Electronic Supporting Information

Boosting Triplet Activity for Heavy-Atom-Free Difluoroboron Dibenzoylmethane via sp3 Oxygen-Bridged Electron Donor

Wenhuan Huang,^a Xuepeng Zhang,^a Biao Chen,^{*a} Hui Miao,^a Carl O. Trindle,^b Yucai Wang,^a Yi Luo,^a and Guoqing Zhang^{*a}

 ^aHefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
E-mail: gzhang@ustc.edu.cn, biaochen@ustc.edu.cn
^bDepartment of Chemistry, University of Virginia, Charlottesville VA 22904 USA

1.Materials and Synthesis

Materials. Extra dry THF and all other reagents and solvents were obtained from Aladdin Reagent and were used as received. Dichloromethane was dried over calcium hydride \sim 3h. Sodium hydride (95%) and boron trichloride solution (1.0 M in CH₂Cl₂) were purchased from Sigma-Aldrich.

Methods. ¹H NMR spectra and ¹³C NMR spectra were recorded on a Bruker AV400 NMR spectrometer operated in the Fourier transform mode at 400MHZ. Electrospray ionization (ESI) mass spectra were recorded on a LTQ ORBITRAP XL mass spectrometer (Thermo Scientific). UV/Vis spectra were recorded on a UV–1800 Shimadzu spectrometer. Steady-state emission spectra were recorded on a Horiba FluoroMax-4 spectrofluorometer (Japan). Fluorescence quantum yields were measured on a Hamamatsu Quantaurus-QY spectrometer. Fluorescence lifetime data were acquired with a 1 MHz LED laser with the excitation peak at 372 nm (NanoLED-370). Lifetime data were analyzed with DataStation v6.6 (Horiba Scientific).

Scheme S1. Chemical synthesis of BF₂dbm model complexes

(Z)-3-hydroxy-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (Cp1). Methyl benzoate (1.5 ml, 12 mmol), 1-(4-methoxyphenyl)ethan-1-one (2.42 g, 10 mmol), Sodium hydride (0.36 g, 15 mmol)and 10 ml extra dry THF were added into a round-bottomed flask, reflux 5 h under N₂,cool to room temperature. The reaction mixture was concentrated in vacuo to remove THF, 10 ml ultra-

pure water was added. The pH of the solution was adjusted to seven by the addition of a saturated aqueous solution of sodium bicarbonate then extracted with ethyl acetate (3×25 mL), and the combined organic layer was washed with brine (1×100 mL) and dried over sodium sulfate. The solution was filtered, and solvent was removed in vacuo. The crude product was purified by column chromatography (1:20 EtOAc/Hex) to provide the desired product as white solid : 1.8 g (60%). δ (ppm) H (400 MHz, CDCl₃) 16.99 (1 H, s), 8.02 – 7.94 (4 H, m), 7.53 (1 H, ddd, J 6.1, 3.5, 1.2), 7.50 – 7.42 (2 H, m), 7.00 – 6.94 (2 H, m), 6.79 (1 H, s), 3.86 (3 H, d, J 6.2). δ C (101 MHz, CDCl₃) 186.23, 184.04, 163.28, 135.57, 132.20, 129.35, 128.76, 128.67, 128.21, 127.02, 114.01, 113.97, 92.40, 55.51. ESI-MS m/z: [M + Na] +, 277.0833;calculated mass for C₁₆H₁₄NaO₃+: 277.0841amu.

Figure S1. ¹H NMR spectrum (300 MHz, CDCl₃) of Cp1

(**Z**)-3-hydroxy-1-(4-phenoxyphenyl)-3-phenylprop-2-en-1-one (Cp2). Synthesized according to the above method for (Z)-3-hydroxy-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one: 2.21 g (70%). δ (ppm) H (400 MHz, CDCl₃) 16.90 (1 H, s), 8.00 – 7.95 (4 H, m), 7.54 (1 H, dt, J 2.8, 2.1), 7.51 – 7.45 (2 H, m), 7.43 – 7.36 (2 H, m), 7.20 (1 H, ddt, J 8.5, 7.1, 1.1), 7.11 – 7.02 (4 H, m), 6.81 (1 H, s). δ C (101 MHz, CDCl₃) 185.71, 184.64, 161.60, 155.68, 135.50, 132.34, 130.07, 129.34, 128.70, 127.08, 124.54, 120.08, 117.71, 92.65. ESI-MS *m/z*: [M + Na] +,339.0986;

calculated mass for $C_{21}H_{16}NaO_3^+$: 339.0997amu.

