Electronic Supporting Information (ESI)

Synthesis of Highly-soluble Push-pull Perylenemonoimide Derivatives by Regioselective Peri-functionalization for Switchable Memory Application

Dhananjaya Sahoo,*^{a†} Vikas Sharma,^{a†} Rupam Roy,^a Nonu Varghese,^b Kallol Mohanta^b and Apurba Lal Koner*^a [†] these authors are contributed equally to this work.

^a Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India.

E-mail: chem.dsahoo@gmail.com, akoner@iiserb.ac.in

Table of Content

(A)	General procedure	5
(B)	Instrumentation	
	(a) Steady-state absorption and fluorescence measurement	5
	(b) Time-resolved measurement	5-6
	(c) Electrochemical measurements	6
	(d) Device radioation	
(C) S	Synthesis and characterization	7
Sche	me S1 Synthesis of tetra-subsituted PMI derivatives	8
(i) Sy	nthesis of compound 2	8
(ii) Sy	ynthesis of compound 3a	8-9
(iii) S	ynthesis of compound 3b	9-10 10-11
(v) S	vnthesis of compound 4a	10-11
Sche	me S2 [.] Synthesis of di-sulfur and si-selenium PMI derivatives	
(vi) S	withesis of compound 4h	12
(vi) S	Synthesis of compound 5a	12-13
(vi) S	Synthesis of compound 5b	13
Figur	e S1_UV-Vis and excitation spectra of 1_2_3a-d_4_5 in toluene	14
Figur	$r = S^2$ Eluorescence lifetime decay of 1 , 2 , 3 , c , 4 , b in toluene	15
Figur	$\mathbf{z} = \mathbf{S}^2$. Evolve voltamogram of \mathbf{z} $\mathbf{z}_{\mathbf{z}-\mathbf{c}}$ $\mathbf{A}_{\mathbf{z}-\mathbf{b}}$ and $\mathbf{S}_{\mathbf{z}-\mathbf{b}}$ in DCM	16
Table	S1: Electrochemical properties of PMI derivatived measured in DCM	10
Table	S1. Electrochemical properties of Pivil derivatived measured in DCIVI	17
	triv for the entimized configuration of 1	10.00
Z-ma	anx for the optimized configuration of 1	18-20
1 able	e S3: Calculated energies of Konn-Sham molecular orbitals (MO) of 1	20
Figur	e S4: Energy optimized Kuhn-Sham HOMO and LUMO of compound 1	21
Figur	e S5: Twisting of perylene core from the energy-optimized structure of 1	21
Figur	e S6: Computed electrostatic potentials map 1	
Z-ma	trix for the optimized configuration of 3a	23-26
Table	e S4: Calculated energies of Kohn-Sham molecular orbitals (MO) of 3a	27
Figur	e S7: Energy optimized Kuhn-Sham HOMO and LUMO of compound 3a.	27

Figure S8: Twisting of perylene core from the energy-optimized structure of 3a	28
Figure S9: Computed electrostatic potentials map 3a	28
Z-matrix for the optimized configuration of 3b	29-36
Table S5: Calculated energies of Kohn-Sham molecular orbitals (MO) of 3b	36
Figure S10: Energy optimized Kuhn-Sham HOMO and LUMO of compound 3b	37
Figure S11: Twisting of perylene core from the energy-optimized structure of 3b	37
Figure S12: Computed electrostatic potentials map 3b	38
Z-matrix for the optimized configuration of 3c	39-42
Table S6: Calculated energies of Kohn-Sham molecular orbitals (MO) of 3c	42
Figure S13: Energy optimized Kuhn-Sham HOMO and LUMO of compound 3c	42
Figure S14: Twisting of perylene core from the energy-optimized structure of 3c	43
Figure S15: Computed electrostatic potentials map 3c	43
Z-matrix for the optimized configuration of 4a	44-47
Table S7: Calculated energies of Kohn-Sham molecular orbitals (MO) of 4a	47
Figure S16: Energy optimized Kuhn-Sham HOMO and LUMO of compound 4a	48
Figure S17: Twisting of perylene core from the energy-optimized structure of 4a	48
Figure S18: Computed electrostatic potentials map 4a	49
Z-matrix for the optimized configuration of 5a	50-54
Table S8: Calculated energies of Kohn-Sham molecular orbitals (MO) of 5a	
	55
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a	55 55
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a	55 55 56
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a Figure S21: Computed electrostatic potentials map 5a	55 55 56 56
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a Figure S21: Computed electrostatic potentials map 5a Figure S22. Comparison of frontiers orbitals energy levels of PMI derivatives	55 55 56 56 57
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a Figure S21: Computed electrostatic potentials map 5a Figure S22. Comparison of frontiers orbitals energy levels of PMI derivatives Figure S23. Dark and light I-V characteristics of samples (a) 3a and (b) 4a	55 55 56 56 57 57
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a Figure S21: Computed electrostatic potentials map 5a Figure S22. Comparison of frontiers orbitals energy levels of PMI derivatives Figure S23. Dark and light I-V characteristics of samples (a) 3a and (b) 4a Figure S24. ¹ H NMR spectrum of compound 2 recorded in CDCl ₃ at 500 MHz	55 56 56 57 57 57
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a Figure S21: Computed electrostatic potentials map 5a Figure S22. Comparison of frontiers orbitals energy levels of PMI derivatives Figure S23. Dark and light I-V characteristics of samples (a) 3a and (b) 4a Figure S24. ¹ H NMR spectrum of compound 2 recorded in CDCI ₃ at 500 MHz Figure S25. ¹ H NMR spectrum of compound 3a recorded in CDCI ₃ at 500 MHz	55 56 56 57 57 57 58 58
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a Figure S21: Computed electrostatic potentials map 5a Figure S22. Comparison of frontiers orbitals energy levels of PMI derivatives Figure S23. Dark and light I-V characteristics of samples (a) 3a and (b) 4a Figure S24. ¹ H NMR spectrum of compound 2 recorded in CDCl ₃ at 500 MHz Figure S25. ¹ H NMR spectrum of compound 3a recorded in CDCl ₃ at 500 MHz Figure S26. ¹³ C NMR spectrum of compound 3a recorded in CDCl ₃ at 126 MHz	55 56 56 57 57 57 58 58 58
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a Figure S21: Computed electrostatic potentials map 5a Figure S22. Comparison of frontiers orbitals energy levels of PMI derivatives Figure S23. Dark and light I-V characteristics of samples (a) 3a and (b) 4a Figure S24. ¹ H NMR spectrum of compound 2 recorded in CDCl ₃ at 500 MHz Figure S25. ¹ H NMR spectrum of compound 3a recorded in CDCl ₃ at 500 MHz Figure S26. ¹³ C NMR spectrum of compound 3a recorded in CDCl ₃ at 126 MHz Figure S27. ¹ H NMR spectrum of compound 3b recorded in CDCl ₃ at 500 MHz	55 56 57 57 57 58 58 58 59 59
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a Figure S21: Computed electrostatic potentials map 5a Figure S22. Comparison of frontiers orbitals energy levels of PMI derivatives Figure S23. Dark and light I-V characteristics of samples (a) 3a and (b) 4a Figure S24. ¹ H NMR spectrum of compound 2 recorded in CDCl ₃ at 500 MHz Figure S25. ¹ H NMR spectrum of compound 3a recorded in CDCl ₃ at 500 MHz Figure S26. ¹³ C NMR spectrum of compound 3b recorded in CDCl ₃ at 500 MHz Figure S28. ¹³ C NMR spectrum of compound 3b recorded in CDCl ₃ at 126 MHz	55 56 56 57 57 58 58 59 59 59 59
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a Figure S21: Computed electrostatic potentials map 5a Figure S22. Comparison of frontiers orbitals energy levels of PMI derivatives Figure S23. Dark and light I-V characteristics of samples (a) 3a and (b) 4a Figure S24. ¹ H NMR spectrum of compound 2 recorded in CDCl ₃ at 500 MHz Figure S25. ¹ H NMR spectrum of compound 3a recorded in CDCl ₃ at 500 MHz Figure S26. ¹³ C NMR spectrum of compound 3a recorded in CDCl ₃ at 126 MHz Figure S27. ¹ H NMR spectrum of compound 3b recorded in CDCl ₃ at 500 MHz Figure S28. ¹³ C NMR spectrum of compound 3b recorded in CDCl ₃ at 126 MHz Figure S28. ¹³ C NMR spectrum of compound 3b recorded in CDCl ₃ at 126 MHz Figure S28. ¹³ C NMR spectrum of compound 3b recorded in CDCl ₃ at 500 MHz	55 56 56 57 57 57 58 58 59 59 59 60 60
Figure S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a Figure S20: Twisting of perylene core from the energy-optimized structure of 5a Figure S21: Computed electrostatic potentials map 5a Figure S22. Comparison of frontiers orbitals energy levels of PMI derivatives Figure S23. Dark and light I-V characteristics of samples (a) 3a and (b) 4a Figure S24. ¹ H NMR spectrum of compound 2 recorded in CDCl ₃ at 500 MHz Figure S25. ¹ H NMR spectrum of compound 3a recorded in CDCl ₃ at 500 MHz Figure S26. ¹³ C NMR spectrum of compound 3b recorded in CDCl ₃ at 126 MHz Figure S28. ¹³ C NMR spectrum of compound 3b recorded in CDCl ₃ at 500 MHz Figure S28. ¹³ C NMR spectrum of compound 3b recorded in CDCl ₃ at 500 MHz Figure S28. ¹³ C NMR spectrum of compound 3b recorded in CDCl ₃ at 500 MHz Figure S29. ¹ H NMR spectrum of compound 3b recorded in CDCl ₃ at 126 MHz Figure S29. ¹ H NMR spectrum of compound 3c recorded in CDCl ₃ at 126 MHz Figure S29. ¹ H NMR spectrum of compound 3c recorded in CDCl ₃ at 126 MHz	55 56 56 57 57 57 58 58 59 59 60 61

