Ring-opening polymerization of trimethylene carbonate to poly(trimethylene carbonate) diol over a heterogeneous high-temperature calcined CeO₂ catalyst

Masazumi Tamura*, Keitaro Matsuda, Yoshinao Nakagawa, Keiichi Tomishige*

Experimentals

Materials

All the chemicals for organic reactions were purchased from chemical products corporations and were used without further purification. Trimethylene carbonate (Tokyo Chemical Industry Co. Ltd., >98.0%), 1-hexanol (Tokyo Chemical Industry Co. Ltd., >98%), tetrahydrofuran (Kanto Chemical CO., Inc.), acetonitrile (Kanto Chemical CO., Inc. >99.8%), water (FUJIFILM Wako Pure Chemical Corporation), dithranol (Tokyo Chemical Industry Co. Ltd., >95.0%), Nal (FUJIFILM Wako Pure Chemical Corporation, >99.5%), Ar (Tokyo Koatsu CO. Ltd. >99.99999%), CDCl₃ (Acros Organics, 99.8%, 0.03 vol% TMS).

Metal oxides

CeO₂ catalysts were prepared by calcining cerium oxide (HS, Daiichi Kigenso Kagaku Kogyo Co., Ltd.) in 3 hours under air at different calcination temperature (873, 1073, 1173, 1273, 1373, 1473 K). Other metal oxides were commercially available or supplied from the Catalysis Society of Japan: ZrO₂ (Daiichi Kigenso Kogyo Co. Ltd., Zr(OH)₂ was calcined under air at 873 K for 3 h.), MgO (Ube Industries, Ltd., MgO 500A, MgO was used after calcining under air at 873 K for 3 h.), TiO₂ (Nippon Aerosil Co. Ltd., P-25), γ-Al₂O₃ (Sumitomo Chemical Company Ltd., γ -Al₂O₃ was used after calcining under air at 873, 1073, 1273 or 1473 K for 3 h, SiO₂ (Fuji Silysia Chemical Ltd., G-6, SiO₂ was used after calcining under air at 973 K for 3 h.), SiO₂-Al₂O₃ (JRC-SAL-2), ZnO (Sakai Chemical Industry Co., Ltd., Finex-50). La₂O₃ (Soekawa Chemicals, La(OH)₃ was calcined under air at 873 K for 3 h), Y_2O_3 was prepared by the precipitation method. $Y(NO_3)_3 \cdot nH_2O$ (Pure Chemical Industries Ltd., >99.9%) was used as a precursor. A precursor (25 g) was dissolved in water (100 ml) and NH₃aq (1 M) was dropped with stirring. The pH of the solution was set to 10, resulting in a precipitate. The precipitate was filtered and washed with water, following a drying at 383 K overnight (12 h) and calcined under air at 873, 1073, 1273 or 1473 K for 3 h. The specific surface areas of metal oxides were measured by BET method.

Typical procedure for ring-opening polymerization of trimethylene carbonate

 CeO_2 (1 mmol (0.17 g)) and TMC 10 mmol were put into the autoclave together with a stirrer bar. The reactor was sealed, and then the air content was quickly purged by flushing Ar three times, and was pressurized with Ar to 1.1 MPa at room temperature. Then the autoclave was heated to 333 K. The time when the temperature of the autoclave reached 333 K was defined as 0 h. The mixture was constantly stirred during the reaction. After the reaction, the reactor was cooled in water bath to room temperature. After the gas phase was sampled, 1-hexanol (~0.2 ml) was added to the reaction mixture as an internal standard for

quantitative analysis, and the reaction mixture was collected by using THF (total 15 ml) as a washing solvent. The products were analyzed by a gas chromatograph (GC) equipped with an FID using a CP-Sil5 (Agilent J&W, length = 50 m, I.D. = 0.25 mm) and by high performance liquid chromatography (HPLC) with RI detector using Gemini-NX (Shimadzu GLC, particle size 5 μ m, 150 mm×4.6 mm, conditions: developing solvent, acetonitrile/water=45/55, 0.2 ml/min, 313 K). The quantitative analyses of TMC and 1,3-propanediol were conducted by GC-FID and HPLC, respectively because polymer can be decomposed to 1,3-propanediol and CO₂ by heating. Produced amount of CO₂ was analyzed by GC with an FID and a methanator using a Porapak N (GL Science, length = 2.0 m, I.D. = 3.0 mm). The produced polymers were analyzed by MALDI-TOF mass (AB Sciex, TOF / TOF \pm 5800) using dithranol and NaI as a matrix and ionization agent, respectively, and size exclusion chromatography (SEC, Shimadzu Prominence) with an RI detector (RID-10A) using a KF-805L (Shodex, developing solvent: THF, 1.0 ml/min, 313 K).