Figure S4. ¹H NMR spectrum (300 MHz, CDCl₃) of Cp2

Figure S5. ¹³C NMR spectrum (100 MHz, CDCl₃) of Cp2

Figure S6. ESI-MS spectrum of Cp2

(Z)-3-hydroxy-1-(4-(4-methoxyphenoxy)phenyl)-3-phenylprop-2-en-1-one (Cp3). Synthesized according to the above method for (Z)-3-hydroxy-1-(4-methoxyphenyl)-3-pheny-lprop-2-en-1-one: 1.42 g (40%). δ (ppm) H (400 MHz, CDCl₃) 17.07 – 16.84 (1 H, m), 8.01 – 7.93 (4 H, m), 7.59 – 7.52 (1 H, m), 7.52 – 7.46 (2 H, m), 7.08 – 6.97 (4 H, m), 6.97 – 6.90 (2 H, m), 6.80 (1 H, s), 3.83 (3 H, d, J 3.8). δ C (101 MHz, CDCl₃) 185.84, 184.45, 162.62, 156.67, 148.65, 135.52, 132.29, 129.51, 129.31, 128.68, 127.06, 121.65, 116.74, 115.10, 92.57, 55.69. ESI-MS *m/z*: [M + Na]⁺, 369.1096; calculated mass for C₂₂H₁₈NaO₄⁺: 369.1103amu.

Figure S7. ¹H NMR spectrum (300 MHz, CDCl₃) of Cp3

Figure S8. ¹³C NMR spectrum (100 MHz, CDCl₃) of Cp3

Figure S9. ESI-MS spectrum of Cp3

2,2-difluoro-4-(4-methoxyphenyl)-6-phenyl-2H-1,3l3,2l4-dioxaborinine(1). (Z)-3-hydroxy-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (3.76 g,14.8 mmol) and boron trifluoride dietherate (2.00 mL, 16.0 mmol) were added to 20 ml CH₂Cl₂ and stirred under N₂ at room temperature overnight. The solution was then purged with N₂ to remove excess boron trifluoride (absorbed with NaOH aq. solution). The desired product was obtained by silica gel chromateography with CH₂Cl₂/hexanes as bright yellow powder (3.61g, 81%). δ (ppm) H (400 MHz, CDCl₃) 8.44 – 8.02 (4 H, m), 7.61 (3 H, d, J 49.9), 7.18 – 6.91 (3 H, m), 3.94 (3 H, s). δ C (101 MHz, CDCl₃) 186.23, 184.04, 163.28, 135.57, 132.20, 129.35, 128.76, 128.67, 128.21, 127.02, 114.01, 113.97, 92.40, 55.51.ESI-MS *m/z*: [M + Na]⁺, 325.0813; calculated mass for C₁₆H₁₃BF₂NaO₃⁺: 325.0824 amu.

Figure S10. ¹H NMR spectrum (300 MHz, CDCl₃) of 1

Figure S11. ¹³C NMR spectrum (100 MHz, CDCl₃) of 1

Figure S12. ESI-MS spectrum of 1

2,2-difluoro-4-(4-phenoxyphenyl)-6-phenyl-2H-1,3l3,2l4-dioxaborinine(2).

Synthesized according to the above method for 2,2-difluoro-4-(4-methoxyphenyl)-6-phenyl-2H-1,3l3,2l4-dioxaborinine (1): 4.58g, 85%, δ (ppm) H (400 MHz, CDCl₃) 8.14 (4 H, ddd, J 8.5, 5.0, 2.1), 7.68 (1 H, t, J 7.4), 7.55 (2 H, t, J 7.8), 7.49 – 7.40 (2 H, m), 7.30 – 7.25 (1 H, m), 7.19 – 7.01 (5 H, m). δ C (101 MHz, CDCl₃) 182.10, 164.42, 154.62, 134.97, 132.15, 131.58, 130.31, 129.15, 128.75, 125.70, 125.41, 120.61, 117.54, 92.77. ESI-MS *m*/*z*: [M + Na] +, 387.0975; calculated mass for: C₂₁H₁₅BF₂NaO₃+: 387.0980 amu.

