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1. Experimental Methods

1.1 Materials

NAD*, NMN was obtained from Shanghai Boylechem Co.ltd. UHQ Il system
(Elga) was used to purify water to a resistivity of 18 MQ-cm for preparation of all
solutions. Phosphate buffer solution (PBS) was prepared using NaHPO4 and NaH2POa.
All electrodes for electrochemical experiment were purchased from Shanghai Chenhua
Co., Ltd., China. All chemical reagents for synthesis were of analytical grade and used
without further purification unless otherwise noted. Triethylamine and morpholine
were dried over potassium hydroxide, distilled, and then stored over potassium
hydroxide pellets. *H NMR and *3C NMR were acquired in D20, DMSO-ds or CDCl3
on BRUKER AVANCE 500 spectrometer using TMS as an internal standard. HR-MS

were obtained on HP 5989 mass spectrometer.

1.2 Synthesis of Benzyl Sulfide-modified NAD* Derivative PhSNAD
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Fig. S1 The synthesis of benzyl sulfide-modified NAD* derivative. Reagents and conditions: a) 2-
chloroethylamine hydrochloride, EtONa, EtOH, 85 %. b) b-2, EtOH, 83 <C, 93.1 %; c) TEP, POCls,
H,O, 0 <C, 45 %; d) PPhs, dipyridyl disulfide, morpholine, room temperature, 78 %, e€)
MnCl,/formamide, MgSQs,, f-NMN*, room temperature, 55 %.
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The Synthesis of PnSNAD. 2-(benzylthio)ethanamine (b-2). To an ice-cooled flask of
ethanol (100 ml) fitted with a condenser was added sodium (3.16 g, 138 mmol, 1.1 eq.)
in small pieces. After disappearing of sodium pieces, benzyl mercaptan b-1 (14.6 ml,
125 mmol) was added via a syringe, followed a solution of 2-chloroethylamine
hydrochloride (10.0 g, 125 mmol) in ethanol (50 ml) was injected. The mixture was
heated at reflux for 24 h then cooled and poured into saturated ammonium chloride
solution (200 ml) and extracted with dichloromethane (3200 ml). The combined
organic phases were dried with magnesium sulfate, filtered and evaporated under
reduced pressure to give an oil which was purified by flash chromatography on silica
eluting with dichloromethane to 10 % methanol: dichloromethane (gradient) to give the
title compound b-2 as a yellow oil (17.7 g, 85 %). *H NMR (400 MHz, DMSO-ds): & =
7.23-7.37 (M, J = 29.3, 6.8 Hz, 5H), 6.66 (S, 2H), 3.78 (s, 2H), 2.87-2.92 (t, J = 7.3 Hz,
2H), 2.74 — 2.57 (t, 2H). 3C NMR (101 MHz, DMSO-de): = 138.87, 129.40, 128.88,
127.37, 37.08, 35.12, 29.69. MS (ESI): m/z calcd for (M+H*) CoH13NS 168.0847;
found 168.0853.

(2R, 3R, 4S, 5R)-2-(6-((2-(benzylthio) ethyl) amino)-9H-purin-9-yl)-5-
(hydroxylmethyl) tetrahydrofuran-3, 4-diol (d-2). To a solution containing b-2 (7 g,
41.9 mmol, 5 eq), 6-chloropurine riboside (2.4 g, 8.4 mmol) in ethanol (50 ml). The
mixture was heated at reflux for 14h then cooled to room temperature and crystallized
in refrigerator (4 <C), filtering, washing with ethanol, drying give pury compound d-2
as a white soild (3.26 g, 93.1 %). *H NMR (400 MHz, DMSO-ds): 5 = 8.38 (s, 1H),
8.26 (s, 1H), 8.02 (s, 1H), 7.41 — 7.14 (m, 5H), 5.92 (d, J = 5.6 Hz, 1H), 5.33 (d, J =
111.5 Hz, 2H), 4.63 (s, 1H), 4.37 (s, 1H), 4.17 (s, 1H), 3.99 (s, 1H), 3.79 (s, 2H), 3.69
(d, J = 8.8 Hz, 2H), 3.58 (s, 1H), 3.44 (dd, J = 13.5, 6.7 Hz, 1H), 2.65 (m, 2H). 13C
NMR (101 MHz, DMSO-ds): 6 = 154.88, 152.78, 148.85, 140.36, 139.06, 129.36,
129.29, 128.77, 127.21, 120.28, 88.49, 86.40, 74.02, 71.15, 62.15, 56.54, 35.22, 30.40.
MS (ESI): m/z calcd for (M+H™) C19H23Ns04S 418.1549; found 418.1559.

