Supporting Information

Facile Insertion of Ethylene into a Group 14 Element-Carbon Bond: Effects of the HOMO-

LUMO Energy Gap on Reactivity

Ting Yi Lai[†], Jing-Dong Guo[‡], James C. Fettinger[†], Shigeru Nagase^{‡*} and Philip P. Power^{†*}

[†]Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States [‡]Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; And Integrated Research Consortium on Chemical Sciences, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Fax: +1-520-752-8995 E-mail: pppower@ucdaivs.edu

Table of Contents

- S1 Table of Contents
- S2 General Experimental Details
- S3 **Figure S1.** ¹H NMR Spectrum of **1a** (400 MHz, C₆D₆, 298K, ppm)
- S4 Figure S2. ${}^{13}C{}^{1}H$ NMR Spectrum of 1a (126 MHz, C₆D₆, 298 K, ppm)
- S5 **Figure S3.** ¹¹⁹Sn{¹H} NMR Spectrum of **1a** (186.36 MHz, C₆D₆, 298K, ppm)
- S6 **Figure S4.** ¹H NMR Spectrum of **1b** (400 MHz, C₆D₆, 298K, ppm)
- S7 Figure S5. ${}^{13}C{}^{1}H$ NMR Spectrum of 1b (126 MHz, C₆D₆, 298 K, ppm)
- S8 **Figure S6.** ¹¹⁹Sn{¹H} NMR Spectrum of **1b** (186.36 MHz, C₆D₆, 298K, ppm)
- S9 Table S1. Selected X-ray Crystallographic Data for 1a and 1b
- S10 **Figure S7.** Calculation Details of the Reaction of Sn(Ar^{*i*Pr6})₂ and Ethylene
- S11 **Figure S8.** Calculation Details of the Reaction of $Sn(Ar^{iPr4})_2$ involving Sn-C bond homolysis

S12 References

Experimental

General Procedures. All operations were carried out under anaerobic and anhydrous conditions using modified Schlenk techniques. All solvents were dried over alumina columns and degassed prior to use. The ¹H, ¹³C and ¹¹⁹Sn NMR spectroscopic data were collected on a Bruker 400MHz spectrometer. ¹¹⁹Sn NMR data were referenced to Sn^{*n*}Bu₄ (–11.7 ppm). Infrared spectroscopy was collected as a Nujol mull using a Bruker Tensor 27 IR spectrometer. UV–visible spectroscopy was carried out as dilute hexane solutions in 3.5 mL quartz cuvettes using an Olis

17 Modernized Cary 14 UV/vis/NIR spectrophotometer. $Sn(Ar^{iPr_4})_2$ and $Sn(Ar^{iPr_6})_{2\Box}$ were synthesized according to literature methods.^{1,2} Ethylene gas was dried via a P₂O₅/Sieves drying column prior to use.

Ar ^{iPr}₄ sn(C₂H₄Ar ^{iPr}₄) (1a) A rapidly stirred solution of Sn(Ar ^{iPr}₄)₂ (1.00 g, 1.09 mmol) in benzene *ca*. 30 mL was treated with an excess of ethylene gas over one hour at 25 °C. The temperature was elevated to 60 °C and stirred for 12h. Upon cooling the solution was filtered using a filter-tipped cannula and concentrated under reduced pressure. Storage of the solution at room temperature afforded 1. Yield (0.53 g, 51.23%) Mp: 171-176°C, ¹H NMR (400 MHz, C₆D₆, 298 K): δ = 0.68 (t, 2H, ³J_{H,H}=9.6Hz CH₂CH₂Ar), 1.04 (d, 12H ³J_{H,H}=1.6Hz CH(CH₃)₂), 1.05 (d, 12H ³J_{H,H}=1.6Hz CH(CH₃)₂), 1.08 (d, 12H ³J_{H,H}=4Hz CH(CH₃)₂), 1.14(d, 12H ³J_{H,H}=3.6Hz CH(CH₃)₂), 2.17 (t, 2H, ³J_{H,H}=6.8Hz, CH₂CH₂Ar), 2.71 (m, 4H ³J_{H,H}=7Hz CH(CH₃)₂), 3.07 (m, 4H ³J_{H,H}=7Hz CH(CH₃)₂), 7.03-7.28 (m, 18H *m*-C₆H₃, *p*-C₆H₃, *m*-Dipp and *p*-Dipp; Dipp = 2,6*i*Pr₂-C₆H₃); ¹³C{¹H} NMR (126 Hz, C₆D₆, 298 K): 22.85, 23.26, 25.49, 25.90, 30.50, 30.58, 122.97, 123.41, 126.08, 128.61, 129.23, 129.50, 135.87, 139.24, 139.50, 143.58, 143.81, 146.39, 146.49 ;¹¹⁹Sn{¹H} NMR (186.36 Hz, C₆D₆, 298 K): δ=1806 ppm UV-vis: λ_{max} (nm), ε (M⁻¹ cm⁻¹) = 482nm, 2130. IR (CsI, nujol, mineral oil; selected, cm⁻¹) : 2950, 1480, 1280, 1100, 1040, 820