Figure S13. ¹H NMR spectrum (300 MHz, CDCl₃) of 2

Figure S14. ¹³C NMR spectrum (100 MHz, CDCl₃) of 2

Figure S15. ESI-MS spectrum of 2

2,2-difluoro-4-(4-(4-methoxyphenoxy)phenyl)-6-phenyl-2H-1,3l3,2l4-dioxaborinine(3)

Synthesized according to the above method for 2,2-difluoro-4-(4-methoxyphenyl)-6-phenyl -2H-1,3l3,2l4-dioxaborinine(1):4.31g,71%. δ (ppm) H (400 MHz, CDCl₃) 8.16 – 8.08 (4 H, m), 7.68 (1 H, t, J 7.4), 7.55 (2 H, t, J 7.8), 7.11 (1 H, s), 7.08 – 6.90 (6 H, m), 3.84 (3 H, d, J 9.4). δ C (101 MHz, CDCl₃) 182.16, 181.94, 165.27, 157.16, 147.74, 134.89, 132.22, 131.59, 129.13, 128.97, 128.72, 125.29, 121.89, 116.90, 115.27, 92.69, 55.71. ESI-MS *m/z*: [M + Na]⁺, 417.1075 calculated mass for: C₂₂H₁₇BF₂NaO₄⁺: 417.1086 amu.

Figure S16. ¹H NMR spectrum (300 MHz, CDCl₃) of 3

Figure S17. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3

Figure S18. ESI-MS spectrum of 3

2. Theoretical Calculations

Excited	Energy	Transtion configuration (%)
State	(ev)	
S1	3.2485	H→L (70.4)
T1	2.3935	H-4→L (10.3),H-1→L (14.9),H→L (67.0)
T2	3.0297	H-2→L+3 (11.2),H-1→L (61.8)
Т3	3.4159	H-3→L (19.1),H-2→L (44.0),H-2→L+3 (19.4)
T4	3.5310	H-4→L (33.1),H-2→L (50.6),H-1→L+1 (15.3)
T5	3.6892	H-4→L (30.0),H-3→L (59.5),H-3→L+1 (17.3)
Т6	3.9271	H-1→L (22.2),H-1→L+2 (11.4),H→L+1 (49.5),H→L+5 (13.5)
Τ7	4.2417	H-4→L (20.9),H-2→L+3 (35.8),H-1→L+2 (23.2)
Т8	4.3066	H-4→L (17.2),H-2→L+3 (36.9),H→L+1 (17.7),H→L+2 (48.7)
Т9	4.4659	H-3→L+1 (10.9),H-3→L+2 (39.0),H-2→L+3 (28.1),H→L+2
		(28.8)

Table S1. The singlet and triplet excited state transition configurations of 1 that contain the same orbital transition components of S_1

Table S2. The singlet and triplet excited state transition configurations of **2** that contain the same orbital transition components of S_1

Excited	Energy	Transtion configuration (%)	
State	(ev)		
S1	3.2751	H→L (70.3)	
T1	2.4169	H-6→L (11.0),H-2→L (13.6),H-1→L (66.8)	
T2	3.0580	H-4→L+3 (11.7),H-2→L (45.8)	
Т3	3.4094	H-5→L (16.7),H-4→L (47.2),H-4→L+3 (17.9),H-3→L+1 (10.1)	
T4	3.5198	H-6→L (36.6),H-4→L (47.6),H-2→L+1 (12.0)	
Т5	3.6677	H-6→L (26.6),H-5→L (51.5),H-5→L+1 (15.5),H-3→L (27.8),H-	
		2→L (13.3)	
Т6	3.7175	H-5→L (15.6),H-3→L+2 (19.7),H-2→L+2 (20.5),H-1→L+4	
		(48.5)	
Τ7	3.7960	H-1→L (69.3)	
Т8	3.9355	H-2→L (25.6),H→L+1 (47.8)	
Т9	4.0987	H-3→L (47.6),H-2→L (39.7)	

Table S3. The singlet and triplet excited state transition configurations of 3 that contain the same orbital transition components of S_1

Excited State	Energy (ev)		Transtion configuration (%)	-
S1	3.0461	H→L (70.5)		

T1	2.4117	H-6→L (10.8),H-2→L (14.3),H-1→L (66.5)
T2	3.0213	H-1→L+1 (12.1),H→L (59.1)
Т3	3.0721	H-3→L (20.0),H-2→L (46.9),H→L (37.2)
T4	3.4147	H-5→L (17.7),H-4→L (45.6),H-4→L+3 (18.4)
T5	3.5241	H-6→L (34.6),H-4→L (49.1),H-2→L+1 (14.3)
Т6	3.6272	H-3→L+2 (22.3),H-2→L+4 (12.4),H→L+2 (17.7),H→L+5
		(48.5)
T7	3.6682	H-6→L (28.1),H-5→L (52.4),H-5→L+1 (16.0)
Т8	3.9346	H-3→L+2 (11.9),H-2→L (25.7),H-1→L+1 (47.9)
Т9	3.9949	H→L+2 (48.5)

3. lifetime data

Figure S19. Fluorescence lifetime decay of 1 monitored at 420 nm (77 K, m-THF, Time calibration = 5.486969E-11 sec/ch, $\lambda_{ex} = 372$ nm nanoLED).