The conversion and selectivity were calculated by the following equations.

Conversion / % = 100 × [1 - (Amount of TMC after reaction (mmol))/(Amount of TMC before reaction (mmol))]

Selectivity / % = 100 × [(Amount of the product (mmol)×(carbon number of the products)/(amount of reacted TMC (mmol)×4)]

The amount of polymers was determined by subtraction of TMC-derived product amount from reacted TMC amount, and the selectivity was also calculated by the above equation.

The water content of TMC and CeO_2 was determined by the Karl Fischer titration method using a Karl Fischer moisture titrator (899 Coulometer; Metrohm Ltd.,). A sample weighed exactly was titrated by using HYDRANAL-Coulomat AG-Oven (Honeywell FlukaTM) as the Karl Fischer reagent.

Reusability test was conducted as follows: After the reaction, the used catalyst and the liquid phase were separated by centrifugation, and the collected catalyst was washed with THF (15 ml) three times, and then the collected wet catalyst was dried at 353 K for 12 h. The dried catalyst was heated at 1273 K under air for 3 h, and then used for the next reaction. The reaction scale was decreased based on the collected amount of CeO_2 .

Characterization

The surface area of metal oxides was measured with BET method (N₂ adsorption) using Gemini (Micromeritics). X-ray diffraction (XRD) patterns were recorded using MiniFlex 600 with Cu $K\alpha$ (40 kV, 15 mA) radiation. The amount of eluted metal into the reaction solution was analyzed by inductively-coupled plasma atomic emission spectrometry (ICP-AES, Thermo Fisher Scientific iCAP 6500). The sample for the ICP was obtained by removing the

CeO₂ from the reaction mixture by filtration. Therefore, the sample contained the remaining substrate, polymer and solvent.

¹H-NMR and ¹³C-NMR analysis

¹H and ¹³C NMR spectra were recorded at ambient temperature on Bruker, AV400 operating at 400 MHz. The sample was prepared by using CDCl₃ solvent.

Supporting Tables

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										-	
2 1073 41 46 98 0.21 2200 2900 1.25 3.3 0.08 3 1173 25 60 95 0.20 2900 3600 1.25 4.3 0.17 4 1273 13 71 98 0.14 7000 9500 1.37 5.1 0.40 5 1373 5 31 96 0.10 3000 3800 1.27 2.3 0.45	Entry		S ^a /m² g⁻¹	Conv. /%	Polymer sel. /%	amount	<i>M</i> _n	M _w	M _w ∕M _n	<i>V</i> ⁰/ mmol h⁻¹ g⁻¹	V _{surf} c/ mmol h ⁻¹ m ⁻²
3 1173 25 60 95 0.20 2900 3600 1.25 4.3 0.17 4 1273 13 71 98 0.14 7000 9500 1.37 5.1 0.40 5 1373 5 31 96 0.10 3000 3800 1.27 2.3 0.45	1	873	84	38	92	0.29	990	1300	1.32	2.8	0.03
4 1273 13 71 98 0.14 7000 9500 1.37 5.1 0.40 5 1373 5 31 96 0.10 3000 3800 1.27 2.3 0.45	2	1073	41	46	98	0.21	2200	2900	1.25	3.3	0.08
5 1373 5 31 96 0.10 3000 3800 1.27 2.3 0.45	3	1173	25	60	95	0.20	2900	3600	1.25	4.3	0.17
	4	1273	13	71	98	0.14	7000	9500	1.37	5.1	0.40
<u>6 1473 1 5 91 0.05 460 510 1.12 0.4 0.44</u>	5	1373	5	31	96	0.10	3000	3800	1.27	2.3	0.45
	6	1473	1	5	91	0.05	460	510	1.12	0.4	0.44

Table S1 Effect of calcination temperature of CeO_2 in the ring-opening reaction of TMC