Figure S32. ¹³ C NMR spectrum of compound 4a recorded in CDCl ₃ at 126 MHz	62
Figure S33. ¹ H NMR spectrum of compound 4b recorded in CDCI ₃ at 500 MHz	62
Figure S34. ¹³ C NMR spectrum of compound 4b recorded in $CDCI_3$ at 126 MHz	63
Figure S35. ¹ H NMR spectrum of compound 5a recorded in CDCl ₃ at 500 MHz	63
Figure S36. ¹³ C NMR spectrum of compound 5a recorded in CDCl ₃ at 126 MHz	64
Figure S37. ¹ H NMR spectrum of compound 5b recorded in CDCI ₃ at 500 MHz	64
Figure S38. APCI mass spectrum of compound 2	65
Figure S39. APCI mass spectrum of compound 3a	66
Figure S40. APCI mass spectrum of compound 3b	67
Figure S41. APCI mass spectrum of compound 3c	68
Figure S42. APCI mass spectrum of compound 4a	69
Figure S43. APCI mass spectrum of compound 4b	70
Figure S44. APCI mass spectrum of compound 5a	71
Figure S45. APCI mass spectrum of compound 5b	72
References7	'2-73

Experimental section:

(A) General procedure

Unless otherwise mentioned, reactions were performed in oven-dried glassware under a nitrogen atmosphere and stirred with Teflon-coated magnetic stirring bars. Tetrahydrofuran was distilled over sodium/benzophenone ketyl. All other solvents and reagents were used as received unless otherwise stated. Reaction temperatures above room temperature (25 °C) refer to oil bath temperature. Thin layer chromatography was performed using Merck Silica gel 60 F-254 pre-coated plates and visualized using UV irradiation ($\lambda = 254/365$ nm). Silica gel from Merck (particle size 100-200 mesh) was used for column chromatography. If not otherwise noted, the material was dissolved in a minimum quantity of CH₂Cl₂ and the solution obtained poured on top of the silica gel column. The compositions of solvent mixtures are given in volume ratios. ¹H and ¹³C NMR spectra were recorded on Bruker 500 MHz spectrometers with operating frequencies of 126 MHz for ¹³C. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal ($\delta = 7.26$ for ¹H NMR and $\delta = 77.0$ for ¹³C NMR). Atmospheric pressure chemical ionization (APCI) data were recorded on MicroTOF-Q-II mass spectrometer using chloroform as a solvent.

(B) Instrumentation

(a) Steady-state absorption and fluorescence measurement:

Steady-state absorption measurements were performed using Cary 5000 Spectrophotometer from Agilent Technologies using 1 cm path length quartz cuvette. Steady-state fluorescence measurements were carried out using HORIBA Jobin Yvon Fluorolog fluorimeter using Origin 8 software provided with the instrument. Fluorescence and excitation spectra were recorded using 1 cm path length quartz cuvette and keeping both excitation and emission slit at 3/3 nm using very dilute dye solution (OD< 0.05) to avoid the effect of aggregation. All the experiments were carried out at ambient temperature (25 °C) otherwise stated.

(b) Time-resolved measurement:

Time-resolved fluorescence measurements were performed using a Hamamatsu MCP photomultiplier (R-3809U-50). The time-correlated single photon counting (TCSPC)

setup consists of an Ortec 9327 pico-timing amplifier and using pulse Diode laser (λ_{ex} =509 nm and 635 nm) with fwhm ~140 ps and 80 ps respectively with a setup target 10,000 counts. The instrument response function (IRF) was measured before fluorescence lifetime measurement using a dilute suspension of Ludox (purchased from Sigma-Aldrich). The emission polarizer was positioned at magic angle (54.7 °) with respect to excitation polarizer. Single or bi-exponential (only in case of **3c**) fitting function was employed by iterative deconvolution method using supplied software DAS v6.2. The quality of the fitted data was evaluted from the reduced chi-squared value (χ^2), calculated using the software provided with the instrument. All the measurements were carried out at an ambient temperature (25 °C).

(c) Electrochemical measurements

Electrochemical measurements were carried out using a CHI 6205 electrochemical analyzer using [Bu₄N][PF₆] as the supporting electrolyte (0.1 M) and the concentration of PMI derivatives was *ca.* 10⁻³ M. For a typical electrochemical measurement a Pt disk was used as working electrode, Pt wire as counter electrode and aqueous saturated Ag/AgCl as reference electrode. The half-wave potential $\Delta E_o^0 \Box \Delta E_r^0$ was set equal to 0.5 ($E_{pa} + E_{pc}$), where E_{pa} and E_{pc} are anodic and cathodic cyclic voltammetric peak potentials, respectively. In this cell, Fc/Fc⁺ couple had an $E_{1/2}$ value of 0.39 V and all the voltammogram were measured at 100 mV/s scan rate in CH₂Cl₂. The dye solution in CH₂Cl₂ was purged with dry nitrogen for 15 min to remove dissolved oxygen. Every time before measurement the electrode was polished on a felt pad with alumina and washed thoroughly. All the measurements were repeated at least three times for reproducibility.

(d) Device fabrication

Step 1. The compound has been dissolved in chloroform at 4 mg/ml and stirred for 4 hr in closed vials.

Step 2. Transparent conducting substrates, ITOs, were cleaned very carefully by ultrasonication with distilled H_2O , acetone, and isopropanol and then UV treated for half an hour.

Step 3. Dissolved material has been deposited on ITO by using spin coating method at 1500 rpm for 60 s and then the thin films were annealed in vacuum at 90 °C for an hour in order to evaporate the solvent.

Step 4. Finally, aluminium was deposited on the thin organic films by thermal evaporation method.

Deposition rate = 1 Å/s Thickness of AI = 180 nm

The cell area of the devices was 3×3 mm².

Step 5. The ITO electrode was used as ground while the top AI electrode is used biasing electrode. The two probe current-voltage (I-V) characterizations were carried out with Keithley 2450 source-measurement unit. An Abet 1000 Solar Simulator has been used as light source wherever it required. The intensity of light source was fixed at 1 W/cm².

Schematic of memory device:

(e) Theoretical calculation

Density functional theory calculations were performed on PMI derivatives using Gaussian 09 suite of quantum chemical programs.¹ Ground-state geometry optimizations were performed with Becke three-parameter exchange functional in conjunction with Lee-Yang-Parr correlation functional (B3LYP)²⁻⁴ using 6-311G as a basis set.

(C) Synthesis and characterization

The PMI **1** was synthesized as the reported procedure.^{5, 6} Piperidine, were purchased from Alfa Aesar. 3-Hydroxyphenol, N-Methyl-2-pyrrolidone, Copper(I) iodide, 4-*tert*-

Octylphenol were purchased from Sigma Aldrich. Caesium carbonate, Thiophenol, Tetrahydrofuran (THF), Toluene, Triethyl ammine, DBU, sodium sulfate were purchased from Spectrochem (India), sulfur powder, selenium powder were purchased from Otto Chemie (India), Bromine ampoule from Merck.

Scheme S1 Synthesis of tetra-subsituted PMI derivatives

(a) Br₂, CHCl₃, Reflux, 12 h, 46.0 %; (b) for **3a**: anhyrous K₂CO₃, NMP, 3-hydroxypyridine, 80 °C, 4 h, 82.0 %; for **3b**: 4-*tert*-Octylphenol, Cul, Cs₂CO₃, toluene, EtOAc, reflux, 16 h, 57.0 %; for **3c**: Thiophenol, Cul, Cs₂CO₃, toluene, EtOAc, reflux, 16 h, 86.0 %; for **4a**: Piperidine, 60 °C, 36 h, 88.0 %

N-(2-Ethylhexyl)-1,6,9,10-tetrabromo-perylene-3,4-dicabodimide (2): To a solution of PMI **1** (200.0 mg, 0.46 mmol) in chloroform (21.0 ml) Br_2 (4.7 ml, 92.3 mmol) was added slowly. The reaction mixture was refluxed at 70 °C. After cooling down the reaction mixture to room temperature excess bromine was removed by flow of nitrogen. The reaction mixture was washed with saturated sodium thiosulfite solution (3x100 ml) followed by water (2x100 ml). The organic phase was dried over MgSO₄ and the solvent was evaporated on a rotary evaporator until free flowing precipitates come out and filtered. The obtained solids were dried in high vacuum to obtain desired compound **2** (158 mg, 46.0%).

¹H NMR (500 MHz, Chloroform-*d*): δ 8.92 (d, *J* = 8.2 Hz, 2H), 8.84 (s, 2H), 8.10 (d, *J* = 8.3 Hz, 2H), 4.12 (dd, *J* = 12.6, 7.3 Hz, 2H), 1.93 (s, 1H), 1.38-1.31 (m, 8H), 0.94 (t, *J* = 7.3 Hz, 3H), 0.89 (t, *J* = 7.1 Hz, 3H).

Chemical formula- $C_{30}H_{23}Br_4NO_2$ **Calculated mass**-744.4482 and **obtained mass**-*m/z* 745.8526 [M+H]⁺

N-(2-Ethylhexyl)-1,6,9,10-tetra(pyridin-3-yloxy)-perylene-3,4-dicarboximide (3a): To a mixture of compound 2 (100.0 mg, 0.13 mmol), 3-Hydroxypyridine (75.0 mg, 0.801 mmol) and dry K_2CO_3 (110.0 mg, 0.80 mmol) in 25.0 ml round bottom flask under nitrogen atmosphere anhydrous NMP (6.0 ml) was added. The reaction mixture was stirred at a bath temperature of 80 °C for overnight. The reaction mixture was cooled to room temperature and then poured into a mixture of water and HCI (4:1). The resulting precipitates were filtered out and washed with sufficient amount of water until the pH of the filtrate is neutral and dried. The crude product was purified by column chromatography using silica gel and a mixture of DCM and methanol (v/v, 20:0.5) to afford the desired compound **3a** (90.0 mg, 82.0 %).

