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Materials and Chemicals 

Single-probe fabrication. Fused silica capillaries (O.D. = 103.0 μm, I.D. = 39.0 μm) (Polymicro Technologies, Phoenix, 

AZ). Dual bore quartz tubing, 1.120’’×0.005”×12” (Friedrich & Dimmock Inc., Millville, NJ). UV epoxy (Prime Dental Inc., 

Chicago, IL). UV lamp (Foshan Liang Ya Dental Equipment, China). Laser-Based Micropipette Puller (P-2000, Sutter 

Instrument, Novato, CA). Conductive union (IDEX Health & Science LLC, Oak Harbor, WA). 

Cell culture and sample preparation. Chronic myelogenous leukemia cell line (K-562, ATCC, Manassas, VA). RPMI 

1640 culture medium (Gibco by Life Technologies, Long Island, NY). Fetal bovine serum (FBS) (Gibco by Life 

Technologies, Long Island, NY). Penicillin/streptomycin (Gibco by Life Technologies, Long Island, NY). Phosphate 

buffered saline (PBS) buffer (Gibco by Life Technologies, Long Island, NY). Fibronectin (Millipore Sigma, St. Louis, 

MO). Bovine serum albumin (Millipore Sigma, St. Louis, MO). Trypan blue solution 0.4% (Gibco by Life Technologies, 

Long Island, NY). Methanol (UHPLC-MS, Fluka Analytical, Mexico City, Mexico). Formic acid (0.1%) in water (LC-MS, 

Honeywell, Morris Plains, NJ). Chloroform (HPLC, Millipore Sigma, St. Louis, MO). Hemacytometer (Hausser Scientific, 

Horsham, PA). Cell culture flask (Cellstar, Greiner Bio-One North America Inc., Monroe, NC). Centrifuge tube (15 mL, 

Corning Co., Corning, NY). Thermanox coverslip (15 mm in diameter, Thermofisher Scientific Inc., Waltham, MA). 12-

well plates (Cellstar, Greiner Bio-One North America Inc., Monroe, NC). 

SCMS experiments. XYZ-manipulator (M-MT-XYZ, Newport Co., Irvine, CA). Syringe pump (Nexus 3000, Chemyx 

Inc., Stafford, TX). High resolution stereo microscope (Shenzhen D&F Co., China). Motorized XYZ-stage (MFA-CC, 

Newport Co., Irvine, CA) with Labview software package.1 Thermo LTQ Orbitrap XL mass spectrometer (Thermo Fisher 

Scientific Inc., Waltham, MA). Acetonitrile (UHPLC-MS, Fluka Analytical, Mexico City, Mexico). Formic acid (AR, 

Avantor Performance Materials, LLC., Center Valley, PA).  

Cell Culture and Sample Preparation 

K-562 cells were cultured using RPMI 1640 medium (with 10% FBS and 100 U/mL penicillin/streptomycin antibiotic 

solution) in a humidified cell culture incubator (Heracell, Thermo Scientific Inc.) supplied with 5% CO2 at 37 °C, and 

they were subcultured every 4 days according to the recommended protocols provided by ATCC. When K-562 cells 

were in logarithmic growth phase and reached optimal cell density, we performed sample preparation based on 

published protocols2 with adaptions to suit for our single cell mass spectrometry (SCMS) analysis of both phenotypes 

(i.e., phenotype I and phenotype II, see main text). In particular, we placed Thermanox coverslips in the 12-well plate 

and coated them with 400 µL 40 µg/mL fibronectin (FN) solution (prepared in PBS) per well for 12 h at room temperature. 
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We subsequently removed FN solution and added 400 µL 0.1% BSA solution (prepared in PBS) per well to eliminate 

nonspecific bindings for 1 h. Meanwhile, we centrifuged K-562 cells from the cell culture flask and washed them twice 

using FBS-free RPMI 1640 medium. Washed cells were resuspended in FBS-free RPMI 1640 medium and were 

seeded (~1×105 cells per well) onto the FN-coated coverslips. Seeded cells were maintained in the incubator for 10 h 

to develop integrin-ECM interaction. We then aspirated and collected culture medium with suspended cells (phenotype 

II), and used FBS-free medium to wash the coverslips twice before immediately subjecting adherent cells on the 

coverslip (phenotype I) to the following SCMS analysis. Collected phenotypic II cells were transferred to clean 

coverslips and subsequently subjected to SCMS analysis. During one specific sample preparation procedure, we used 

trypan blue solution to stain cells on the coverslips and examined cell viability for both phenotypes. We found nearly all 

cells were alive prior to SCMS experiments. 

