=10.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{ddd}, J=$ $7.5,10.6,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dt}, J=16.2,2.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 187.3,173.9,143.0,138.0,134.7,133.2,131.9,130.87,130.85$, 129.3 (2C), 128.8, 128.6, 128.3 (2C), 127.7 (2C), 127.6, 126.3, 126.0 (2C), 125.8, 124.7 ($\mathrm{q}, J=$ $278 \mathrm{~Hz}), 68.6,64.7(\mathrm{q}, J=33.5 \mathrm{~Hz}), 53.8,48.9$, 29.5.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2958,1680,1597,1491,1446,1411,1391,1328,1283,1257,1170,1126$, 976, 802, 739, 692.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 539.1665, found: 539.1664.

$3 q$
A dried 25 mL Schlenk tube was charged with styryl-substituted α, β-unsaturated 2-acyl imidazole $\mathbf{1 q}$ ($13.3 \mathrm{mg}, 0.05 \mathrm{mmol}$), C,N-cyclic azomethine imine $\mathbf{2 a}(15.0 \mathrm{mg}, 0.06 \mathrm{mmol}$) and chiral catalyst $\boldsymbol{\Delta}-\mathbf{R h} \mathbf{2}(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 4 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 q}$ as yellow oil $(25.0 \mathrm{mg}$, yield: 97%). Enantiomeric excess was determined by HPLC analysis, ee $=98 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$-hexane $/ i-\mathrm{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=14.530 \mathrm{~min}$, $\operatorname{tr}($ minor $)=15.653 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=+26.225$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.04(\mathrm{~m}, 12 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 6.80-$ $6.50(\mathrm{~m}, 3 \mathrm{H}), 5.67(\mathrm{hept}, 1 \mathrm{H}), 5.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=10.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J$ $=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{ddd}, J=5.4,12.2,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=16.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.5,169.9,142.9,136.8,135.5,133.8,132.9,131.4,130.5$, $130.2,129.5,128.6,128.5$ (2C), 128.4 (2C), 127.6 (2C), 127.55, 127.2, 126.7 (2C), 126.3, 126.0, 122.5, 66.5, 66.2, 59.4, 50.2, 49.6, 29.5, 23.8, 23.6.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2975,1751,1505,1436,1259,749$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 539.2417, found: 539.2416.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2 -acylimidazole 1r (10.6 mg , 0.05 mmol), C,N-cyclic azomethine imine $\mathbf{2 a}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta}$-Rh2 $(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE (0.1 mL) was added. The reaction mixture was stirred at room temperature for 3 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $3 \mathbf{r}$ as white solid (22.8 mg , yield: 99%). Enantiomeric excess was determined by HPLC analysis, ee $=97 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\operatorname{PrOH}=70: 30$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=14.863 \mathrm{~min}, \operatorname{tr}($ minor $)=$ $27.742 \mathrm{~min}) \cdot[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-8.074 . \mathrm{Mp} 235-238{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.15(\mathrm{~m}, 3 \mathrm{H})$, 7.13-7.00 (m, 4H), $6.86(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=$ $10.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=3.2,10.6$, $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{ddd}, J=5.2,12.2,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,170.9,143.5,141.2,135.6,133.2,132.9,130.3,130.1$, $128.6,128.5$ (2C), 128.4 (2C), 128.2, 127.6 (2C), 127.2, 127.1, 126.3, 126.1 (2C), 125.8, 68.8, 68.0, 60.7, 49.9, 36.6, 29.4.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2923,1662,1404,991,669$.
HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 485.1948$, found: 485.1948 .