¹H NMR (500 MHz, CDCl₃): $\delta = 9.22$ (d, J = 8.8 Hz, 2H), 8.50 (d, J = 2.8 Hz, 2H), 8.47 (dd, J = 4.6, 1.3 Hz, 2H), 8.32 (dd, J = 4.7, 1.2 Hz, 2H), 8.25 (s, 2H), 8.17 (d, J = 2.8 Hz, 2H), 7.41 (dd, J = 2.8, 1.4 Hz, 1H), 7.40 (dd, J = 2.8, 1.4 Hz, 1H), 7.35 (d, J = 4.6 Hz, 1H), 7.33 (d, J = 5.0 Hz, 1H), 7.21 (d, J = 4.7 Hz, 1H), 7.19 (d, J = 4.7 Hz, 1H), 7.13 (d, J = 8.8 Hz, 2H), 7.10 (dd, J = 2.9, 1.3 Hz, 1H), 7.08 (dd, J = 2.9, 1.3 Hz, 1H), 4.07 (ddd, J = 19.5, 12.9, 7.3 Hz, 2H), 1.88 (dd, J = 12.5, 6.9 Hz, 1H), 1.41 – 1.24 (m, 8H), 0.91 (t, J = 7.4 Hz, 3H), 0.87 (t, J = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ = 163.28, 154.08, 153.13, 152.59, 152.21, 145.79, 144.66, 141.30, 140.55, 133.73, 131.19, 130.66, 127.11, 125.80, 124.89, 124.78, 124.50, 124.32, 124.25, 123.42, 121.88, 120.12, 117.83, 44.52, 38.10, 30.91, 28.86, 24.21, 23.17, 14.24, 10.73.

Chemical formula- $C_{50}H_{39}N_5O_6$ Calculated mass-805.2900 and obtained mass- *m/z* 806.2973 [M+H]⁺

N-(2-Ethylhexyl)-1,6,9,10-tetra(4-tert-octylphenoxy)-perylene-2,3-dicarboximide

(3b): To a mixture of compound 2 (48.0 mg, 0.06 mmol), 4-*tert*-octylphenol (128.0 mg, 0.62 mmol) dry toluene (3.0 ml) was added under nitrogen followed by addition of Cul (3.6 mg, 0.019 mmol), Cs_2CO_3 (230.0 mg, 0.706 mmol) and three drops of EtOAc. The mixture was heated to reflux for 16 hours under nitrogen atmosphere. The reaction mixture was diluted with chloroform after cooling down to room temperature and washed three times with water (3x100 ml). The crude product was dried via rotary evaporation and purified by column chromatography using a solvent mixture of DCM and n-hexane (v/v, 2:3) to afford the desired compound **3b** (46.0 mg, 57.0 %).

¹**H NMR (500 MHz, CDCI₃):** δ = 9.26 (d, *J* = 8.9 Hz, 2H), 8.25 (s, 2H), 7.37 (d, *J* = 8.7 Hz, 4H), 7.22 (d, *J* = 8.7 Hz, 4H), 7.02-7.00 (2d, *J*₁ = 6.0 Hz, *J*₂ = 6.1 Hz, 6H), 6.70 (d, *J* = 8.6 Hz, 4H), 4.12 – 3.98 (m, 2H), 1.93 – 1.86 (m, 1H), 1.73 (s, 4H), 1.69 (s, 4H), 1.39-1.29 (2s, 12H each and m, 8H), 0.90 (t, *J* = 7.4 Hz, 3H), 0.86 (t, *J* = 6.8 Hz, 3H), 0.76 (s, 18H), 0.73 (s, 18H).

¹³**C** NMR (126 MHz, CDCl₃): $\delta = 163.87$, 155.08, 155.04, 153.53, 152.82, 146.40, 145.07, 133.74, 131.16, 130.68, 128.02, 127.34, 127.22, 124.15, 123.37, 122.68, 120.67, 119.85, 57.27, 57.12, 44.34, 38.49, 38.31, 38.07, 32.57, 32.51, 31.98, 31.76, 31.61, 30.91, 28.87, 24.24, 23.21, 14.26, 10.78.

Chemical formula- $C_{86}H_{107}NO_6$ Calculated mass-1249.8098 and obtained mass- m/z 1250.8173 [M+H]⁺

N-(2-Ethylhexyl)-1,6,9,10-tetrakis(phenylthio)-perylene-2,3-dicarboximide (3c): To a mixture of tetrabromo PMI 2 (40.0 mg, 0.0534 mmol), thiophenol (57.0 mg, 0.517 mmol) and dry toluene (5.0 ml) was added under nitrogen followed by addition of Cul (3.0 mg, 0.016 mmol), Cs_2CO_3 (190.6 mg, 0.59 mmol) and three drops of EtOAc. The mixture was heated to reflux for 16 hours under nitrogen atmosphere. The reaction mixture was diluted with chloroform after cooling down to room temperature and washed three times with water (3x100 ml). The crude product was dried *via* rotary evaporation and purified by column chromatography using a solvent mixture of CHCl₃ and n-hexane (v/v, 2:1) to afford the desired compound **3c** (39.8 mg, 86.0 %).

¹H NMR (500 MHz, CDCI₃): ¹H NMR (500 MHz, CDCI₃) δ = 8.38 (s, 2H), 8.28 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 7.4 Hz, 4H), 7.42 - 7.29 (m, 16H), 3.98 (t, *J* = 6.6 Hz, 2H), 1.84 (s, 1H), 1.33 - 1.19 (m, 10H), 0.86 (t, *J* = 7.5 Hz, 3H), 0.82 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ = 163.85, 139.88, 136.25, 135.23, 135.12, 134.51, 134.40, 132.90, 132.25, 131.44, 130.31, 129.90, 129.85, 129.45, 128.84, 128.65,

128.23, 126.80, 124.48, 119.96, 44.40, 37.92, 31.07, 30.76, 28.71, 24.14, 23.21, 14.19, 10.75.

Chemical formula- $C_{54}H_{43}NO_2S_4$ Calculated mass-865.2177 and obtained mass-866.2265 m/z [M+H]⁺

N-(2-Ethylhexyl)-1,6-dibromo-9,10-di(piperidin-1-yl)-perylene-2,3-dicarboximide

(4a): A solution of compound **2** (29.0 mg, 0.04 mmol) in 3.0 ml piperidine was stirred and heated at 60 °C for 36 hours. After cooling down to room temperature, piperidine was evaporated by rotary evaporator. The crude product was purified by silica gel column chromatography using chloroform as eluent to afford the desired compound **4a** (25.8 mg, 88.0 %).

¹**H NMR (500 MHz, CDCI₃):** δ = 9.09 (d, *J* = 8.6 Hz, 2H), 8.74 (s, 2H), 7.05 (d, *J* = 8.7 Hz, 2H), 4.12 (ddd, *J* = 19.6, 12.8, 7.3 Hz, 2H), 3.52 (broad s, 4H), 3.13 (broad s, 4H), 2.01 - 1.88 (m, 1H), 1.85 - 1.62 (m, 12H), 1.45 - 1.26 (m, 8H), 0.94 (t, *J* = 7.4 Hz, 3H), 0.89 (t, *J* = 9.0, 5.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ = 163.51, 154.56, 137.85, 136.67, 135.88, 131.10, 129.48, 126.96, 119.87, 117.76, 116.20, 114.44, 112.05, 54.00, 44.34, 38.04, 30.93, 28.93, 26.03, 24.72, 24.23, 23.23, 14.28, 10.81.

Chemical formula- $C_{40}H_{43}Br_2N_3O_2$ **Calculated mass**-755.1722 and **obtained mass**-756.1795 *m/z* [M+H]⁺

Scheme S2 Synthesis of di-sulfur and di-selenium PMI derivatives

(a) Anhyrous K_2CO_3 , NMP, 4-*tert*-Octylphenol, 80 °C, 4 h, 30.0 %; (b) Se or S, NMP, 190 °C, 5 h

N-(2-Ethylhexyl)-1,6,-dibromo-9,10-bis(4-tetr-octylphenoxy)-perylene-2,3-

dicarboximide (4b): To a mixture of compound **2** (100.0 mg, 0.13 mmol), 4-*tert*-octylphenol (60.0 mg, 0.29 mmol) and dry K_2CO_3 (18.4 mg, 0.29 mmol) in 25.0 ml round bottom flask under nitrogen atmosphere anhydrous NMP (10.0 ml) was added. The reaction mixture was heated at 80 °C for 4 h. After cooling down the reaction mixture to room temperature it was poured into a mixture of water and HCI (4:1). The resulting precipitates were filtered out and washed with sufficient amount of water until the filtrate shows a neutral pH and dried. The crude product was purified by column chromatography using silica gel and a mixture of DCM and n-hexane (v/v, 1:3) to afford the desired compound **4b** (40.4 mg, 30.0 %).

¹**H NMR (500 MHz, CDCI₃):** δ = 8.97 (d, *J* = 8.6 Hz, 2H), 8.22 (s, 2H), 8.01 (d, *J* = 8.6 Hz, 2H), 7.38 (d, *J* = 8.7 Hz, 4H), 6.99 (d, *J* = 8.7 Hz, 4H), 4.03 (ddd, *J* = 19.7, 12.9, 7.3 Hz, 2H), 1.93 – 1.83 (m, 1H), 1.74 (s, 4H), 1.39 (s, 12H), 1.36 – 1.25 (m, 8H), 0.89 (t, *J* = 7.4 Hz, 3H), 0.86 (t, *J* = 6.9 Hz, 3H), 0.76 (s, 18H).