SCMS Experiments 

We used a microscale multifunctional device, the Single-probe, to interrogate individual cells and obtained metabolomic 

information in situ, in real time, and in ambient conditions. Detailed working mechanisms of the Single-probe were 

reported in our previous publications,3 and only a brief description is provided here. Sampling solvent (acetonitrile with 

0.1% formic acid) was introduced through the solvent-providing capillary (flow rate = 0.1 µL/min) and formed a liquid 

junction at the tip of dual-bore quartz tubing (tip size ~8 µm). When the tip was inserted into a specific cell, the sampling 

solvent mixed with cellular contents and subsequently extracted them from the cell. Such mixture was immediately 

drawn towards the tip of the nano-ESI emitter, where ionization occurred. We applied ionization voltage (+4.5 kV) to 

the sampling solvent through a conductive union to maintain a stable MS signal. Coupled to a mass spectrometer (LTQ 

Orbitrap XL), the Single-probe was used to acquire background signals, metabolomic profiles of phenotype I cells 

(n=100), and metabolomic profiles of phenotype II cells (n=108), respectively. The following SCMS experiments were 

performed with MS settings as: ionization voltage +4.5 kV, mass range 150–1200, mass resolution 60,000 at m/z 

(mass-to-charge ratio) 400, 1 microscan, 100 ms max injection time and automatic gain control (AGC) on. 

MS data of background. Background signals originated from the sampling solvent, cell culture medium and substrates 

(FN-coated coverslips) may affect our downstream data analysis (i.e., inducing type I error), and therefore, should be 

excluded from our SCMS datasets. In particular, we placed a FN-coated coverslip with a droplet of FBS-free RPMI 

1640 medium underneath the Single-probe, and we then placed the tip of the Single-probe onto the coverslip to detect 

any species under the SCMS experimental condition described above. The acquired MS signals were regarded as 

background. 
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SCMS data acquisition of phenotype I cells. Prepared coverslip with phenotype I cells were placed underneath the 

Single-probe. Through a high resolution stereo microscope (Figure 2A), we were able to locate individual cells (Figure 

2B), and precisely insert the Single-probe tip into a target cell by manipulating the motorized XYZ-stage (increment 

step size = 0.1 µm). Meanwhile, we could observe the profile change of mass spectra from background to cellular 

contents. 

SCMS data acquisition of phenotype II cells. Phenotype II cells suspended in culture medium were transferred to a 

clean coverslip placed underneath the Single-probe. As the culture medium partially evaporated, cells can be 

immobilized when they were still surrounded by a small amount of culture medium. We then followed similar 

measurement process as phenotype I cells to acquire metabolomic information of phenotype II cells.  

SCMS Data Analysis 

We performed a comprehensive data analysis of acquired raw SCMS data sets to obtain biological information of 

intracellular species while excluding interference from background and noise, as described in the following. 

Data pre-treatment. Multiple steps are involved in SCMS data pre-treatment procedure. The pretreated datasets can 

then be used for the following statistical analysis and machine learning methods. First, [PC(34:1) + Na]+ (m/z = 

782.5676), a commonly detected cellular species,3a, 4 was selected as the indicator of time spans when single cells 

were under SCMS measurements. Second, we exported MS peaks of each single cell from Xcalibur to Excel, followed 

by background extraction (i.e., elimination of MS signals detected from background such as the sampling solvent and 

RPMI culture medium) and noise reduction (i.e., elimination of MS peaks of low abundance, typically those with ion 

intensity < 103) using our in-home developed software. Third, we normalized the ion intensity of each cellular metabolite 

to the total ion intensity of all detected species in each single cell after background extraction and noise reduction. 