3s
A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylpyridine $\mathbf{1 s}(10.4 \mathrm{mg}, 0.05$ $\mathbf{m m o l}$), C,N-cyclic azomethine imine $\mathbf{2 a}(15.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta} \mathbf{- R h} \mathbf{2}(1.03$ $\mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=$ 5:1 to $1: 1$) to afford chiral product 3 s as white solid (21.6 mg , yield: 95%). Enantiomeric excess was determined by HPLC analysis, ee $=94 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, n-hexane $/ i$ $\operatorname{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=26.625 \mathrm{~min}, \operatorname{tr}($ minor $\left.)=48.838 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-13.192 . \mathrm{Mp} 210-213{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.80(\mathrm{~m}$, $3 \mathrm{H}), 7.50-7.12(\mathrm{~m}, 9 \mathrm{H}), 7.04(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.53(\mathrm{dd}, J=10.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{ddd}, J=$ $5.5,12.3,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.9,170.6,152.9,149.0,141.3,137.1,135.6,133.3,132.9$, $130.3,128.5$ (2C), 128.48, 128.4 (2C), 127.7 (2C), 127.6, 127.2, 127.0, 126.5, 126.0 (2C), 125.8, $122.9,68.9,68.4,58.8,50.0,29.5$.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3057,3027,2930,1687,1648,1601,1579,1494,1446,1381,1348,1279$, 1250, 995, 937, 868, 769, 748, 695, 669, 618, 550.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 482.1839, found: 482.1836.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole 1a (12.0 mg , $0.05 \mathrm{mmol}), \mathrm{C}, \mathrm{N}$-cyclic azomethine imine $\mathbf{2 t}(15.8 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta}-\mathbf{R h} \mathbf{2}$ $(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 4 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 t}$ as white solid (24.4 mg , yield: 97%). Enantiomeric excess was determined by HPLC analysis, ee $=91 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\operatorname{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=18.996 \mathrm{~min}, \operatorname{tr}($ minor $)=$ $29.639 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-13.352 . \mathrm{Mp} \mathrm{160-162}{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.15(\mathrm{~m}, 9 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~m}$, $2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{hept}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=5.1,12.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,170.8,142.9,141.3,135.6,135.0,132.9,130.6,130.2$, $129.7,128.5$ (2C), 128.4 (2C), 128.3, 128.0, 127.6 (2C), 127.1, 127.0, 126.1 (2C), 122.3, 69.2, 67.8, 61.3, 50.1, 49.6, 29.0, 24.0, 23.6, 20.8.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2951,1751,1664,1563,1395,1215,988,758$.
HRMS (ESI, m / z) calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 527.2417$, found: 527.2417.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole 1a (12.0 mg , $0.05 \mathrm{mmol})$, C,N-cyclic azomethine imine $\mathbf{2 u}(15.8 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta}$-Rh2 $(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product $\mathbf{3 u}$ as white solid (24.1 mg , yield: 96%). Enantiomeric excess was determined by HPLC analysis, ee $=99 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\operatorname{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ major $)=19.252 \mathrm{~min}, \operatorname{tr}($ minor $)=$ $28.024 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-21.504 . \mathrm{Mp} \mathrm{160-163}{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.15(\mathrm{~m}, 9 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (hept, 1H), $5.37(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H})$, 2.84-2.64 (m, 2H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,170.8,142.8,141.3,136.0,135.6,132.9,131.4,130.4$, 130.1, 128.5, 128.4 (2C), 128.3 (2C), 127.5 (2C), 126.9, 126.0 (2C), 125.5, 124.0, 122.4, 69.2, 67.8, 61.0, 49.7, 49.5, 26.9, 23.7, 23.6, 19.3.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2929,1663,1576,1495,1448,1396,1351,1255,1163,1076,990,917,779$, 696, 670, 552.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 527.2417, found: 527.2417.