¹³**C** NMR (126 MHz, CDCl₃): δ = 163.61, 153.96, 153.12, 146.88, 135.79, 133.97, 130.66, 129.68, 128.61, 128.17, 128.09, 125.51, 123.64, 122.07, 122.03, 121.79, 118.53, 57.28, 44.43, 38.54, 38.09, 32.57, 31.98, 31.62, 30.90, 28.84, 24.23, 23.19, 14.24, 10.76.

Chemical formula- $C_{58}H_{65}Br_2NO_4$ **Calculated mass**- 997.3280 and **obtained mass***m/z* 998.3346 [M+H]⁺

N-(2-Ethylhexyl)-1,6-bis(4-tert-octylphenoxy)-[9,10]dithiolo-perylene-2,3-

dicarboximide (5a): A mixture of compound **4b** (15.0 mg, 0.015 mmol) and sulfur (9.6 mg, 0.150 mmol) were taken in a sealed microwave vial (5.0 ml capacity) under nitrogen atmosphere and then 1.5 ml of anhydrous NMP (1.5 ml) was added. The reaction mixture was stirred and heated at 190 °C for 5 h. After cooling down to room temperature the reaction mixture was poured into ice cold water. The resulting precipitates were filtered and washed with water and dried. The Crude compound was purified by column chromatography using neutral alumina as stationary phase and a

12

mixture of CHCl₃ and n-hexane (v/v, 2:1) as eluent to afford the desired compound **5a** (9.7 mg, 72.0 %).

¹H NMR (500 MHz, CDCI₃): δ = 9.25 (d, *J* = 8.7 Hz, 2H), 8.24 (s, 2H), 7.38 – 7.36 (m, 2H), 7.35 (d, *J* = 8.7 Hz, 2H), 7.02 – 6.98 (m, 2H), 4.05 (ddd, *J* = 19.6, 12.9, 7.3 Hz, 2H), 1.92 – 1.86 (m, 1H), 1.74 (s, 4H), 1.39 (s, 12H), 1.36 – 1.24 (m, 8H), 0.90 (t, *J* = 7.4 Hz, 3H), 0.85 (t, *J* = 7.1 Hz, 3H), 0.77 (s, 18H).

¹³**C NMR (126 MHz, CDCl₃):** δ = 163.78, 153.39, 152.29, 147.24, 146.42, 134.36, 131.93, 131.58, 130.56, 128.03, 126.81, 124.09, 123.54, 120.17, 118.21, 117.50, 57.29, 44.39, 38.51, 38.07, 32.58, 31.99, 31.60, 30.95, 28.89, 24.28, 23.23, 14.26, 10.78.

Chemical formula- $C_{58}H_{65}NO_4S_2$ Calculated mass-903.4355 and obtained mass- *m/z* 904.4432 [M+H]⁺

N-(2-Ethylhexyl)-1,6-bis(4-tert-octylphenoxy)-[9,10]diselenolo-perylene-2,3-

dicarboximide (5b): A mixture of compound **4b** (20.0 mg, 0.02 mmol) and selenium (20.0 mg, 0.253 mmol) were taken in a sealed microwave vial (5.0 ml capacity) under nitrogen atmosphere and then anhydrous NMP (1.5 ml) was added. The reaction mixture was stirred and heated at 190 °C for 5 h. After cooling down to room temperature the reaction mixture was poured into ice cold water. The resulting precipitates were filtered and washed with water and dried. The Crude compound was purified by column chromatography using neutral alumina as stationary phase and a mixture of CHCl₃ and n-hexane (v/v, 2:1) as eluent to afford the desired compound **5b** (14.4 mg, 72.0 %).

¹**H NMR (500 MHz, CDCI₃):** δ = 9.15 (d, *J* = 8.6 Hz, 2H), 8.23 (s, 2H), 7.52 (d, *J* = 8.6 Hz, 2H), 7.37 (d, *J* = 8.7 Hz, 4H), 6.99 (d, *J* = 8.7 Hz, 4H), 4.05 (ddd, *J* = 19.6, 12.9, 7.3 Hz, 2H), 1.89 (d, *J* = 3.9 Hz, 1H), 1.73 (s, 4H), 1.39 (s, 12H), 1.37 – 1.24 (m, 8H), 0.89 (t, *J* = 7.4 Hz, 3H), 0.85 (t, *J* = 7.0 Hz, 3H), 0.77 (s, 18H).

Chemical formula- $C_{58}H_{65}NO_4Se_2$ **Calculated mass**-999.3244 and **obtained mass***m/z* 1000.3359 [M+H]⁺

Detailed characterization and analysis using optical spectroscopy, ¹H- NMR, ¹³C NMR spectra and mass spectra of synthesized compounds

Fig. S1: Testing the optical purity of **1**, **2**, **3a**, **3b**, **3c**, **4a** and **4b** in toluene by comparing their UV-Vis. and excitation spectra.

Fig. S2: Fluorescence lifetime decay of **1**, **2**, **3a**, **3b**, **3c**, **4a** and **4b** in toluene. Fluorescence lifetime values are provided in Table 1. Single exponential fitting function was used for the fitting except for **3c** where bi-exponential fitting was used.

Fig. S3: Cyclic voltamogram of **3a-c**, **4a-b** and **5a-b** versus Fc^+/Fc in 0.1 M Bu₄NPF₆ in dry DCM, with a platinum disk as the working electrode with a scan rate of 100 mV/s.

РМІ	Oxidation Potential ($\Delta E_o / V^a$		(Reduction Potential $\left(\frac{\Delta E}{r} \right) / \mathbf{V}^{a}$		Е _{номо} / eV	E _{LUMO} / eV	E _g ∕ eV
	ΔE_{o}° (1)	ΔE_{o}° (2)	ΔE_r° (1)	ΔE_r° (2)			
1	_	1.08 ^b	-1.20 ^b	_	-5.78	-3.50	2.28
3a	1.00 ^c	-	-1.15 ^c	-1.55	_d	_d	_d
3b	0.60 ^b	1.00 ^b	-1.35 ^b	-	-5.30	-3.35	1.95
3c	1.05 ^b	1.29	-0.90 ^b	-1.18	-5.75	-3.80	1.95
4a	0.60 ^b	-	-1.30 ^c	-	-5.30	_d	_d
4b	1.35 ^b	-	-0.95 ^b	-1.35	-6.05	-3.75	2.30
5a	0.75 ^b	1.15	-0.95 ^b	-1.15	-5.45	-3.75	1.70
5b	0.70 ^b	1.15	-0.95 ^b	-1.21	-5.40	-3.75	1.65

Table S1: Electrochemical properties of PMI derivatived measured in dichloromethane

^a versus Fc⁺/Fc in 0.1 M Bu₄NPF₆ in dry DCM, with a platinum disk as the working electrode with a scan rate of 100 mV/s. ^b reversible oxidation/reduction potential, ^c quasi-reversible potential, ^d E_g not determined due quasi-reversible oxidation and reduction potential

Table S2: Theoretically calculated properties of PMI derivation

PMI	Е _{номо} / eV	E _{LUMO} / eV	E _g / eV	Dipole moment/ Debye	Dihedral angle/ Degreeª
1	-5.794	-3.167	2.627	9.9108	0.63
3a	-5.754	-3.258	2.496	10.0701	15.29
3b	-5.537	-3.105	2.432	6.7509	14.37
3c	-5.735	-3.294	2.441	4.1782	26.64
4a	-5.008	-2.846	2.162	27.0944	17.67
4b	-6.05	-3.75	2.30	-	-
5a	-5.399	-3.149	2.25	2.8259	10.53
5b	-5.40	-3.75	1.65	_	_

^a between lower and upper napthalene rings

Symbolic Z-matrix for the optimized configuration of 1:

Charge = 0 Multiplicity = 1

С	4.33911	2.74138	0.247
С	3.76601	1.47839	0.08972
С	4.6184	0.32583	0.11753
С	6.03093	0.50279	0.30648
С	6.55842	1.81256	0.45987
С	5.72385	2.90954	0.43016
Н	3.72168	3.62612	0.23173
С	4.09374	-0.99947	-0.03811
С	6.88146	-0.63427	0.33763
Н	6.12568	3.90596	0.54757
С	6.35929	-1.90145	0.18802
С	4.97635	-2.08003	0.00169
Н	7.00664	-2.76655	0.21266
Н	4.60908	-3.08831	-0.1104
С	2.6467	-1.18125	-0.23264
С	2.3183	1.29702	-0.10123
С	1.79326	-0.02893	-0.25309
С	1.42809	2.37725	-0.14171
С	2.06807	-2.44555	-0.40024
С	-0.15628	-1.50737	-0.59712
С	0.38352	-0.20601	-0.43675
С	-0.47893	0.91899	-0.46463
С	0.05605	2.19343	-0.32145
Н	-0.60793	3.04471	-0.34915
С	0.6935	-2.60682	-0.58077
н	0.27335	-3.59357	-0.70751

С	-1.92429	0.74907	-0.65073
С	-1.59783	-1.70127	-0.78305
Ν	-2.4223	-0.5623	-0.73028
0	-2.70782	1.72856	-0.73619
0	-2.10013	-2.83795	-0.97608
С	-3.88841	-0.75578	-0.92609
Н	-4.23382	0.09103	-1.51245
Н	-3.98659	-1.65691	-1.5246
С	-4.77012	-0.90773	0.34321
н	-5.73463	-1.21732	-0.0783
С	-5.01846	0.40761	1.12039
н	-5.51864	0.15212	2.06241
н	-4.06225	0.85738	1.39431
С	-5.87367	1.46455	0.39175
Н	-5.83718	2.39203	0.97518
н	-5.42264	1.70442	-0.57482
С	-7.35059	1.07657	0.19476
н	-7.42364	0.17123	-0.4157
н	-7.78794	0.82678	1.1681
С	-8.17612	2.19244	-0.46476
Н	-7.77852	2.44311	-1.45179
Н	-9.21947	1.89513	-0.59145
Н	-8.1594	3.10287	0.14025
С	-4.35025	-2.07023	1.28653
Н	-4.07247	-2.93137	0.67543
Н	-5.24155	-2.36379	1.85148
С	-3.22577	-1.77894	2.29706

Н	-2.29546	-1.48162	1.81432
Н	-3.50583	-0.98444	2.99059
Н	-3.01677	-2.6721	2.89053
Н	2.68277	-3.33133	-0.39306
Н	1.79131	3.38659	-0.03316
Н	7.62426	1.93365	0.60013
н	7.94376	-0.48844	0.48111

Table S3: Calculated energies of Kohn-Sham molecular orbitals (MO) of **1** using DFT the B3LYP/6-311G as basis set.