Fourth, we employed Geena 2 (http://bioinformatics.hsanmartino.it/geena2),5 an online peak alignment tool, to align all 

single cell MS datasets. Last, we used MetaboAnalyst (http://www.metaboanalyst.ca),6 an online metabolomics data 

analysis software, to select cellular metabolites in our datasets given different missing value thresholds (MVTs, see 

main text), followed by log-transformation of normalized ion intensity of each metabolite. 

Statistical analyses. Multiple statistical analyses were performed to gain biological insights. Specifically, t-distributed 

stochastic neighbor embedding (t-SNE), provided as a built-in function (tsne()) in Statistics and Machine Learning 

Toolbox of MATLAB (MathWorks, 2017a), was used to visualize metabolomic profiles of single cells corresponding to 

both phenotypes. Using gscatter() function in MATLAB, the discrimination between two phenotypes after dimensionality 
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reduction can be achieved in 2D space (Fig. 3). The optimized parameters of t-SNE are: maximum iterations = 5000, 

perplexity = 30, number of PCA components = 50, verbose = 1, learn rate = 500, and exaggeration = 6. In addition, we 

performed two-sample t-test and principle component analysis (PCA) as two separate approaches to discover 

biomarkers characteristic to phenotypes I and II. In the first approach, we performed Student’s t-test and Welch’s t-test 

respectively for cellular metabolites with equal and unequal variance (tested through Levene’s F-test), respectively, 

using an in-house developed software (source code available upon request). Metabolites with t-test p-values < 0.05 

were marked as metabolic biomarkers (i.e., species with significant difference in abundance between two phenotypes). 

In the second approach, we performed PCA of pre-treated SCMS metabolomics dataset with 40% MVT, followed by 

selection of metabolites with high PC1 and PC2 loading scores as biomarkers.7 All datasets were subjected to log-

transformation and pareto scaling prior to PCA. 

Machine Leaning (ML) and Model Evaluation 

In this work, we implemented modern ML algorithms for the analysis of pre-treated SCMS datasets, and predicted drug-

resistant phenotypes (i.e., with or without CAM-DR) of single cells in a rapid and reliable fashion.  

ML model construction. Three ML methods, i.e., random forest (RF), penalized logistic regression (LR), and artificial 

neural network (ANN), were used and compared using in-house developed R scripts. The original data was randomly 

split with 80% single cells being selected as the training data and the rest 20% cells being selected as the testing data. 

Training data were used to train the model, while testing data were used to evaluate the accuracy of the model 

prediction. Since our datasets contain cells from two phenotypes, binary classification response was chosen for all 

three aforementioned approaches. The optimized parameters of RF (R package ‘randomForest’) were: mtry = 7, ntree 

= 500, and type = classification. Penalized LR was chosen in our study because full LR approach shown severe over-

fitting issue when the number of variables increases. Elastic net LR (with α = 0.5) was used due to its robustness and 

high performance on our dataset compared with lasso and ridge LR. ANN was performed using R package ‘neuralnet’. 

One hidden layer and ten neurons were optimized to achieve the best prediction on the data, and the logistic function 

was chosen as the activation function to smooth the results of the cross product of the neurons and the weights. All 

source codes are available upon request. 

ML model evaluation. The receiver operating characteristic (ROC) curve was constructed to illustrate the capability of 

the constructed binary classifier. Sensitivity was represented by the ratio of true positive to the sum of true positive and 

false negative, whereas specificity was represented by the ratio of true negative to the sum of true negative and false 

positive.8 The area under the curve (AUC) for each model was calculated using the sum of the area underlying polygons. 
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In addition, k-fold (k = 5) cross-validation (CV) was performed to validate the robustness of each model and avoid 

overfitting. The final output was the averaged misclassification error of five independent validations.  

Method Validation 

To validate our method of combined SCMS experiment and ML models, we prepared another batch of K-562 cells and 

subjected them to SCMS measurements and ML data analysis as described in the main text (n = 15 for phenotype I 

cells, n = 16 for phenotype II cells). The acquired dataset with 40% MVT was subjected to ML model prediction.  