A dried 25 mL Schlenk tube was charged with α, β-unsaturated 2-acylimidazole 1a $(12.0 \mathrm{mg}$, 0.05 mmol), C,N-cyclic azomethine imine $\mathbf{2 v}(19.75 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chiral catalyst $\boldsymbol{\Delta} \mathbf{- R h} \mathbf{2}$ $(1.03 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$. The tube was purged with argon and anhydrous DCE $(0.1 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 5 h (monitored by TLC) under argon. The mixture was purified by flash column chromatography on silica gel (petroleum ether/ EtOAc $=5: 1$ to $1: 1$) to afford chiral product 3 v as white solid (26.6 mg , yield: 94%). Enantiomeric excess was determined by HPLC analysis, ee $=91 \%$ (Chiralpak column IC, $\lambda=254 \mathrm{~nm}, n$ hexane $/ i-\mathrm{PrOH}=80: 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$, $\operatorname{tr}($ major $)=17.280 \mathrm{~min}, \operatorname{tr}($ minor $)=$ $24.890 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=-18.229 . \mathrm{Mp} 130-133{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.13(\mathrm{~m}, 10 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{hept}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=$ $10.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{ddd}, J=5.2,12.2$, $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.2,170.9,142.8,141.1,135.5,135.2,131.9,130.8,130.3$, 130.2, 130.1, 129.6, 128.5 (2C), 128.4 (2C), 127.7 (2C), 127.1, 126.0 (2C), 122.8, 119.1, 68.5, 67.5, 61.1, 49.7, 49.6, 29.0, 23.9, 23.7.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2929,1664,1576,1486,1449,1396,1351,1255,1192,1165,1078,990,935$, 844, 760, 698, 669, 517.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 591.1366$, found: 591.1365.

4
In a round bottom flask, sodium borohydride $(6.15 \mathrm{mg}, 0.16 \mathrm{mmol})$ was added portionwise to a solution of the substrate $\mathbf{3 a}(32.2 \mathrm{mg}, 0.06 \mathrm{mmol}$ in methanol, $\mathrm{c}=0.125 \mathrm{M})$. The reaction was stirred at room temperature for 2 h and monitored by TLC. After completion, water was added and the mixture was extracted with ethyl acetate. The organic layer was further washed with brine, dried over magnesium sulfate and concentrated under vacuum. The intermediate so obtained was dissolved with ethyl acetate $(\mathrm{c}=0.05 \mathrm{M})$ and treated with methyl iodide ($28 \mu \mathrm{~L}$, $0.45 \mathrm{mmol})$. The mixture was heated at $60^{\circ} \mathrm{C}$ for 16 h , cooled down to room temperature and concentrated to dryness. The crude residue was taken up in toluene ($\mathrm{c}=0.17 \mathrm{M}$), glycine (19.51 $\mathrm{mg}, 0.26 \mathrm{mmol})$ and 2 M NaOH solution $(0.29 \mathrm{~mL}, 0.58 \mathrm{mmol})$ were added. The mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h . At $80^{\circ} \mathrm{C}, 1 \mathrm{M} \mathrm{HCl}$ solution ($0.6 \mathrm{~mL}, 0.58 \mathrm{mmol}$) was added and the mixture was stirred until lightening of the aqueous phase (from cloudy to clear). Then the mixture was cooled down to room temperature and ethyl acetate was added. The organic layer was washed with an aqueous solution of 1 M HCl and brine, dried over magnesium sulfate and concentrated under vacuum. The residue was purified by column chromatography (petroleum ether/ EtOAc $=7: 1$ to $3: 1$) to afford the chiral product 4 as white solid (15.5 mg , yield: 62%). Enantiomeric excess was determined by HPLC analysis, ee $=97 \%$ (Chiralpak column IC, $\lambda=$ 254 nm , n-hexane $/ i-\mathrm{PrOH}=70: 30$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$, tr (major) $=13.258 \mathrm{~min}$, $\operatorname{tr}($ minor $)=22.896 \mathrm{~min}) .[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right)=+44.853 . \mathrm{Mp} 155-158{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.16(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.07(\mathrm{~m}$, $11 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{ddd}, J=10.2,8.1$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (m, 1H), 3.06 (m, 2H), 2.74 (m, 1H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3,170.8,140.6,134.9,133.0,132.6,130.7,128.8$ (2C), 128.6 (2C), 127.8 (2C), 127.7, 127.5, 126.9, 126.6, 125.5 (2C), 66.8, 64.9, 63.0, 50.1, 29.3.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2985,1720,1394,1028,749$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 405.1573$, found: 405.1573.