MO's	Energy/Hartree	Energy/ eV
LUMO+4	-0.02146	-0.58395
LUMO+3	-0.04167	-1.13389
LUMO+2	-0.05083	-1.38315
LUMO+1	-0.05379	-1.46370
LUMO	-0.11640	-3.16740
НОМО	-0.21296	-5.79493
HOMO-1	-0.26833	-7.30163
HOMO-2	-0.27138	-7.38462
HOMO-3	-0.27405	-7.45727
HOMO-4	-0.27724	-7.54408

HOMO, E= -5.795 eV LUMO, E= -3.16/ eV

Fig. S4: Energy optimized Kuhn-Sham HOMO and LUMO of compound 1

Fig. S5: Shows the twisting of perylene core (0.63 °) from the energy-optimized structure of **1** calculated by DFT at the B3LYP/6-311G level

Fig. S6: Computed electrostatic potentials map 1; red color indicates more negative charge.

Symbolic Z-matrix for the optimized configuration of **3a**:

	Charge = (0 Multiplicity = 1	
С	-2.00498	-2.06922	-0.71836
С	-1.289	-0.96908	-0.23909
С	-2.02455	0.12879	0.32566
С	-3.45225	0.00804	0.52973
С	-4.10489	-1.16437	0.03622
С	-3.39441	-2.15966	-0.59863
н	-1.484	-2.87761	-1.19397
С	-1.35572	1.34607	0.69205
С	-4.11588	1.05737	1.22938
н	-3.90385	-3.02229	-0.99812
С	-3.43145	2.16465	1.67443
С	-2.07042	2.31879	1.39614
Н	-3.96408	2.91704	2.23656
Н	-1.57483	3.21019	1.72979
С	0.05981	1.51858	0.3385
С	0.17473	-0.89655	-0.30042
С	0.8218	0.37004	-0.07514
С	1.01535	-1.99534	-0.57094
С	0.74087	2.75065	0.37995
С	2.86987	1.74903	-0.14423
С	2.23445	0.49133	-0.2713
С	3.01229	-0.64326	-0.60038
С	2.3956	-1.87271	-0.73281
Н	2.99078	-2.73998	-0.97511
С	2.11338	2.8654	0.15553

Н	2.59504	3.82812	0.23413
С	4.46235	-0.53372	-0.80615
С	4.32066	1.88689	-0.33173
0	5.1606	-1.51626	-1.15694
0	4.8953	3.00143	-0.26333
С	6.53037	0.85242	-0.78798
Н	6.79681	0.15662	-1.57858
Н	6.68501	1.86507	-1.149
С	7.44572	0.61996	0.44419
Н	8.42414	0.94996	0.0733
С	7.59771	-0.86166	0.86653
Н	8.13828	-0.88429	1.82038
Н	6.61267	-1.28892	1.06381
С	8.34313	-1.76902	-0.13346
Н	8.23523	-2.80674	0.20295
Н	7.85526	-1.72238	-1.11071
С	9.84457	-1.46468	-0.28639
Н	9.98634	-0.44197	-0.64919
Н	10.3212	-1.50921	0.69944
С	10.55465	-2.43708	-1.24126
Н	10.11926	-2.39108	-2.24301
Н	11.61822	-2.20449	-1.32913
Н	10.4663	-3.4681	-0.88857
С	7.14128	1.54118	1.6597
Н	6.92957	2.54708	1.29109
Н	8.06351	1.6133	2.246
С	6.01262	1.09776	2.60782

Н	5.04942	1.01684	2.10521
Н	6.22812	0.13064	3.06495
Н	5.89904	1.82318	3.4168
0	0.04629	3.92813	0.73455
С	0.1775	5.09619	-0.0413
С	0.27972	5.08121	-1.43169
С	0.33278	6.30948	-2.09424
Н	0.31045	4.15062	-1.97852
С	0.27534	7.48935	-1.3515
Н	0.40983	6.34685	-3.1708
С	1.02754	-4.41147	-0.16107
С	1.04533	-5.59257	-0.89914
С	1.54166	-6.74294	-0.28456
Н	0.67955	-5.59948	-1.91495
С	2.00177	-6.66536	1.03123
Н	1.57473	-7.68088	-0.81871
0	0.45265	-3.2763	-0.76655
0	-5.49068	-1.23295	0.19228
0	-5.47424	0.96833	1.59713
С	-6.20813	-2.39727	-0.16422
С	-6.88188	-2.44727	-1.38071
С	-7.65684	-3.57767	-1.65117
Н	-6.80646	-1.62821	-2.08024
С	-7.722	-4.59771	-0.7011
Н	-8.20111	-3.66275	-2.57987
С	-6.48858	1.42632	0.7474
С	-6.26649	2.04095	-0.48306

С	-7.38049	2.46543	-1.2135
Н	-5.26653	2.18709	-0.86273
С	-8.65838	2.26165	-0.69515
Н	-7.2519	2.94738	-2.1717
Н	-9.54099	2.57649	-1.23203
Н	-8.31115	-5.48613	-0.87444
Н	2.39453	-7.53317	1.5401
Н	0.31319	8.45621	-1.83111
С	-7.79501	1.24959	1.21012
С	1.49347	-4.39935	1.15481
С	-6.31852	-3.44512	0.74791
Ν	5.05733	0.7187	-0.58793
Ν	0.16985	7.49418	-0.00079
Ν	1.97943	-5.51406	1.74344
Ν	-7.06734	-4.5379	0.48361
Ν	-8.866	1.66051	0.50277
С	0.12653	6.30971	0.64465
Н	0.04305	6.32569	1.72149
Н	-7.97233	0.77116	2.16234
Н	-5.81105	-3.40625	1.70099
н	1.47871	-3.49697	1.74846

Table S4: Calculated energies of Kohn-Sham molecular orbitals (MO) of **3a** using DFTB3LYP as a basis set.

MO's	Energy/ Hartree	Energy/ eV
LUMO+4	-0.04790	-1.30342
LUMO+3	-0.05196	-1.41390
LUMO+2	-0.05840	-1.58914
LUMO+1	-0.06156	-1.67513
LUMO	-0.11973	-3.25801
НОМО	-0.21148	-5.75466
HOMO-1	-0.25189	-6.85427
HOMO-2	-0.25407	-6.91359
HOMO-3	-0.26452	-7.19795
HOMO-4	-0.26700	-7.26543

HOMO, E= -5.755 eV LUMO, E= -3.258 eV

Fig. S7: Energy optimized Kuhn-Sham HOMO and LUMO of compound 3a

Fig. S8: Shows the twisting of perylene core from the energy-optimized structure of 3a calculated by DFT at the B3LYP/6-311G level

Fig. S9: Computed electrostatic potentials map 3a; red color indicates more negative charge.

Symbolic Z-matrix for the optimized configuration of **3b**:

	Cha	rge = 0 Multiplicity = [·]	1
С	1.2231	-1.78592	0.2462
С	0.38154	-0.76911	-0.21409
С	0.98163	0.37621	-0.84375
С	2.40518	0.38873	-1.10848
С	3.19326	-0.69964	-0.61815
С	2.60747	-1.74533	0.06329
Н	0.80046	-2.63071	0.75453
С	0.1805	1.50928	-1.21755
С	2.93879	1.47258	-1.86639
Н	3.21917	-2.54531	0.45049
С	2.12666	2.49193	-2.31023
С	0.77022	2.52304	-1.97868
н	2.56268	3.27047	-2.91874
н	0.17444	3.35061	-2.31208
С	-1.23007	1.55708	-0.8096
С	-1.07787	-0.83124	-0.07114
С	-1.85401	0.35885	-0.31079
С	-1.79334	-1.99279	0.29661
С	-2.03205	2.71689	-0.87145
С	-4.02061	1.53993	-0.18087
С	-3.26074	0.35509	-0.04057
С	-3.90656	-0.83181	0.37521
С	-3.17051	-1.99056	0.5257
Н	-3.67558	-2.89228	0.83642
С	-3.39688	2.70706	-0.57378