Reaction conditions: CeO₂ 1 mmol, TMC 10 mmol, Ar 1.1 MPa, 333 K, 8 h

^aSpecific surface area determined by BET method

^bReaction rate per catalyst amount

^cReaction rate per surface area of catalyst

Entry	Calcination <i>T /</i> K	S ^a /m² g-1	Conv. /%	Polymer sel. /%	CO ₂ amount /mmol	<i>M</i> _n	M _w	M _w /M _n	V [⊳] / mmol h⁻¹ g⁻¹	V _{surf} c/ mmol h ⁻¹ m ⁻²
1	873	97	61	98	0.14	5800	7700	1.32	15	0.15
2	1073	92	54	98	0.10	7000	10000	1.41	13	0.14
3	1273	90	49	98	0.10	6100	8600	1.41	12	0.13
4	1473	66	38	98	0.09	5100	7400	1.44	9.4	0.14

Table S2 Effect of calcination temperature of AI_2O_3 in the ring-opening reaction of TMC

Reaction conditions: $\rm Al_2O_3$ 1 mmol, TMC 10 mmol, Ar 1.1 MPa, 333 K, 8 h

^aSpecific surface area determined by BET method

^bReaction rate per catalyst amount

 $^{\rm c} \mbox{Reaction}$ rate per surface area of catalyst

Entry	Calcination <i>T /</i> K	S ^a /m² g-1	Conv. /%	Polymer sel. /%	CO ₂ amount /mmol	<i>M</i> _n	M _w	<i>M</i> _w ∕ <i>M</i> _n	V⁰/ mmol h⁻¹ g⁻¹	V _{surf} c/ mmol h ⁻¹ m ⁻²
1	873	43	57	96	0.22	3600	5400		6.3	0.15
2	1073	31	65	99	0.17	8600	17000	2.04	7.2	0.23
3	1273	14	25	97	0.08	4100	6400	1.55	2.8	0.20
4	1473	5	8	95	0.04	2100	3200	1.54	0.87	0.18

Table S3 Effect of calcination temperature of Y_2O_3 in the ring-opening reaction of TMC

Reaction conditions: Y_2O_3 1 mmol, TMC 10 mmol, Ar 1.1 MPa, 333 K, 8 h

^aSpecific surface area determined by BET method.

^bReaction rate per catalyst amount

 $^{\rm c} \mbox{Reaction}$ rate per surface area of catalyst

Entry	Added water /mmol	Conv. /%	Polymer sel. /%	CO ₂ amount /mmol	<i>M</i> _n	M _w	M _w /M _n
1	0	46	98	0.10	5989	7575	1.26
2	0.2	18	84	0.22	1600	1900	1.24

Table S4 Effect of water in the ring-opening polymerization of TMC over CeO₂ (1273 K)

Reaction conditions: CeO_2 (calcined at 1273 K) 1 mmol, TMC 10 mmol, Ar 1.1 MPa, 333 K, 6 h

Table S5 Comparison of our catalyst system with the previously reported heterogeneous catalyst systems at low conversion level.

Reference	Catalyst	S ^a /m² g-1	Catalyst amount / mg	Substrate amount /mmol	Additive	t /h	T /K	Conv. /%	<i>M</i> _n	M _w /M _n	V _{amount} /mmol h ⁻¹ g ⁻¹	V _{surf} /mmo h ⁻¹ m ⁻²
[20]	CeO ₂	78	20	3	Mel (0.01 mmol)	2	333	27	18000	1.27	15	0.19
[20]	$H_3PW_{12}O_{40}/CeO_2$	73	20	3	Mel (0.01 mmol)		333		6200	1.41	15	0.21
This study	CeO ₂ calcined at 1273 K	13	170	10	-	4 8	333 333		2529 7000	1.34 1.37	- <u>-</u>	0.41

^aSpecific surface area determined by BET.

Usage time	CeO ₂ amount /mol	TMC amount /mmol	Conv. /%	Polymer sel. /%	CO ₂ amount /mmol	<i>M</i> _n	M _w	$M_{\rm w}/M_{\rm n}$
1 (Fresh)	2	20	25	97	0.17	3100	3900	1.26
2	1.78	17.8	23	97	0.11	4000	4900	1.24
3	1.67	16.7	19	97	0.08	3100	3800	1.23
4	1.58	15.8	18	98	0.06	3300	4300	1.32

Table S6 Reusability of CeO_2 calcined at 1273 K in the ring-opening polymerization of TMC

Reaction conditions: CeO₂ 1.58-2.0 mmol, TMC 20-15.8 mmol (TMC/CeO₂=10 mmol/mmol), Ar 1.1 MPa, 333 K, 4 h

Supporting Figures

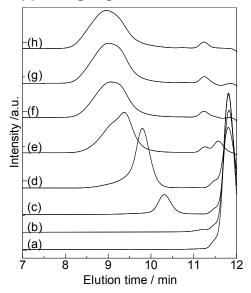


Figure S1. SEC traces of poly(trimethylene carbonate) diol produced by ring-opening polymerization of TMC over CeO_2 (1273 K) at different reaction times. (a) 0 h, (b) 2 h, (c) 4 h, (d) 8 h, (e) 16 h, (f) 24 h, (g) 48 h, (h) 72 h.