Identification of Metabolic Biomarkers  

To further identify the detected metabolic biomarkers of cells possessing CAM-DR, we performed LC-MS/MS analysis 

of cell lysate. According to our SCMS data, these metabolites exist in both phenotypes, whereas their relative 

abundances are different for each phenotype. Therefore, cells were cultured without being separated into two different 

phenotypes prior to the preparation of cell lysates. Cell lysate preparation was conducted by following a conventional 

protocols used for LC-MS metabolomics studies9 with minor adaptions. Briefly, 5×105 K-562 cells were centrifuged and 

washed twice with PBS before being resuspended in 1 mL of extraction solvent (methanol:water:chloroform = 1:1:1, 

v/v/v). After vortexing on ice for 10 min, the mixture was centrifuged at 14000 rpm for 15 min. Extracted metabolites in 

methanol/water and chloroform were transferred to Eppendorf tubes separately followed by solvent evaporation in 

SpeedVac. Dried samples were reconstituted in 120 µL methanol followed by vortexing and centrifugation. Last, 100 

µL of supernatant was transferred to LC-MS sample vials. The analytical column was a Waters Acquity UPLC HSS T3 

(1.8 µm, 300 µm × 100 mm). The mobile phase was: A (water with 0.1% formic acid) and B (acetonitrile with 0.1% 

formic acid). The separative gradient was: 0 min 20% B, 3.5 min 35% B, 18 min 65% B, 21 min 99% B, 34 min 99% B 

with a constant flow rate of 12 µL/min. LC-MS/MS analysis was carried out using a Synapt G2-Si high resolution 

quadrupole time-of-flight mass spectrometer (Waters Corp., Milford, MA). The instrumental parameters were listed as 

follows: source voltage +3.2 kV, sampling cone 30, source offset 50, source temperature 80 °C, cone gas 50 L/h, mass 

range 150–1200, mass resolution 50000, scan time 1 s, collisional energy ramp 25–35 eV. Acquired LC-MS/MS spectra 

were searched through online metabolome databased such as METLIN (https://metlin.scripps.edu) and HMDB 

(http://www.hmdb.ca).10 Metabolic biomarkers with matched accurate mass (within ±5 ppm) and MS/MS fragmentation 

patterns were identified as shown in Table S4. 
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Model Comparison 

To compare the predictive accuracy between the ANN model constructed using SCMS dataset with 40% MVT (Model 

A) and the model based on metabolic biomarkers discovered through t-test (Model B) or loadings of PCA (Model C), 

we constructed both models (procedures are described in the “ML model construction” section), and used the same 

testing set to evaluate the model performance.  

Model A vs. Model B. Model A contains 131 variables (metabolites), whereas Model B contains 70 variables 

(biomarkers discovered using two-sample t-test). Through 8 independent predictions, Model A generated 95.7 ± 2.6% 

predictive accuracy, whereas Model B generated 91.9% ± 4.4% predictive accuracy. By performing Welch’s one-tail t-

test, we conclude that Model A grants significantly higher predictive accuracy (p-value = 0.029, α = 0.05). 

Model A vs. Model C. Model A contains 131 variables (metabolites), whereas Model C contains 86 variables with high 

PC1 and PC2 loadings (biomarkers discovered using PCA loading plot, see Fig. S1). Through 8 independent 

predictions, Model A generated 95.7 ± 2.6% predictive accuracy, whereas Model C generated 92.6% ± 4.1% predictive 

accuracy. By performing Welch’s one-tail t-test, we conclude that Model A grants significantly higher predictive accuracy 

(p-value = 0.046, α = 0.05). 

Supporting Tables 

Table S1. RF model evaluation. 

Missing value 

threshold (MVT) 

Number of 

variables 
Predictive accuracy Computing time* 5-fold CV error rate 

0% 7 77.1% ± 10.2% 7 s 0.206 

20% 58 83.8% ± 7.0% 16 s 0.139 

40% 131 91.9% ± 4.3% 30 s 0.106 

50% 203 94.8% ± 4.2% 45 s 0.086 

60% 358 92.9% ± 2.9% 80 s 0.043 

70% 641 93.8% ± 2.7% 135 s 0.043 

80% 1296 94.3% ± 2.7% 300 s 0.048 

90% 3232 94.3% ± 2.7% 930 s 0.048 

*Computation was performed using iMac18,1, Intel Core i5 processor with 2.3 GHz and 8 GB RAM. 
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Table S2. Penalized LR (elastic net) model evaluation. 