Figure S20. Fluorescence lifetime decay of **2** monitored at 414 nm (77K, m-THF, Time calibration = 5.486969E-11 sec/ch, $\lambda_{ex} = 372$ nm nanoLED).

Figure S20. Fluorescence lifetime decay of **3** monitored at 415 nm (77K, m-THF, Time calibration = 5.486969E-11 sec/ch, $\lambda_{ex} = 372$ nm nanoLED).

Figure S21. LP lifetime decay of 1 monitored at 502 nm (77 K, m-THF, Time calibration = 2.730672E-03 sec/ch, $\lambda_{ex} = 374$ nm spectraLED).

Figure S22. LP lifetime decay of **2** monitored at 497 nm (77 K, m-THF, Time calibration =2.730672E-03 sec/ch, λ_{ex} = 374 nm spectraLED)

Figure S23. LP lifetime decay of **3** monitored at 539 nm (77 K, m-THF, Time calibration =2.730672E-03 sec/ch, λ_{ex} = 374 nm spectraLED)

Figure S24. Fluorescence lifetime decay of **1** monitored at 434 nm (298 K, vacuum ,PMMA,0.1%, Time calibration = 5.486969E-11 sec/ch, $\lambda_{ex} = 372$ nm nanoLED).

Figure S25. Fluorescence lifetime decay of **2** monitored at 433 nm (298K, vacuum ,PMMA,0.1%, Time calibration = 5.486969E-11 sec/ch, $\lambda_{ex} = 372$ nm nanoLED)

Figure S25. Fluorescence lifetime decay of **3** monitored at 440 nm (298 K, vacuum ,PMMA,0.1%, Time calibration = 5.486969E-11 sec/ch, $\lambda_{ex} = 372$ nm nanoLED)

Figure S26. LP lifetime decay of 1 monitored at 510 nm (298 K, vacuum ,PMMA,0.1%, Time calibration =1.365336E-03 sec/ch, λ_{ex} = 374 nm spectraLED)

Figure S27. LP lifetime decay of **2** monitored at 510 nm (298 K, vacuum ,PMMA,0.1%, Time calibration = 1.365336E-03sec/ch, $\lambda_{ex} = 374$ nm spectraLED)

Figure S28. LP lifetime decay of **3** monitored at 510 nm (298 K, vacuum ,PMMA, 0.1%, Time calibration =1.365336E-03 sec/ch, λ_{ex} = 374 nm spectraLED)

Figure S29. LP lifetime decay of 1 monitored at 510 nm (298 K, air ,PMMA, 0.1%, Time calibration = 1.333336E-06 sec/ch, $\lambda_{ex} = 374$ nm spectraLED)

Figure S30. LP lifetime decay of 2 monitored at 510 nm (298K, air ,PMMA, 0.1%, Time calibration = 1.333336E-06 sec/ch, $\lambda_{ex} = 374$ nm spectraLED)

Figure S30. LP lifetime decay of 3 monitored at 510 nm (298 K, air ,PMMA, 0.1%, Time calibration = 1.333336E-06 sec/ch, $\lambda_{ex} = 374$ nm spectraLED)

4. Supplement Figure

Figure S31.a) steady-state emission spectra of model complexes in 2-methyltetrahydrofuran at 77K in air ($\lambda_{ex} = 372 \text{ nm}$) b) delayed ($\Delta t = 100 \text{ms}$) emission spectra of model complexes in 2-methyltetrahydrofuran at 77K in air ($\lambda_{ex} = 372 \text{ nm}$).

Figure S32. UV/Vis absorbance spectra of model complexes 1 (a), 2 (b), 3 (c) in different solvents (5.0 μ M) at room temperature.

Figure S33. Steady-state emission ($\lambda_{ex} = 372 \text{ nm}$) spectra of model complexes **1** (a), **2** (b), **3** (c) in different solvents (5.0 µM) at room temperature.

Figure S34. Delayed emission ($\lambda_{ex} = 372 \text{ nm}$, $\Delta t = 50 \text{ }\mu\text{s}$) spectra of model complexes **1** (a), **2** (b), **3** (c) in different solvents (5.0 μ M) at room temperature.