5
In a round bottom flask, sodium borohydride ($6.9 \mathrm{mg}, 0.18 \mathrm{mmol}$) was added portionwise to a solution of the substrate $\mathbf{3 a}(36.0 \mathrm{mg}, 0.07 \mathrm{mmol}$, in methanol $(0.36 \mathrm{~mL})$. The mixture was stirred at room temperature for 2 h and monitored by TLC. Water was added, the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and concentrated under vacuum. Ethyl acetate $(0.56 \mathrm{~mL})$ was added to the intermediate followed by methyl iodide ($31.8 \mu \mathrm{~L}, 0.51 \mathrm{mmol}$). The mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 16 h , cooled down to room temperature and concentrated to dryness. The residue was taken up in toluene (0.36 mL), benzylamine ($31.8 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$) and 2 M NaOH solution ($0.18 \mathrm{~mL}, 0.36$ mmol) were then added. The mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h and cooled down to room temperature. The organic layer was diluted with ethyl acetate, dried with brine and concentrated under vacuum. The residue was taken up in $\mathrm{MeOH}(0.36 \mathrm{~mL})$ and sodium borohydride (27.6 mg , 0.73 mmol) was added at room temperature. The mixture was stirred at room temperature for 16 h. Water was added and the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over magnesium sulfate and concentrated under vacuum. The residue was purified by column chromatography (petroleum ether/ $\mathrm{EtOAc}=6: 1$ to $1: 1$) to afford chiral product 5 as white solid (13.5 mg , yield: 39%). Enantiomeric excess was determined by HPLC analysis, ee $=97 \%$ (Chiralpak column IA, $\lambda=254 \mathrm{~nm}, n$-hexane $/ i-\mathrm{PrOH}=$ 70:30, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \operatorname{tr}($ minor $)=10.805 \mathrm{~min}, \operatorname{tr}($ major $\left.)=18.467 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}(c$ $\left.0.5, \mathrm{CHCl}_{3}\right)=-25.549 . \mathrm{Mp} 110-113{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.20(\mathrm{~m}, 13 \mathrm{H}), 7.15(\mathrm{dt}, J=1.2,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{AB}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.14(\mathrm{~m}, 3 \mathrm{H}), 3.07-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.67(\mathrm{~m}$, $2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.4,142.0,140.1,135.5,134.2,133.2,130.1,128.6$ (2C), 128.5 (2C), 128.47 (2C), 128.44 (2C), 127.6 (2C), 127.2, 127.17, 127.05, 127.03, 126.4 (2C), 126.1, 66.0, 64.1, 54.3, 53.7, 49.9, 47.4, 29.6.

IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3026,2964,1639,1493,1451,1397,1028,744,697$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 496.2359$, found: 496.2356.

NMR Spectra

Compound 3a:

Compound 3b:

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ppm |
| :--- |

Compound 3c:

Compound 3d:

Compound 3e:

Compound 3f:

$$
\begin{aligned}
& \dot{\sim} \dot{\sim} \dot{\sim}
\end{aligned}
$$

Compound 3g:

Compound 3h:

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

Compound 3i:

Compound 3j:

Compound 3k:

Compound 31:

31

Compound 3m:

Compound 3n:

Compound 30:

Compound 3p:

Compound 3q:

Compound 3r:

Compound 3s:

Compound 3t:

Compound 3u:

Compound 3v:

Compound 4:

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |\quad ppm

Compound 5：

M	がざくが
त̇ம்	
V 1／	V11

$\left.\begin{array}{lllllllllllllllllllll} \\ 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right)$

HPLC Spectra

Racemic 3a

<Chromatogram>
 mV

<Peak Table>

Detect Peak	orA 254nm	Area	Height	Conc.	Unit	Mark	Name
1	9.420	1212094	63707	7.378			
2	10.245	7007072	340118	42.850		V	
3	11.819	7008989	287531	42.682		V	
4	16.050	1201053	36086	7.310			
Tota.		18429209	707442				

Chiral 3a

<Peak Table>

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.446	295594	8700	1.224			
2	11.599	23862169	785701	98.776		V	
Tota		24157763	794401				

Racemic 3b

<Peak Table>
$\left.\begin{array}{|r|r|r|r|r|r|r|}\text { DetectorA } 254 \mathrm{~nm} \\ \begin{array}{|r|r|r|r|l|}\hline \text { Peak. } & \text { Ret. Time } & \text { Area } & \text { Height } & \text { Conc. }\end{array} \text { Unit } & \text { Mark } & \text { Name } \\ \hline 1 & 26.710 & 1817729 & 40580 & 6.434 & & \\ \hline 2 & 37.100 & 12293983 & 219561 & 43.512 & & \text { S }\end{array}\right]$