(2R, 3S, 4R, 5R)-5-(6-((2-(benzylthio) ethyl) amino)-9H-purin-9-yl)-3, 4-
dihydroxytetrahydrofuran-2-yl) methyl dihydrogen phosphate (d-3). The compound d-

2 (3 g, 6.6 mmol) was dissolved in TEP (45 mL) by heating. It was then cooled to 0 <C,
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and then H>O (0.01 mL) was added followed by POCI3 (2.1 mL, 23 mmol). The mixture
was stirred at 0 <T until starting material was completely consumed. Excess POCl3z was
then removed under vacuum, H>O (10 mL) and pyridine (5 mL) were added at 0 <C,
and the mixture was stirred for 1 h. TEP was removed by partition between water and
ice-cold ethyl acetate (5 mL). The aqueous layer was concentrated under vacuum, and
the resulting white residue was redissolved in 0.1% aqueous LiOH (15 mL). Crude was
precipitated in acetone (200 mL) and then purified by reverse-phase chromatography,
eluted with a gradient of 0-30% MeCN in 0.05 M TEAB buffer. The appropriate
fractions were collected and evaporated under reduced pressure. The residue obtained
was dissolved in H20 (10 mL) and treated with charcoal for 1 h to remove any residual
inorganic phosphate. Elution with EtOH-H,O-NH3 (400 mL, 25:24:1) provided the
crude compound which was further treated with Dowex-H* to give the desired
compound d-3 as its free acid (1.48 g, 45 %): *H NMR (400 MHz, DMSO-ds): & = 8.38
(s, 1H), 8.29 (s, 1H), 8.11 (s, 1H), 7.48 — 7.11 (m, 5H), 5.96 (d, J = 5.4 Hz, 1H), 4.61
(t, J = 5.0 Hz, 1H), 4.20 (s, 1H), 4.16 — 4.04 (m, 2H), 3.99 (dd, J = 11.8, 5.9 Hz, 1H),
3.80 (s, 2H), 3.69 (s, 2H), 2.66 (s, 2H). 3C NMR (101 MHz, DMSO-de): & = 154.35,
152.63, 139.96, 139.05, 130.77, 129.37, 128.93, 128.80, 127.24, 119.77, 87.64, 83.59,
83.50, 73.87, 70.89, 65.88, 65.84, 35.20, 30.32. 3P NMR (202 MHz, DMSO-dg): & = -
1.19 (s). MS (ESI): m/z calcd for (M+H*) C19H2sNs0-PS 498.1212; found 498.1138.
((2R, 3S, 4R, 5R)-5-(6-((2-(benzylthio) ethyl) amino)-9H-purin-9-yl)-3, 4-dihydr-
oxytetrahydrofuran-2-yl) methyl hydrogen morpholinophosphonate (d-4). The
compound d-3 (300 mg, 0.6 mmol) was dissolved in dry DMSO (1 mL) and
coevaporated with dry DMF (2 mL). The resulting yellow residue was dissolved in
DMSO (1 mL), and dipyridyl disulfide (397 mg, 1.8 mmol), morpholine (0.43 mL, 4.8
mmol), and triphenylphosphine (409 mg, 1.56 mmol) were added in sequence. The
reaction mixture was stirred at room temperature for 3 h. Precipitation of the product
occurred by dropwise addition of a solution of Nal in acetone (20 mL), and the resulting
precipitate was filtered and washed with acetone to yield the desired compound as a
yellow solid (264.8 mg, 78 %). *H NMR (400 MHz, DMSO-ds): § = 8.50 (s, 1H), 8.26

(s, 1H), 7.96 (s, 3H), 7.53 — 6.95 (M, 5H), 5.94 (d, J = 5.4 Hz, 1H), 4.64 (s, 1H), 4.29 —
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4.17 (m, 1H), 4.10 — 3.96 (m, 2H), 3.87 (s, 2H), 3.79 (s, 1H), 3.60 (s, 2H), 2.89 (s, 8H),
2.80 (s, 2H), 2.73 (s, 8H). *C NMR (101 MHz, DMSO-dg): 6 = 162.79, 152.87, 139.95,
139.08, 131.85, 130.77, 129.36, 128.90, 128.77, 128.18, 127.20, 87.47, 74.69, 71.36,
67.31, 66.19, 64.47, 63.28, 57.27, 45.87, 45.16, 36.25, 31.23. 31 NMR (202 MHz,
DMSO-ds): & = 4.58. MS (ESI): m/z calcd for (M+H") C23H31NsO7PS 567.1791; found
567.1711.

