SUPPLEMENTARY INFORMATION

Controlled Diazonium Electrografting Driven by Overpotential Reduction: A General Strategy to Prepare Ultrathin Layers

Laure Pichereau, Isidoro Lopez, Marius Cesbron, Sylvie Dabos-Seignon, Christelle Gautier* and Tony Breton*

MOLTECH Anjou - UMR 6200 du CNRS, Université d'Angers, 2 Bd Lavoisier, Angers F-49045 Cedex, France

Calculation of the nitrophenyl surface coverage

Surface concentrations of nitrophenyl tethered surfaces were estimated from CVs recorded in KOH 0.1 M by summing the charges for the irreversible reduction of $Ar-NO_2$ and the charge for Ar-NHOH reoxidation and assuming a 6-electron transfer for each nitro group, as proposed by S. S. C. Yu *et al.* in *Langmuir* **2007**, 23, 11074-11082.

Figure S1. First CV recorded in aqueous deaerated 0.1M KOH on a modified glassy carbon electrode at 100 mV/s. Grafting was achieved at fixed potential for 2 min in the presence of 1 mM of 4-nitrobenzenediazonium in $CH_3CN 0.1 M nBu_4NPF_6$.

Figure S2. Charge transfer resistance measured on nitrophenyl modified glassy carbon electrode (\bullet) in the presence of Fe(CN)₆³⁻/Fe(CN)₆⁴⁻ and corresponding nitrophenyl surface coverage (\bullet) as a function of the potential applied for the chronoamperometric electrografting under atmospheric conditions. Grafting was achieved at fixed potential for 2 min in the presence of 1 mM of 4-nitrobenzenediazonium.

Figure S3. Calculated nitrophenyl surface coverage as a function of the grafting time at an applied potential of -0.8 V vs Ag/AgNO₃ under atmospheric conditions in the presence of 1 mM of 4-nitrobenzenediazonium.

Table 1. Atomic composition, determined by X-ray Photoelectron Spectroscopy, of modified surfaces at -0.6 V vs Ag/AgNO₃ under atmospheric and oxygen-free conditions.

Binding energy (eV)

Figure S4. XPS O1s core level spectra of modified surfaces at -0.6 V vs Ag/AgNO₃ under atmospheric conditions (∞) and under oxygen-free conditions (∞).

Figure S5. CV recorded at 50 mV/s in acetonitrile 0.1 M nBu_4NPF_6 on a bare glassy carbon electrode under atmospheric conditions. Inset: zoom on the starting reduction signal.

Figure S6. Charge transfer resistance measured on bromophenyl (**O**), 4-(2-aminoethyl)phenyl (**●**) and 1-anthraquinone (**□**) modified glassy carbon electrode in the presence of $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ as a function of the potential applied for the chronoamperometric electrografting under atmospheric conditions. Grafting was achieved at fixed potential for 2 min in the presence of 1 mM of the corresponding diazonium derivative.

Figure S7. Left: anthraquinone surface coverage, determined from voltammetric data recorded in KOH 0.1 M, on a modified glassy carbon electrode as a function of the potential applied for the chronoamperometric electrografting under atmospheric conditions. Right: corresponding CVs for modification carried out at 0.1 V, -0.6 V and -0.8 V vs Ag/AgNO₃.