Chiral 3b

<Peak Table>

| DetectorA 254 nm |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Peak. Ret. Time Area Height Conc.
 1 36.941 10822566 178831 96.757
 Unit Mark Name
 2 45.281 362776 5029 3.243

 Total 11185342 183859
 |

Racemic 3c

<Peak Table>
DetectorA 254 nm

Peak... Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	31.429	18532489	329554	50.099		M
2	42.883	18459181	191352	49.901		M
Total		38991689	520907			

Chiral 3c

<Peak Table>							
Detector A 254 nm							
Peak+	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	31.593	725694	14104	1.898			
2	42.447	37508883	341750	98.102			
Tota		38234577	355854				

Racemic 3d

<Peak Table>

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.579	10641537	425624	50.527		M	
2	17.381	10419644	344335	49.473		M	
Total		21081181	769959				

Chiral 3d

<Peak Table>

$\begin{aligned} & \text { Detecto } \\ & \text { Peak+i+ } \end{aligned}$	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.522	13013488	504614	95.826			
2	17.334	566849	18389	4.174		V	
Total		13580337	523003				

Racemic 3e

<Peak Table>

$\begin{aligned} & \text { Detecte } \\ & \text { Peak+7 } \end{aligned}$	$\text { orA } 254 \mathrm{~nm}$ Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.083	4220496	150536	49.731		M	
2	28.768	4266087	83178	50.269		M	
Tota		8486583	233714				

Chiral 3e

<Peak Table>

Detect Peak	Ret. 254 nm	Area	Height	Conc.	Unit	Mark	Name
1	16.823	7833131	264536	98.485			
2	28.729	284491	5331	3.505			
Total		8117621	269867				

Racemic $\mathbf{3 f}$

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.538	23266400	1926773	50.116		M	
2	9.085	23159016	1561249	49.884		M	
Total		46425415	3488022				

Chiral $3 f$

<Peak Table>
Detector A 254nm

| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |\quad Name

Racemic 3g

<Peak Table>

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.704	1214687	86242	6.751		M	
2	8.990	7797582	505882	43.336			
3	10.645	7804914	419514	43.377		V	
4	13.859	1176043	45587	6.536		M	
Total		17993186	1057224				

Chiral 3g

<Peak Table>

$\begin{aligned} & \text { Detected } \\ & \text { Peak } \end{aligned}$	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.987	14050240	905794	99.406			
2	10.657	83900	4421	0.594		V	
Total		14134140	910215				

Racemic 3h

mV

<Peak Table>

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	19.248	1736756	47039	4.461		M	
2	24.528	17743828	390806	45.579			
3	27.423	17758871	346844	45.817		V	
4	33.734	1690702	26019	4.343		M	
Tota		38929957	810508				

Chiral 3h

<Peak Table>

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	24.444	32700791	717984	96.310			
2	27.461	1252873	25139	3.690		M	
Total		33953684	743123				

Racemic 3i

<Chromatogram>

mV

<Peak Table>

Peak+	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	20.400	1039973	25886	3.641		M	
2	27.545	13278421	253285	46.486			
3	36.073	13268844	143439	46.452		M	
4	40.833	978849	11133	3.420		M	
Tota,		28560087	433723				

Chiral 3i

Racemic 3j

<Peak Table>

Peak ${ }^{\text {+ }}$	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	28.410	10072967	191404	50.422		M	
2	32.429	9904496	163440	49.578		M	
Total		19977464	354844				

Chiral 3j

Detector A 254 nm						
Peak	Ret. Time	Area	Height	Conc.	Unit	Mark

Racemic 3k

mv

<Peak Table>

Peak ${ }^{\text {P }}$	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	25.098	12775713	297254	47.559			
2	27.116	674313	12093	2.510		V	
3	32.791	12790628	220536	47.614			
4	78.790	622299	4004	2.317			
Total		28862950	533886				