Benzyl Sulfide-Modified NAD™ Derivative (PhSNAD). To a solution of the
compound d-4 (150 mg, 26 mmol) in MnClz/formamide (2 mL, 0.2 M) was added f-
NMN* (97 mg, 29 mmol) and MgSOs (63.6 mg, 140 mmol) under an argon atmosphere.
The resulting suspension was stirred at room temperature for 48 h after which HPLC
analysis showed completion of the reaction. Precipitation of the product occurred by
addition of MeCN (3 mL). It was filtered, dissolved in deionized water (2 mL), and
treated with Chelex-Na* to remove any residual Mn?* and then purified on a reverse-
phase system, eluted with 0-30% MeCN against 0.05 M TEAB buffer. The appropriate
fractions were combined and evaporated under reduced pressure, and the excess TEAB
was destroyed by coevaporation with methanol to give the title compound PhSNAD as
a white foam (118 mg, 55 %). *H NMR (400 MHz, D,0): § =9.28 (s, 1H), 9.13 (s, 1H),
8.78 (s, 1H), 8.45 (s, 1H), 8.13 (s, 2H), 7.14 — 6.70 (m, 5H), 6.03 (s, 2H), 4.48 (s, 1H),
4.43 (d, J = 4.0 Hz, 2H), 4.35 (s, 1H), 4.29 (d, J = 13.1 Hz, 2H), 4.13 (s, 2H), 4.00 —
3.76 (m, 1H), 3.60 (s, 2H), 3.52 (s, 1H), 2.79 (s, 2H), 1.93 (s, 1H). 3C NMR (101 MHz,
D20): 6 = 165.39, 149.17, 148.48, 146.59, 145.92, 145.01, 142.50, 141.53, 139.77,
138.53, 133.76, 128.59, 128.45, 128.07, 126.63, 118.51, 117.44, 99.87, 87.61, 86.98,
84.18, 77.51, 74.54, 70.63, 70.33, 65.23, 64.88, 41.17, 35.76, 29.54. 3P NMR (202
MHz, D20): 6 = -11.06, -11.19. MS (ESI): m/z calcd for (M+H") CzoH3z7N7014P2S
814.1673; found 814.1653.

1.3 The Electrochemical Behavior of NAD* Standard in Solution

In order to prove the electrochemistry characteristics of synthesic PhSNAD, the
CVs of NAD" standard was measured and compared with the CVs of compound

PhSNAD.
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Fig. S2 CVs of GC electrode in PBS (0.1 M, pH 7.0) containing 2 mM NAD*. Scan rates: 100 mV/s.

1.4 The Evaluation of PhASNAD Coenzyme Activities

To confirm that the synthetic PRNSNAD was active in a biological system, UV-vis
spectroscopy was used to investigate the catalytic reaction of ADH for ethanol in the
presence of PhNSNAD. To 10 mL phosphate buffer saline PBS (50 mM, pH 7.4, 20 %
(v/v) ethanol), 5 pL PhSNAD aqueous solutions (10 mM) and 5 pL alcohol
dehydrogenase (ADH) solutions (1 mg/mL) were added in sequence. After mixed

evenly, the mixture was immediately measured continuously by UV-vis spectroscopy.

1.5 The Preparation of PhSNAD Modified Electrode

For the preparation of PhASNAD modified electrode, a 2 mm diameter gold
electrode was first polished with different sizes of alumina suspension, then
successively rinsed with ultrapure water, ethanol. Following, the polished gold
electrode was immersed for 10 min in a hot “piranha” solution. After copious rinsing
with ultrapure water, the gold electrode was further electrochemically cleaned by
potential cycling in the potential range from -0.30 to 1.50 V vs SCE in 0.5 M H2SO4
until the typical cyclic voltammogram of clean gold electrode was obtained. After being
rinsed with ultrapure water and ethanol and dried with N2, the gold electrode was
immersed in 2 mM PhSNAD aqueous solution over 24 hours. Finally, the formed

PhSNAD modified electrode was successively rinsed with copious amounts of
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ultrapure water and ethanol to remove excess adsorbate and then dried with N> to

remove residual solvent.