Н	-3.98208	3.60985	-0.65984
С	-5.34914	-0.85475	0.65883
С	-5.46478	1.55616	0.10128
Ν	-6.06904	0.33418	0.4514
0	-5.92927	-1.8866	1.06826
0	-6.1424	2.60724	0.03557
С	-7.52512	0.34523	0.76881
Н	-7.66217	-0.34813	1.59479
Н	-7.73929	1.35395	1.11269
С	-8.51503	-0.00467	-0.37374
Н	-9.48714	0.23312	0.07772
С	-8.55417	-1.50055	-0.76791
Н	-9.19875	-1.59316	-1.65111
Н	-7.55909	-1.82312	-1.08049
С	-9.06578	-2.47595	0.31161
Н	-8.94996	-3.49457	-0.0767
Н	-8.4189	-2.42429	1.18998
С	-10.53652	-2.27968	0.72235
Н	-10.67278	-1.29435	1.17934
Н	-11.1675	-2.28995	-0.17418
С	-11.02689	-3.35549	1.70424
Н	-10.426	-3.35541	2.61726
Н	-12.06857	-3.19234	1.98976
Н	-10.95428	-4.35258	1.262
С	-8.41238	0.92308	-1.61822
Н	-8.26012	1.94904	-1.27743
Н	-9.38712	0.90093	-2.11803

С	-7.33806	0.57324	-2.66401
Н	-6.33159	0.57748	-2.24684
Н	-7.50913	-0.41015	-3.10571
н	-7.35644	1.30448	-3.47529
0	-1.4605	3.92935	-1.30501
С	-1.91074	5.16337	-0.77271
С	-1.955	5.38754	0.60282
С	-2.23289	6.17555	-1.667
С	-2.34747	6.63891	1.07315
Н	-1.6841	4.59902	1.29062
С	-2.61519	7.42862	-1.17669
Н	-2.18442	5.98144	-2.72889
С	-2.69779	7.68741	0.20032
Н	-2.37587	6.79583	2.14229
Н	-2.86228	8.19906	-1.89083
С	-1.71087	-4.44664	0.27246
С	-1.6925	-5.38204	1.29843
С	-2.25038	-4.76633	-0.97297
С	-2.22992	-6.65433	1.07737
Н	-1.26325	-5.11484	2.25344
С	-2.78989	-6.03557	-1.17229
Н	-2.24294	-4.037	-1.77072
С	-2.80288	-7.00877	-0.15386
Н	-2.20452	-7.36344	1.89029
Н	-3.20265	-6.26734	-2.14406
0	-1.08871	-3.19488	0.50499
С	-3.09707	9.06656	0.77092

С	-4.25105	8.95577	1.8307
н	-4.27301	9.91339	2.36407
н	-3.92535	8.21936	2.57092
С	-1.85869	9.63174	1.53348
Н	-1.5902	9.00476	2.38492
Н	-0.99434	9.68747	0.8692
Н	-2.07119	10.63601	1.90687
С	-3.43358	10.08308	-0.34178
Н	-4.23103	9.74211	-1.00019
Н	-3.74991	11.02649	0.10544
н	-2.55437	10.2884	-0.95652
С	-5.73782	8.61391	1.47113
С	-5.8804	7.41047	0.51442
н	-6.93757	7.17	0.37653
Н	-5.45674	7.61714	-0.46835
Н	-5.38796	6.52044	0.90866
С	-6.43028	8.25307	2.81269
Н	-7.49306	8.05585	2.65518
Н	-5.98434	7.35967	3.25597
Н	-6.3418	9.07056	3.53326
С	-6.48833	9.83249	0.87918
Н	-7.55337	9.60418	0.78945
Н	-6.38892	10.7066	1.5282
Н	-6.12834	10.10368	-0.11155
С	-3.3779	-8.41554	-0.43444
С	-4.83329	-8.35543	-1.02231
Н	-5.04245	-9.35104	-1.4308

Н	-4.79295	-7.69014	-1.88949
С	-2.4893	-9.06814	-1.53856
Н	-2.81822	-10.09161	-1.73216
Н	-2.54267	-8.51278	-2.4759
Н	-1.44529	-9.09619	-1.22118
С	-3.29767	-9.33556	0.80319
Н	-2.25797	-9.51722	1.08431
Н	-3.81322	-8.92306	1.66894
Н	-3.75008	-10.3013	0.57362
С	-6.09438	-7.94263	-0.18893
С	-5.88265	-6.67116	0.66121
Н	-6.82199	-6.38561	1.14143
Н	-5.14207	-6.82247	1.44679
Н	-5.55353	-5.82796	0.0524
С	-6.59026	-9.09237	0.72344
Н	-7.551	-8.82388	1.16989
Н	-6.73481	-10.01185	0.14992
Н	-5.89984	-9.3057	1.53749
С	-7.2162	-7.65535	-1.22235
Н	-8.1527	-7.41251	-0.71532
Н	-6.95107	-6.81073	-1.86258
Н	-7.394	-8.52387	-1.86221
0	4.56815	-0.63097	-0.82251
0	4.2735	1.50093	-2.29653
С	5.41241	-1.71715	-0.48466
С	6.1609	-1.65288	0.6831
С	5.55204	-2.78834	-1.36397

С	7.05855	-2.6844	0.97921
Н	6.05206	-0.80127	1.33912
С	6.45028	-3.8087	-1.05444
Н	4.97573	-2.81005	-2.27801
С	7.22452	-3.78469	0.12255
Н	7.63197	-2.61199	1.89038
Н	6.54967	-4.63043	-1.74924
С	5.28778	2.0849	-1.51541
С	5.06118	2.7034	-0.28729
С	6.57196	2.03084	-2.04795
С	6.13689	3.2756	0.39555
Н	4.06718	2.74018	0.13446
С	7.63322	2.61085	-1.35234
Н	6.72401	1.53408	-2.99503
С	7.44537	3.25629	-0.11764
Н	5.93722	3.74731	1.34816
Н	8.61746	2.55288	-1.79171
С	8.19559	-4.95272	0.43818
С	8.61091	3.87266	0.68964
С	8.3171	5.35153	1.12956
Н	7.35475	5.3373	1.64951
Н	9.05799	5.59964	1.899
С	7.27444	-6.20132	0.72129
Н	6.78098	-6.4311	-0.22834
Н	6.4767	-5.85949	1.38921
С	8.28135	6.56636	0.14112
С	9.702	7.029	-0.26721

Н	10.20871	6.30598	-0.90348
н	9.64203	7.96916	-0.82158
н	10.32537	7.20163	0.61416
С	7.44517	6.29855	-1.12867
Н	7.88374	5.51757	-1.74913
Н	6.42893	5.98942	-0.87992
Н	7.38354	7.20983	-1.73017
С	7.62154	7.73545	0.92042
Н	7.60862	8.64345	0.31286
Н	6.59034	7.4938	1.18875
Н	8.16911	7.95367	1.84119
С	8.7535	3.05032	2.00758
Н	9.605	3.40884	2.59107
Н	7.85927	3.1329	2.62699
Н	8.91129	1.99461	1.77961
С	9.95973	3.75438	-0.05505
Н	10.74593	4.24441	0.52147
Н	10.24346	2.70648	-0.17539
Н	9.93671	4.20977	-1.04393
С	9.11027	-5.16847	-0.80021
Н	9.58528	-4.22619	-1.08056
Н	9.89673	-5.89029	-0.59106
Н	8.55024	-5.52919	-1.66373
С	9.10437	-4.60622	1.63728
Н	9.8511	-5.38484	1.78448
Н	9.64071	-3.6724	1.45517
Н	8.5438	-4.50239	2.56702

С	7.77516	-7.56556	1.312
С	6.60457	-8.56551	1.10655
Н	6.84577	-9.53429	1.55021
Н	5.68793	-8.19835	1.57446
Н	6.40292	-8.72082	0.04403
С	8.04665	-7.48094	2.83432
н	8.91266	-6.86615	3.071
Н	7.18306	-7.06768	3.3614
н	8.23327	-8.48057	3.23531
С	9.02024	-8.14084	0.60087
н	8.87562	-8.18997	-0.4804
Н	9.91564	-7.55096	0.79884
Н	9.21298	-9.15617	0.95705

Table S5: Calculated energies of Kohn-Sham molecular orbitals (MO) of **3b** using DFTB3LYP as a basis set.

MO's	Energy/ Hartree	Energy/ eV
LUMO+4	-0.02989	-0.81335
LUMO+3	-0.03998	-1.08791
LUMO+2	-0.05190	-1.41227
LUMO+1	-0.05619	-1.52901
LUMO	-0.11413	-3.10564
НОМО	-0.20349	-5.5372
HOMO-1	-0.22879	-6.22569
HOMO-2	-0.23719	-6.45427
HOMO-3	-0.24503	-6.66761
HOMO-4	-0.25081	-6.82489

Fig. S10: Energy optimized Kuhn-Sham HOMO and LUMO of compound 3b .

Fig. S11: Shows the twisting of perylene core from the energy-optimized structure of **3b** calculated by DFT at the B3LYP/6-311G level

Fig. S12: Computed electrostatic potentials map 3b; red color indicates more negative charge.