Ar^{*i*Pr₆} Sn(C₂H₄Ar^{*i*Pr₆}) (**1b**) A rapidly stirred solution of Sn(Ar^{*i*Pr₆})₂ (1.00g,0.924mmol) in benzene *ca*. 30 mL was treated with an excess of ethylene gas over one hour at 25 °C. The temperature was elevated to 60 °C and stirred for 12h. The solution was filtered using a filtertipped cannula and concentrated under reduced pressure. Storage of the solution at room temperature afforded **1b**. Yield (0.42 g, 40.9%) Mp: 167-175 °C, ¹H NMR (400 MHz, C₆D₆, 298 K): $\delta = 0.95$ (t, 2H, ³J_{H,H}=5.8 Hz CH₂CH₂Ar), 1.09 (d, 24H ³J_{H,H}= 4.8Hz CH(CH₃)), 1.21(d, 12H ³J_{H,H}=3.6Hz CH(CH₃)), 1.29 (d, 24H ³J_{H,H}= 4.8Hz CH(CH₃), 1.31 (d, 12H ³J_{H,H}=4Hz CH(CH₃)), 2.60 (t, 2H, ³J_{H,H}=4.7Hz, CH₂CH₂Ar), 2.78 (m, 4H ³J_{H,H}=4.7Hz CH(CH₃)₂), 2.86 (m, 4H ³J_{H,H}=4.8Hz CH(CH₃)₂), 2.97 (m, 2H ³J_{H,H}=4.8Hz CH(CH₃)₂), 3.18 (m, 4H ³J_{H,H}=4.8Hz CH(CH₃)₂), 7.05-2.25 (m, 14H *m*-C₆H₃, *p*-C₆H₃, and *m*-Trip; Trip = 2,4,6-*i*Pr₂-C₆H₂) ¹³C{¹H} NMR (126 Hz, C₆D₆, 298 K): 23.21, 23.71, 24.10, 25.50, 25.92, 30.51, 30.59, 34.14, 34.41, 50.10, 120.34, 120.88, 121.03, 124.45, 25.86, 129.85, 130.10, 133.32, 136.95, 139.57, 143.66, 144.32, 146.05, 147.69, 148.42. ¹¹⁹Sn{¹H} NMR (186.36 Hz, C₆D₆, 298 K): δ=1946 ppm. UV-

0.29= Silicon grease impurity

Compound	1a	1b
Formula weight, gmol ⁻¹	C62 H78 Sn	C84 H126 Sn
$T(\mathbf{K}) / l(\mathbf{A})$	90(2) K / 0.71073 Å	100(2)K/ 0.71073
Crystal system	Orthorhombic	Monoclinic
Space group / Z	Pna2 ₁	P2/n
<i>a</i> , Å	16.2901(9) Å	15.3139(10) Å
b, Å	15.1083(8) Å	12.2886(8) Å
<i>c</i> , Å	21.8016(12) Å	20.4790(14) Å
α, °	90°	90°
β, °	90°	92.374(3)°
γ, °	90°	90°
V, Å ³	5365.7(5) Å ³	3850.6(4) Å ³
$ ho$, mg m $^{-3}$	1.166Mg/m ³	1.082 Mg/m ³
Abs. coeff., mm ⁻¹	0.512 mm ⁻¹	0.372 mm ⁻¹
F(000)	2000	1360
Crystal size, mm ³	0.385 x 0.258 x 0.257 mm ³	0.560 x 0.490 x 0.314 mm ³
θ range, °	2.248 to 30.628°	2.324 to 27.524°
Reflns collected	63919	32439
Ind. reflns	16425	8853
R(int)	0.0249	0.0207
Obs. reflns $[I > 2\sigma(I)]$	15193	8015
Completeness to 2θ	99.9%	99.9%
Goodness-of-fit F ²	1.122	1.034
Final $R [I > 2\sigma(I)]$	R1 = 0.0419	R1 = 0.0326
	wR2 = 0.0928	wR2 = 0.0799
R (all data)	R1 = 0.0458	R1 = 0.0370,
	wR2 = 0.0942	wR2 = 0.0824

 Table S1. Selected X-ray Crystallographic Data for 1a and 1b

Figure S7. Calculation Details of the Reaction of Sn(Ar^{iPr6})₂ and Ethylene

Optimization/freq: TPSSTPSS-D3(BJ)/Lanl2dz+d(Sn)/6-31G(d) (others) Single point calc.: TPSSTPSS-D3(BJ)/[4333111/433111/43]+2d (Sn)/6-311G(d,p) (others)

Figure S8. Calculation Details of the Reaction of Sn(Ar^{*i*Pr4})₂ and Toluene

Reaction of stannylene with toluene

References:

1. G.H. Spikes; Y. Peng; J.C. Fettinger; P.P. Power, Z. Anorg. Allg. Chem. 2006, 632, 1005–1010

2. M. McCrea-Hendrick; M. Bursch; K.L. Gullett; L.R. Maurer; J.C. Fettinger; S. Grimme; and P.P. Power, *Organometallics*, **2018**, *37*, 2075-2085