Chiral 3k mv

<Peak Table>

Detector A 254nm
Peak Ret. Time Area Height Conc. Unit Mark Name
1

Racemic 31

mV

<Peak Table>

Peak ${ }^{\text {f }}$	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.734	13147305	940182	50.005		M	
2	12.589	13144465	563701	49.985		M	
Total		28291770	1503883				

Chiral 31
mV

<Peak Table>

Detector A 254nm
Peak: Ret. Time Area Height Conc. Unit Mark\quad Name
1

Racemic 3m

mv

<Peak Table>

Peak+	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	21.797	14154951	361742	49.528			
2	26.185	14424975	315075	50.472			
Tota		28579926	678817				

Chiral 3m

<Peak Table>

Detector A 254nm		Area	Height	Conc.	Unit	Mark	Name
1	21.846	37498577	991174	97.473		M	
2	26.315	972268	21944	2.527		M	
Total		38470843	1013119				

Racemic 3n

<Peak Table>

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.481	15161829	630208	49.989			
2	21.740	15168703	434988	50.011			
Tota		30330532	1065196				

Chiral 3n

<Peak Table>
Detector A 254nm

Peak.	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.490	12354161	510442	99.827			
2	21.922	21360	621	0.173			
Total		12375520	511083				

Racemic 30

...

<Peak Table>

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.448	6991643	332241	50.441			
2	13.468	6869433	304050	49.559		V	
Tota		13861075	636291				

Chiral 30

<Peak Table>

Peak+	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.521	33290078	1494128	99.345			
2	13.649	219561	10303	0.655		M	
Tota		33509639	1504432				

Racemic 3p

mV

<Peak Table>							
Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.202	6555170	468992	49.622		M	
2	9.913	6655070	395601	50.378		M	
Total		13210240	864593				

Chiral 3p
.

<Peak Table>

Detector A 254 nm		Area	Height	Conc.	Unit	Mark	Name
1	8.206	8143373	578870	98.387			
2	9.840	133487	7375	1.613		V	
Total		8278860	584245				

Racemic 3q

<Peak Table>

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.520	49369171	2035134	49.818			
2	15.609	49729700	1882139	50.182		SV	
Total		99098872	3917273				

Chiral 3q

Racemic 3r

mV

<Peak Table>
Detector A 254nm

Peak.	Ret. Time	Area	Height	Conc.
1	14.794	9143670	336072	49.928
2	27.267	9169908	174446	50.072
Tota		18313578	510517	

Chiral 3r
<Chromatogram>
mV

<Peak Table> Detector A 254 nm							
Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.863	6021519	219315	98.281			
2	27.742	105317	2055	1.719			
Total		6128836	221370				

Racemic 3s

<Peak Table>

Peakt	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	28.611	10435161	240940	50.018			
2	48.223	10427519	128551	49.982			
Tota		20862880	389491				

Chiral 3s

<Peak Table>

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	26.625	13022774	298359	96.906			
2	48.838	415795	5334	3.094			
Total		13438509	303693				

Racemic 3t

....

<Peak Table>

$\begin{aligned} & \text { Detecto } \\ & \text { Peakf+ } \end{aligned}$	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	19.039	8792306	287478	50.020			
2	29.529	8785259	170958	49.980			
Tota		17577584	438436				

Chiral 3t

<Peak Table>

Peak ${ }^{\text {a }}$	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	18.996	22574653	681453	95.452			
2	29.639	1075624	21046	4.548			
Tota.		23650277	702499				

Racemic 3u

mV

<Peak Table>

Detector A 254 nm						
Peak	Ret. Time	Area	Height	Conc.	Unit	Mark
1	19.283	15515173	486134	49.914		
2	27.965	15568560	318680	50.086		
Tota.		31083733	784814			

Chiral 3u

<Peak Table>

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	19.252	25036740	747159	99.350		M	
2	28.024	163689	3380	0.650		M	
Total		25200430	750538				

Racemic 3v

+"v

<Peak Table>
DetectorA 254nm

Peak	Ret. Time	Area	Height	Conc.	Unit	Mark
1	17.274	10494930	350350	49.742		
2	24.842	10603628	243529	50.258		
Tota.		21098558	593879			