Symbolic Z-matrix for the optimized configuration of **3c**:

	Charge = 0	Multiplicity = 1	
С	1.2231	-1.78592	0.2462
С	0.38154	-0.76911	-0.21409
С	0.98163	0.37621	-0.84375
С	2.40518	0.38873	-1.10848
С	3.19326	-0.69964	-0.61815
С	2.60747	-1.74533	0.06329
Н	0.80046	-2.63071	0.75453
С	0.1805	1.50928	-1.21755
С	2.93879	1.47258	-1.86639
Н	3.21917	-2.54531	0.45049
С	2.12666	2.49193	-2.31023
С	0.77022	2.52304	-1.97868
Н	2.56268	3.27047	-2.91874
Н	0.17444	3.35061	-2.31208
С	-1.23007	1.55708	-0.8096
С	-1.07787	-0.83124	-0.07114
С	-1.85401	0.35885	-0.31079
С	-1.79334	-1.99279	0.29661
С	-2.03205	2.71689	-0.87145
С	-4.02061	1.53993	-0.18087
С	-3.26074	0.35509	-0.04057
С	-3.90656	-0.83181	0.37521
С	-3.17051	-1.99056	0.5257
Н	-3.67558	-2.89228	0.83642
С	-3.39688	2.70706	-0.57378
Н	-3.98208	3.60985	-0.65984
С	-5.34914	-0.85475	0.65883
С	-5.46478	1.55616	0.10128
Ν	-6.06904	0.33418	0.4514
0	-5.92928	-1.8866	1.06826
0	-6.14241	2.60724	0.03557
С	-7.52512	0.34523	0.76881

Н	-7.66217	-0.34813	1.59479
Н	-7.73929	1.35395	1.11269
С	-8.51503	-0.00467	-0.37374
Н	-9.48714	0.23312	0.07772
С	-8.55417	-1.50055	-0.76791
Н	-9.19875	-1.59316	-1.65111
Н	-7.55909	-1.82312	-1.08049
С	-9.06578	-2.47595	0.31161
Н	-8.94996	-3.49457	-0.0767
Н	-8.4189	-2.42429	1.18998
С	-10.53652	-2.27968	0.72235
Н	-10.67278	-1.29435	1.17934
Н	-11.1675	-2.28995	-0.17418
С	-11.02689	-3.35549	1.70424
Н	-10.42601	-3.35541	2.61726
Н	-12.06858	-3.19234	1.98976
Н	-10.95428	-4.35258	1.262
С	-8.41238	0.92308	-1.61822
Н	-8.26012	1.94904	-1.27744
Н	-9.38712	0.90093	-2.11803
С	-7.33806	0.57324	-2.66401
Н	-6.33159	0.57748	-2.24684
Н	-7.50913	-0.41015	-3.10571
Н	-7.35644	1.30448	-3.47529
С	-1.91074	5.16337	-0.77271
С	-1.955	5.38754	0.60282
С	-2.23289	6.17555	-1.667
С	-2.34747	6.63891	1.07315
Н	-1.6841	4.59902	1.29062
С	-2.61519	7.42862	-1.17669
Н	-2.18442	5.98144	-2.72889
Н	-2.37587	6.79583	2.14229
Н	-2.86228	8.19906	-1.89083
С	-1.71087	-4.44664	0.27246

С	-1.6925	-5.38204	1.29843
С	-2.25038	-4.76633	-0.97297
С	-2.22992	-6.65433	1.07737
Н	-1.26325	-5.11484	2.25344
С	-2.78989	-6.03557	-1.17229
Н	-2.24294	-4.037	-1.77072
С	-2.80289	-7.00877	-0.15386
Н	-2.20452	-7.36344	1.89029
Н	-3.20265	-6.26734	-2.14406
С	5.41241	-1.71715	-0.48466
С	6.1609	-1.65288	0.6831
С	5.55204	-2.78834	-1.36397
С	7.05855	-2.6844	0.97921
Н	6.05206	-0.80127	1.33912
С	6.45028	-3.8087	-1.05444
Н	4.97573	-2.81005	-2.27801
Н	7.63197	-2.61199	1.89038
Н	6.54967	-4.63043	-1.74924
С	5.28778	2.0849	-1.51541
С	5.06118	2.7034	-0.28729
С	6.57197	2.03084	-2.04795
С	6.13689	3.2756	0.39555
Н	4.06718	2.74018	0.13446
С	7.63322	2.61085	-1.35234
Н	6.72401	1.53408	-2.99503
С	7.44537	3.25629	-0.11764
Н	5.93722	3.74731	1.34816
Н	8.61746	2.55288	-1.79171
S	-1.08871	-3.19488	0.50499
S	-1.4605	3.92935	-1.30501
S	4.56816	-0.63097	-0.82251
S	4.2735	1.50093	-2.29653
С	-2.69779	7.68741	0.20032
Н	-3.07244	8.61897	0.57008

Н	-3.201	-7.98277	-0.34812
Н	8.25206	3.68289	0.44109
С	7.22452	-3.78469	0.12255
Н	7.86412	-4.60145	0.38468

Table S6: Calculated energies of Kohn-Sham molecular orbitals (MO) of **3c** using DFT B3LYP as a basis set.

MO's	Energy/ Hartree	Energy/ eV
LUMO+4	-0.03736	-1.01662
LUMO+3	-0.04413	-1.20084
LUMO+2	-0.04635	-1.26125
LUMO+1	-0.05966	-1.62344
LUMO	-0.12106	-3.29421
НОМО	-0.21077	-5.73534
HOMO-1	-0.23845	-6.48855
HOMO-2	-0.24015	-6.53481
HOMO-3	-0.24937	-6.78570
HOMO-4	-0.25890	-7.04503

HOMO, E= -5.735 eV LUMO, E= -3.294 eV

Fig. S13: Energy optimized Kuhn-Sham HOMO and LUMO of compound 3c

Fig. S14: Shows the twisting of perylene core from the energy-optimized structure of **3c** calculated by DFT at the B3LYP/6-311G level

Fig. S15: Computed electrostatic potentials map 3c; red color indicates more negative charge.

Symbolic Z-matrix for the optimized configuration of **4a**:

	Charge = 0 Multiplicity = 1		
С	-1.97075	-2.1937	-1.19603
С	-1.27974	-1.11691	-0.59492
С	-2.07568	-0.04579	-0.07836
С	-3.50767	-0.20187	0.04861
С	-4.07672	-1.5121	-0.1983
С	-3.32254	-2.39127	-1.02264
Н	-1.43165	-2.91283	-1.78665
С	-1.45071	1.18112	0.30871
С	-4.29579	0.95758	0.40835
Н	-3.77274	-3.28017	-1.43154
С	-3.61778	2.01048	1.07967
С	-2.24691	2.11034	1.0174
Н	-4.17176	2.80633	1.5494
Н	-1.78461	2.95145	1.50233
С	-0.05754	1.40619	-0.00251
С	0.16135	-1.0431	-0.51296
С	0.76571	0.25569	-0.30742
С	1.05801	-2.14509	-0.60518
С	0.59303	2.67206	-0.04636
С	2.78075	1.68472	-0.31464
С	2.18669	0.40483	-0.41016
С	3.01144	-0.7248	-0.6159
С	2.42977	-1.98998	-0.67344
Н	3.07723	-2.84862	-0.75734
С	1.96182	2.80499	-0.18167

Н	2.42124	3.78069	-0.19624
С	4.45819	-0.59174	-0.72448
С	4.2236	1.85547	-0.41047
0	5.21432	-1.57459	-0.96142
0	4.77699	2.99053	-0.37415
С	6.48189	0.85361	-0.65282
Н	6.82006	0.11991	-1.37951
Н	6.63749	1.84829	-1.06074
С	7.31944	0.71984	0.648
Н	8.31256	1.05534	0.3231
С	7.47955	-0.72843	1.17021
Н	7.95484	-0.67908	2.15757
Н	6.49408	-1.17088	1.32522
С	8.31417	-1.67184	0.2802
Н	8.20549	-2.69139	0.66853
Н	7.89589	-1.69335	-0.72948
С	9.81574	-1.33741	0.21715
Н	9.96058	-0.33333	-0.19351
Н	10.21974	-1.31322	1.23568
С	10.61531	-2.34305	-0.62597
Н	10.25237	-2.36599	-1.65695
Н	11.67692	-2.08726	-0.65194
Н	10.52533	-3.35432	-0.22041
С	6.91195	1.70211	1.7829
Н	6.70237	2.67771	1.33969
Н	7.78967	1.83272	2.42521
С	5.72965	1.28571	2.67641

Н	4.80744	1.15064	2.11265
н	5.93396	0.35298	3.20489
н	5.54328	2.05412	3.43062
Ν	5.00485	0.6913	-0.54503
Br	0.50368	-4.03997	-0.47185
Br	-0.35766	4.40693	-0.09733
С	-6.47828	2.15152	0.64397
Н	-6.11814	2.43935	1.62635
Н	-8.14135	1.40526	-1.48693
Н	-5.76704	4.05641	-0.14624
С	-6.21649	0.4393	-1.12217
С	-7.12379	1.43487	-1.88437
С	-6.57268	2.8677	-1.79023
С	-6.58543	3.35528	-0.31854
Ν	-5.62081	1.08414	0.07662
Н	-6.77825	-0.45398	-0.84373
Н	-5.3975	0.12244	-1.76636
Н	-7.18641	1.10708	-2.92339
Н	-5.54953	2.87951	-2.17604
Н	-7.15332	3.54345	-2.41968
Н	-7.51397	3.88731	-0.09764
Н	-7.46352	1.70861	0.79581
С	-5.75791	-1.40538	1.65463
Н	-4.96936	-0.80761	2.10408
С	-7.28667	-3.36978	0.4707
С	-7.28084	-3.42644	2.01512
Н	-7.90299	-2.53624	0.1257

Н	-7.16187	-4.45822	2.35231
С	-5.87571	-3.21111	-0.104
С	-6.13655	-2.55991	2.59346
Н	-5.25176	-4.06338	0.18646
Н	-5.92265	-3.1929	-1.19251
Н	-7.72915	-4.2751	0.05267
Н	-8.24577	-3.08225	2.3926
Н	-5.2469	-3.17074	2.76387
Н	-6.41866	-2.1396	3.56032
Н	-6.61384	-0.74738	1.49146
Ν	-5.25124	-1.94045	0.36336

Table S7: Calculated energies of Kohn-Sham molecular orbitals (MO) of **4a** using DFTB3LYP as a basis set.