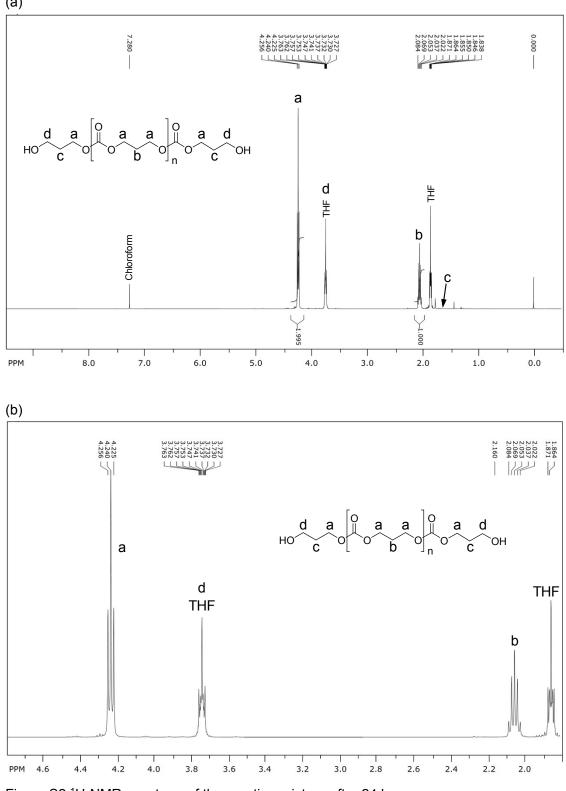
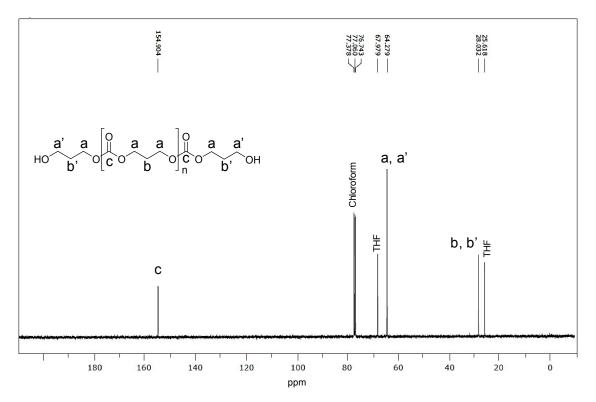
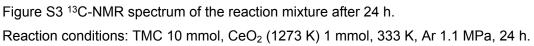




Figure S2 ¹H-NMR spectrum of the reaction mixture after 24 h. Reaction conditions: TMC 10 mmol, CeO₂ (1273 K) 1 mmol, 333 K, Ar 1.1 MPa, 24 h.

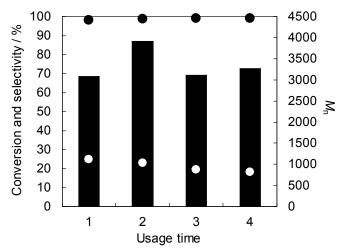


Figure S4 Reusability test of CeO₂ calcined at 1273 K in the ring-opening reaction of TMC (①: conversion, ∞ : selectivity to polycarbonate, black bar: averaged molecular weight). Reaction conditions: CeO₂ (1273 K) 1.58-2.0 mmol, TMC 20-15.8 mmol (TMC/CeO₂=10 mmol/mmol), Ar 1.1 MPa, 333 K, 4 h. Detailed results were shown in Supplementary information (Table S4).

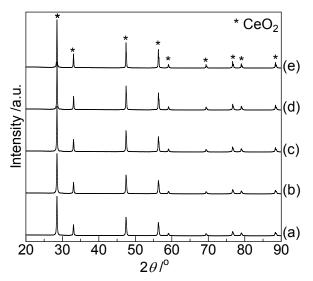


Figure S5. XRD patterns of CeO_2 . (a) fresh CeO_2 , (b) CeO_2 after the first reaction, (c) CeO_2 after the second reaction, (d) CeO_2 after the third reaction, (e) CeO_2 after the fourth reaction.