Missing value 

threshold (MVT) 

Number of 

variables 
Predictive accuracy Computing time* 5-fold CV error rate 

0% 7 90.8% ± 2.7% 12 s 0.12 

20% 58 88.1% ± 5.2% 68 s 0.158 

40% 131 90.8% ± 3.2% 45 s 0.106 

50% 203 91.5% ± 4.8% 32 s 0.067 

60% 358 93.3% ± 2.6% 40 s 0.063 

70% 641 92.2% ± 2.5% 60 s 0.057 

80% 1296 94.7% ± 1.8% 120 s 0.048 

90% 3232 94.7% ± 3.2% 330 s 0.043 

*Computation was performed using iMac18,1, Intel Core i5 processor with 2.3 GHz and 8 GB RAM. 

 

 

 

Table S3. ANN model evaluation. 

Missing value 

threshold (MVT) 

Number of 

variables 
Predictive accuracy Computing time* 5-fold CV error rate 

0% 7 89.5% ± 3.2% 30 s 0.134 

20% 58 92.9% ± 2.9% 4 s 0.115 

40% 131 95.7% ± 2.6% 6 s 0.062 

50% 203 93.4% ± 1.0% 9 s 0.082 

60% 358 95.2% ± 2.4% 16 s 0.062 

70% 641 94.8% ± 4.2% 40 s 0.071 

80% 1296 96.2% ± 2.7% 145 s 0.067 

90% 3232 93.8% ± 3.2% 924 s 0.074 

*Computation was performed using iMac18,1, Intel Core i5 processor with 2.3 GHz and 8 GB RAM. 
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Table S4. Identified metabolic biomarkers using LC-MS/MS from cell lysate. 

m/z Name Formula Species 

650.439 PC(25:0(CHO)) C33H64NO9P [M + H]+ 

723.493 PA(36:2) C39H73O8P [M + Na]+ 

725.556 SM(d34:1) C39H79N2O6P [M + Na]+ 

732.553 PE(35:1) C40H78NO8P [M + H]+ 

742.573 PE(O-35:0) C40H82NO7P [M + Na]+ 

744.590 PE(O-37:2) C42H82NO7P [M + H]+ 

746.569 PE(36:1) C41H80NO8P [M + H]+ 

754.535 PC(32:1) C40H78NO8P [M + Na]+ 

756.552 PC(32:0) C40H80NO8P [M + Na]+ 

758.569 PC(34:2) C42H80NO8P [M + H]+ 

760.585 PC(34:1) C42H82NO8P [M + H]+ 

766.535 PE(36:2) C41H78NO8P [M + Na]+ 

766.572 PE(P-37:1) C42H82NO7P [M + Na]+ 

768.588 PE(36:1) C41H80NO8P [M + Na]+ 

780.551 PC(34:2) C42H80NO8P [M + Na]+ 

782.567 PC(34:1) C42H82NO8P [M + Na]+ 

786.600 PC(36:2) C44H84NO8P [M + H]+ 

788.616 PC(36:1) C44H86NO8P [M + H]+ 

796.525 PE(37:2) C42H80NO8P [M + K]+ 

806.567 PC(36:3) C44H82NO8P [M + Na]+ 

808.582 PC(36:2) C44H84NO8P [M + Na]+ 

810.599 PC(36:1) C44H86NO8P [M + Na]+ 

814.632 PC(38:2) C46H88NO8P [M + H]+ 

822.540 PE(39:3) C44H82NO8P [M + K]+ 

824.556 PC(36:2) C44H84NO8P [M + K]+ 

826.572 PC(36:1) C44H86NO8P [M + K]+ 

836.615 PC(38:2) C46H88NO8P [M + Na]+ 

838.631 PC(38:1) C46H90NO8P [M + Na]+ 
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Supporting Figures 

 

Fig. S1 Loading plot of PCA corresponding to SCMS metabolomics dataset with 40% MVT. A total number of 86 cellular 

metabolites (within red circles) with high PC1 and PC2 loading scores were selected as biomarkers. 
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