Chiral 3v

Detector A 254 nm							
Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.280	4288233	141304	95.589		S	
2	24.890	197905	4579	4.411			
Tota.		4486138	145882				

Racemic 4

Chiral 4

<Peak Table>

Peak: Ret. Time		Area	Height	Conc.	Unit	Mark	Name
1	13.258	5497244	233489	98.298			
2	22.896	95160	2477	1.702			
Tota.		5592404	235966				

Racemic 5

<Peak Table>

Peak ${ }^{\text {P }}$	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.888	3553127	164056	50.162		M	
2	18.777	3530147	89441	49.838		M	
Total		7083274	253497				

Chiral 5
mv

<Peak Table>
Detector A 254 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark
2	10.805	4341	223	1.416		
2	18.467	302268	7981	98.584		
Total		306609	8204			

Stereochemistry Determination via Single Crystal X-Ray Diffraction

The data have been assigned to the Cambridge Crystallographic Data Centre with a deposition number CCDC 1837253.

NOMOVE FORCED

$$
\begin{aligned}
& \text { Prob }=50 \\
& \text { Temp }=100
\end{aligned}
$$

Table 1. Crystal data and structure refinement for $\mathbf{3 i}$.

Identification code
Empirical formula
$3 i$

Formula weight
Temperature (K)
Wavelength (\AA)
Crystal system
Space group
Unit cell dimensions $\left(\AA^{\circ},{ }^{\circ}\right)$

Volume $\left(\AA^{3}\right)$
$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}$
504.61
100.0(3)
1.54184
orthorhombic
$P 2_{1} 2_{1} 2_{1}$

$$
\begin{array}{ll}
a=9.57270(10) & \alpha=90 \\
b=15.8631(2) & \beta=90 \\
c=17.8255(2) & \gamma=90
\end{array}
$$

Calculated density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$
Absorption coefficient (mm^{-1}) 0.620
F_{000}
Crystal size $\left(\mathrm{mm}^{3}\right)$
θ range for data collection $\left({ }^{\circ}\right)$
Miller index ranges
Reflections collected
Independent reflections
Completeness to $\theta_{\text {max }}$ (\%)
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[I>2 \sigma(I)]$
R indices (all data)
Largest diff. peak and hole (e \AA^{-3})
Absolute structure parameter
4
1.238

1072
$0.13 \times 0.12 \times 0.10$
3.730 to 73.289
$-11 \leq h \leq 11,-19 \leq k \leq 19,-19 \leq l \leq 21$ 20157
$5366\left[R_{\text {int }}=0.0276\right]$
0.994
0.77458 and 1.00000

Full-matrix least-squares on F^{2}
5366 / $0 / 346$
1.043
$R 1=0.0284, w R 2=0.0712$
$R 1=0.0301, w R 2=0.0726$
0.133 and -0.150
.01(8)

References:

1. C. Wang, L.-A. Chen, H. Huo, X. Shen, K. Harms, L. Gong, and E. Meggers, Chem. Sci., 2015, 6, 1094.
2. S.-W. Li, J. Gong and Q. Kang, Org. Lett., 2017, 19, 1350.
3. K. Li, Q. Wan and Q. Kang, Org. Lett., 2017, 19, 3299.
4. M. C. Myers, A. R. Bharadwaj, B. C. Milgram and K. A. Scheidt, J. Am. Chem. Soc., 2005, 127, 14675.
5. D. A. Evans, K. R. Fandrick and H.-J. Song, J. Am. Chem. Soc., 2005, 127, 8942.
6. S.-X. Lin, G.-J. Sun and Q. Kang, Chem. Commun., 2017, 53, 7665.
7. S.-W. Li, Q. Wan and Q. Kang, Org. Lett., 2018, 20, 1312.
8. T. Hashimoto, Y. Maeda, M. Omote, H. Nakatsu and K. Maruoka, J. Am. Chem. Soc., 2010, 132, 4076.
9. P. Maity, H. D. Srinivas and M. P.Watson, J. Am. Chem. Soc., 2011, 133, 17142.