MO's	Energy/ Hartree	Energy/ eV
LUMO+4	-0.031616	-0.86032
LUMO+3	-0.03653	-0.99403
LUMO+2	-0.04802	-1.30669
LUMO+1	-0.05320	-1.44765
LUMO	-0.10458	-2.84577
НОМО	-0.18407	-5.00880
HOMO-1	-0.22144	-6.02569
HOMO-2	-0.24798	-6.74788
HOMO-3	-0.25832	-7.02925
HOMO-4	-0.26377	-7.17755

HOMO, E= -5.008 eV LUMO, E= -2.846 eV

Fig. S16: Energy optimized Kuhn-Sham HOMO and LUMO of compound 4a

Fig. S17: Shows the twisting of perylene core from the energy-optimized structure of **4a** calculated by DFT at the B3LYP/6-311G level

Fig. S18: Computed electrostatic potentials map 4a; red color indicates more negative charge.

Symbolic Z-matrix for the optimized configuration of **5a**:

	Char	ge = 0 Multiplicity =	= 1
С	-1.61907	4.54168	-0.92763
С	-0.64526	3.65597	-0.43815
С	0.5783	4.20807	0.06891
С	0.7065	5.63346	0.15896
С	-0.32956	6.47021	-0.32039
С	-1.46924	5.93478	-0.88035
Н	-2.52237	4.14761	-1.35093
С	1.67872	3.38861	0.48885
С	1.8693	6.20614	0.72729
Н	-2.25275	6.56658	-1.27131
С	2.8908	5.4112	1.20046
С	2.79074	4.01896	1.07054
Н	3.77025	5.83979	1.6574
Н	3.60667	3.42138	1.42786
С	1.58355	1.93788	0.29713
С	-0.81465	2.19916	-0.42311
С	0.31892	1.36525	-0.09966
С	-2.03629	1.54299	-0.70024
С	2.6662	1.04538	0.47338
С	1.29938	-0.89952	0.06779
С	0.18773	-0.06106	-0.17956
С	-1.05391	-0.6513	-0.51025
С	-2.14913	0.15456	-0.75581
Н	-3.09478	-0.30293	-0.99943
С	2.5249	-0.33756	0.37081

Н	3.37142	-0.98334	0.54188
С	-1.20147	-2.10907	-0.60238
С	1.17927	-2.36059	0.0018
Ν	-0.09058	-2.8979	-0.26798
0	-2.27875	-2.64953	-0.95906
0	2.16601	-3.11923	0.18236
С	-0.21847	-4.38205	-0.34975
Н	-0.90376	-4.58667	-1.16775
Н	0.76836	-4.744	-0.62324
С	-0.68525	-5.13466	0.92562
Н	-0.50546	-6.1832	0.65719
С	-2.19534	-5.00148	1.23956
Н	-2.37345	-5.44479	2.22675
Н	-2.45989	-3.94613	1.3255
С	-3.14835	-5.67242	0.22919
Н	-4.17147	-5.35602	0.46341
Н	-2.94552	-5.297	-0.77739
С	-3.10771	-7.21156	0.22711
Н	-2.10248	-7.56129	-0.02774
Н	-3.31193	-7.576	1.24025
С	-4.11651	-7.83177	-0.75231
Н	-3.91633	-7.50929	-1.77758
Н	-4.07362	-8.92298	-0.73175
Н	-5.13853	-7.5329	-0.50455
С	0.19405	-4.88246	2.18329
Н	1.24347	-4.87954	1.88104
Н	0.06413	-5.74682	2.8433

С	-0.10501	-3.61417	3.00263
Н	0.0277	-2.7	2.42515
Н	-1.1262	-3.61653	3.38711
Н	0.56742	-3.55824	3.86193
0	3.92791	1.56607	0.80999
С	5.11118	0.83079	0.52217
С	5.51388	0.63516	-0.79806
С	5.8929	0.38916	1.58117
С	6.71397	-0.02899	-1.04787
Н	4.90442	1.00144	-1.6122
С	7.09727	-0.27189	1.31158
Н	5.5673	0.55915	2.59746
С	7.53014	-0.50828	-0.00334
Н	7.01389	-0.1688	-2.07655
Н	7.68828	-0.60838	2.14905
С	-4.47954	1.79392	-0.7536
С	-5.32926	1.64422	-1.84139
С	-4.91809	1.52455	0.54207
С	-6.64194	1.2064	-1.62781
Н	-4.97284	1.86806	-2.83666
С	-6.22686	1.08448	0.73556
Н	-4.25198	1.66434	1.38183
С	-7.11813	0.90417	-0.3416
Н	-7.28468	1.09617	-2.48734
Н	-6.5522	0.88489	1.74655
0	-3.17619	2.3175	-0.97793
С	8.87066	-1.20514	-0.32685

С	8.69643	-2.3784	-1.35637
Н	9.70198	-2.62192	-1.717
Н	8.17164	-1.9613	-2.2205
С	9.78439	-0.14994	-1.0252
Н	9.36265	0.17844	-1.97619
Н	9.91115	0.72668	-0.38702
Н	10.77008	-0.57764	-1.22067
С	9.61192	-1.66266	0.94837
Н	9.01581	-2.33089	1.5678
Н	10.5274	-2.18779	0.67258
Н	9.8961	-0.80348	1.55981
С	8.00482	-3.74301	-1.01802
С	6.65502	-3.58372	-0.28481
Н	6.18189	-4.56229	-0.1659
Н	6.77984	-3.15134	0.70817
Н	5.96936	-2.94501	-0.8445
С	7.73874	-4.43702	-2.38084
Н	7.3044	-5.42792	-2.22853
Н	7.04499	-3.85138	-2.98873
Н	8.66653	-4.55796	-2.94632
С	8.92671	-4.67753	-0.19627
Н	8.47421	-5.66968	-0.11857
Н	9.89908	-4.79034	-0.68244
Н	9.09408	-4.31303	0.81546
С	-8.57147	0.45199	-0.07557
С	-8.63707	-0.84666	0.80518
Н	-9.67206	-0.92671	1.15625

Н	-8.04145	-0.6486	1.70068
С	-9.26071	1.57601	0.75948
Н	-10.31127	1.32873	0.92618
Н	-8.78347	1.70188	1.73221
Н	-9.21209	2.52927	0.22959
С	-9.38357	0.30333	-1.38065
Н	-9.49052	1.26736	-1.88258
Н	-8.92791	-0.39143	-2.08441
Н	-10.38548	-0.06104	-1.15018
С	-8.2318	-2.27044	0.29234
С	-6.88316	-2.29442	-0.45997
Н	-6.6147	-3.32646	-0.70206
Н	-6.92673	-1.73465	-1.3946
Н	-6.08	-1.87181	0.14632
С	-9.32749	-2.90238	-0.60138
Н	-9.07822	-3.94587	-0.81161
Н	-10.29748	-2.88498	-0.09791
Н	-9.43247	-2.39115	-1.55645
С	-8.09724	-3.15996	1.55731
Н	-7.86944	-4.19149	1.27828
Н	-7.29594	-2.79842	2.20625
Н	-9.02584	-3.16302	2.13417
S	-0.08211	8.28387	-0.16899
S	1.94925	8.03909	0.80836

Table S8: Calculated energies of Kohn-Sham molecular orbitals (MO) of **5a** using DFTB3LYP as a basis set.

MO's	Energy/ Hartree	Energy/ eV
LUMO+4	-0.03938	-1.07158
LUMO+3	-0.05491	-1.49417
LUMO+2	-0.05871	-1.59758
LUMO+1	-0.10801	-2.93910
LUMO	-0.11576	-3.14999
НОМО	-0.19843	-5.39955
HOMO-1	-0.24160	-6.57427
HOMO-2	-0.24765	-6.73890
HOMO-3	-0.25282	-6.87958
HOMO-4	-0.25948	-7.06081

HOMO, E= -5.399 eV LUMO, E= -3.150 eV

Fig. S19: Energy optimized Kuhn-Sham HOMO and LUMO of compound 5a

Fig. S20: Twisting of perylene core from the energy-optimized structure of **5a** calculated by DFT at the B3LYP/6-311G level

Fig. S21: Computed electrostatic potentials map 5a; red color indicates more negative charge.

Fig. S22. Comparison of frontiers orbitals energy levels of PMI derivatives

Fig. S23: Dark and light I-V characteristics of samples (a) 3a and (b) 4a

Fig. S27: ¹H NMR spectrum of compound 3b

Fig. S29: ¹H NMR spectrum of compound 3c

Fig. S32: ¹³C NMR spectrum of compound 4a

Fig. S33: ¹H NMR spectrum of compound 4b

Fig. S34: ¹³C NMR spectrum of compound 4b

Fig. S35: ¹H NMR spectrum of compound 5a

Fig. S36: ¹³C NMR spectrum of compound 5a

Fig. S38: APCI mass spectrum of compound 2

Fig. S39: APCI mass spectrum of compound 3a

Fig. S40: APCI mass spectrum of compound 3b

Fig. S41: APCI mass spectrum of compound 3c

g. S42: APCI mass spectrum of compound 4a

Fig. S43: APCI mass spectrum of compound 4b

Fig. S44: APCI mass spectrum of compound 5a

Fig. S45: APCI mass spectrum of compound 5b

Reference:

1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.

Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, unpublished work.

- 2. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- 3. S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200-1211.
- 4. J. Chem. Phys., 1993, **98**, 5648-5652.
- 5. K.-Y. Tomizaki, P. Thamyongkit, R. S. Loewe and J. S. Lindsey, *Tetrahedron*, 2003, **59**, 1191-1207.
- 6. A. Keerthi, Y. Liu, Q. Wang and S. Valiyaveettil, *Chem. Eur. J.*, 2012, **18**, 11669-11676.