2. Surface Characterization of PhSNAD Modified Electrode

2.1 X-ray Photoelectron Spectroscopy (XPS) Analysis

X-ray photoelectron spectroscopy (XPS) was utilized to characterize the
modification of compound PhSNAD on gold electrodes. All XPS measurements were
performed in an ultrahigh vacuum chamber of an M-probe surface spectrometer. In
order to prevent excess contamination by carbon, oxygen and nitrogen species, the gold
surface has been carefully precleaned with fresh hot Piranha solution prior to incubation
in deaerated solutions containing compounds PhSNAD. The data were processed by

specific XPS software.
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Fig. S3 High-resolution XPS spectra of Sp, N1s and P2, for PASNAD modified gold electrodes (A-
C) and unmodified gold electrodes (D-F), respectively. Open circles represent experimental raw
data, red solid lines are for the total fits, black lines are for the component-fitted peaks, and green
lines are for the baselines.

2.2 Time-of-Flight Secondary-lon-Mass-Spectrometry (ToF-SIMS)
Analysis

ToF-SIMS spectra were acquired both in positive detection mode from identical
57



analysis areas. The mass scale was internally calibrated using a number of well- defined
and easily assignable secondary ions (CsH2", CsHs*, CeHs*, C7H7") keeping the error in
calibration for the selected secondary ions below 10 ppm. All sample measurements of
ToF-SIMS were performed on a ToF-SIMS IV instrument (ION-TOF GmbH, MUnster,
Germany) of the reflectron-type, equipped with a 25 keV bismuth liquid metal ion gun
(LMIG) as primary ion source mounted at 45° with respect to the sample surface. Biz++
was selected as primary ion by appropriate mass filter settings. To improve the focus
of the primary ion beam (and hence the lateral resolution) the pulse width of the Bis++
(25 keV) ion pulse was reduced to 11 ns and the lens target was adjusted to obtain a
sharp image on a structured sample (e.g., silver cross) in the secondary electron mode.
The primary ion current was directly determined at 100 |6 cycle time (i.e., a repetition
rate of 10 kHz) using a Faraday cup located on a grounded sample holder. Operation
conditions with these settings comprised a target current of 0.19 pA for the selected
primary ion. The large area scans (3>3 mm) were performed in the so-called stitching
mode where the total analysis area is divided into several small analysis areas, which
are stitched together by a routine implemented in the SurfaceLab 6.4 (ION-TOF GmbH,
Minster, Germany) software. The total primary ion dose density was 5>10%° ions/cm?
for large area scans and 5.110* jons/cm? for a standard measurement area (500>500
Jam) ensuring static conditions. The vacuum in the analysis chamber was in the range

of 10"° mbar during all measurements.
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Fig. S4 ToF-SIMS spectra of bare gold electrodes (A), PhASNAD modified electrodes (B) and
PhSNAD coated silicon wafer (C) obtained with Bis++ primary ion beams, respectively. (a, b, c)
represents the molecular ion peak of PASNAD (a), the characteristic fragment ion peaks of the
nicotinamide (b) and the adenine (c), respectively.

3. Electrochemical Measurements of PhSNAD Modified Electrode

The cyclic voltammetric measurements were performed using a CHI660E
electrochemical workstation (Shanghai Chenhua, China). All electrochemical
experiments were performed with a conventional three-electrode system, using the
glassy electrodes or modified gold electrodes as the working electrode, a platinum wire
as the auxiliary electrode, and a saturated calomel electrode (SCE) as the reference

electrode.
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4. ToF-SIMS Spectra of NAD* Dimer

In order to prove the reduced product of PhASNAD modified electrode surface was

NADH, the ToF-SIMS spectra of NAD* dimer was recorded on the silicon wafer.
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Fig. S6 ToF-SIMS spectra of generated NADH on the surface of gold electrode (A) and NAD*
dimer coated silicon wafer (B) obtained with Bi3++ primary ion beams.

5. The Coenzyme Activity of Generated NADH on the Surface of

Electrode

In order to investigate the coenzyme activity of generated NADH on the surface of
electrode, an enzymatic experiment was performed by immersing the reduced PASNAD
modified electrode in the mixture solution of acetaldehyde and ADH. After 30 minutes,

the electrode was removed and successively rinsed with copious amounts of ultrapure
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water and ethanol to remove excess adsorbate and then dried with N2 to remove residual

solvent. Finally, the reacted electrode was analyzed using ToF-SIMS.
4.0E4

123.05
125.07

4.0E4+

Intensity

o 1A J ] J 4 1 s
120 122 124 126 128
Mass (u)

Fig. S7 ToF-SIMS monitored the coenzyme activities of electro-reduced NADH on electrode

130

surface.

6. The TH NMR, BC NMR, P NMR and MS Characterization of

Target Compounds and Intermediates
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Fig. S8 'H NMR spectrum of 2-(benzylthio)ethanamine (b-2).
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Fig.S9 3C NMR spectrum of 2-(benzylthio)ethanamine (b-2).
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Fig. S12 13C NMR spectrum of (2R, 3R, 4S, 5R)-2-(6-((2-(benzylthio) ethyl) amino)-9H-purin-9-
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Fig. S15 3C NMR spectrum of ((2R, 3S, 4R, 5R)-5-(6-((2-(benzylthio)ethyl)ami
no)-9H-purin-9-yl)-3, 4-dihydroxytetrahydrofuran-2-yl)methyldihydrogenphosphate

(d-3).
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Fig. S16 3P NMR spectrum of ((2R, 3S, 4R, 5R)-5-(6-((2-(benzylthio) ethyl)ami

no)-9H-purin-9-yl)-3, 4-dihydroxytetrahydrofuran-2-yl) methyldihydrogenphosphate (d-3).
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Fig. S17 Mass spectrum of ((2R, 3S, 4R, 5R)-5-(6-((2-(benzylthio) ethyl) amino
)-9H-purin-9-yl)-3, 4-dihydroxytetrahydrofuran-2-yl) methyl dihydrogen phosphate (d-3).

o O © MO MmN [Tolse) <t MNMOULMNOMNIIAMDO M
BN S BANN & & & NNCOSXN&®D N
O O M~ D 0w w < T TTOOMNANN
N — & | | — |
[/
\
/( r Y& /
) -/ e S / /// I/
|
| Jk/\ I | il \‘\H ‘ ‘
; A
™= ) £ L bR Sho
S=~ 3 = ® ®So=Q So%
‘ — —— ‘ = ‘ — e T pow
9.0 8.5 8 0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 5 3.0 25

1 (ppm)

Fig. S18 *H NMR spectrum of ((2R, 3S, 4R, 5R)-5-(6-((2-(benzylthio)ethyl)amino
)-9H-purin-9-yl)-3, 4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen morpholinopho
sphornate (d-4).
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Fig. S19 3C NMR spectrum of ((2R, 3S, 4R, 5R)-5-(6-((2-(benzylthio)ethyl)amin

0)-9H-purin-9-yl)-3, 4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen morpholinoph

osphornate (d-4).
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Fig. S20 3P NMR spectrum of ((2R, 3S, 4R, 5R)-5-(6-((2-(benzylthio)ethyl)amin

0)-9H-purin-9-yl)-3, 4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen morpholinoph

osphornate (d-4).
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Fig. S21 Mass spectrum of ((2R, 3S, 4R, 5R)-5-(6-((2-(benzylthio)ethyl)amino)-9
H-purin-9-yl)-3, 4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen morpholinophosp
hornate (d-4).
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Fig. S22 'H NMR spectrum of 1-((2R,3R,4S,5R)-5-((((((((2R,3S,4R,5R)-5-(6-((2-
(benzylthio)-ethyl)amino)-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-
yl)methoxy)oxidophosphoryl)oxy)(hydroxy)phosphoryl)oxy)methyl)-3,4-
dihydroxytetrahydrofuran-2-yl)-3-carbamoylpyridin-1-ium (PhSNAD).
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Fig. $23 13C NMR spectrum of 1-((2R, 3R, 4S, 5R)-5-((((((((2R, 3S, 4R, 5R)-5-
(6-((2-(benzylthio)-ethyl) amino)-9H-purin-9-yl1)-3, 4-dihydroxytetrahydrofuran-2-yl
)methoxy)oxidophosphoryl)oxy)(hydroxy)phosphoryl)oxy)methyl)-3, 4-dihydroxyte
trahydrofuran-2-yl)-3-carbamoylpyridin-1-ium (PhSNAD).
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Fig. S24 3P NMR spectrum of 1-((2R,3R,4S,5R)-5-((((((((2R,3S,4R,5R)-5-(6-((2-
(benzylthio)-ethyl)amino)-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-
yl)methoxy)oxidophosphoryl)oxy)(hydroxy)phosphoryl)oxy)methyl)-3,4-
dihydroxytetrahydrofuran-2-yl)-3-carbamoylpyridin-1-ium (PhSNAD).
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Fig. S25 Mass spectrum of 1-((2R, 3R, 4S, 5R)-5-((((((((2R, 3S, 4R, 5R)-5-(6-((2-

(benzylthio)-ethyl)amino)-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-

yl)methoxy)oxidophosphoryl)oxy)(hydroxy)phosphoryl)oxy)methyl)-3,4-
dihydroxytetrahydrofuran-2-yl)-3-carbamoylpyridin-1-ium (PhSNAD).
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