Electronic Supporting Information

Achievement of ligand-field induced thermochromic

luminescence via two-step single-crystal to single-crystal transformations

Yue Wu, Xu Zhang,* Yun-Qin Zhang, Ming Yang, and Zhong-Ning Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. E-mail: czn@fjirsm.ac.cn; University of Chinese Academy of Sciences Beijing, 100039, China

temperature	480 K	440 K	420 K	410 K	400 K	390 K	360 K
formula	C ₂₉ H ₂₃ Br ₂ MnN						
	O_2P_2						
formula weight	694.18	694.18	694.18	694.18	694.18	694.18	694.18
crystal system	triclinic						
space group	P 1	$P \overline{1}$	P 1	P 1	P 1	P 1	P 1
<i>a</i> / Å	10.449(3)	10.4536(9)	10.4487(14)	10.4868(12)	10.4577(17)	12.3470(10)	12.352(10)
<i>b</i> / Å	12.532(3)	12.5100(10)	12.5208(16)	12.5077(14)	12.4576(19)	15.1937(12)	15.347(11)
<i>c</i> / Å	12.846(3)	12.7069(10)	12.6339(16)	12.6045(13)	12.4979(18)	17.2550(15)	17.295(12)
α / deg	84.230(8)	84.743(3)	84.869(5)	85.095(4)	85.451(5)	100.149(3)	99.95(2)
eta / deg	67.331(7)	67.952(3)	68.184(5)	68.271(4)	68.607(5)	105.447(3)	104.61(2)
y/deg	81.688(8)	82.162(3)	82.196(5)	82.281(4)	82.521(6)	100.713(3)	100.46(2)
volume / Å ³	1534.0(6)	1524.3(2)	1518.9(3)	1520.7(3)	1502.2(4)	2977.3(4)	3036(4)
Ζ	2	2	2	2	2	4	4
$ ho_{ m calc}$ / g-cm ⁻³	1.503	1.512	1.518	1.516	1.535	1.550	1.519
μ / mm ⁻¹	3.165	3.185	3.196	3.192	3.232	3.261	3.198
radiation(λ) / Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
R_{I}	0.0523	0.0575	0.0597	0.0854	0.0585	0.0510	0.0592
wR_2	0.1481	0.1628	0.1797	0.1856	0.1435	0.1377	0.1365
GOF	0.904	1.109	1.060	1.026	1.017	1.015	0.900

Table S1. Crystallographic Data of complex 1 at various temperatures.

temperature	320 K	300 K	260 K	200 K	140 K	80 K
formula	C ₂₉ H ₂₃ Br ₂ MnN					
	O_2P_2	O_2P_2	O_2P_2	O_2P_2	O_2P_2	O_2P_2
formula weight	694.18	694.18	694.18	694.18	694.18	694.18
crystal system	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic
space group	$P \overline{1}$	P 1	P 1	$P \overline{1}$	$P \overline{1}$	P 1
<i>a</i> / Å	12.089(2)	13.0769(4)	13.1370(12)	13.182(2)	13.2006(8)	13.2012(9)
<i>b</i> / Å	15.242(3)	15.2036(4)	15.1638(11)	15.175(3)	15.1682(8)	15.1666(10)
<i>c</i> / Å	17.019(4)	16.9342(5)	16.7360(12)	16.539(3)	16.4695(9)	16.3854(11)
α / deg	100.060(7)	99.7454(10)	99.164(3)	98.923(6)	98.582(2)	98.384(2)
eta / deg	104.032(7)	109.6649(10)	110.439(3)	110.826(6)	111.110(2)	111.380(2)
y/deg	100.712(7)	107.5342(9)	107.866(3)	108.110(6)	108.380(2)	108.519(2)
volume / Å ³	2908.8(10)	2882.51(15)	2837.6(4)	2804.4(8)	2787.8(3)	2766.6(3)
Ζ	4	4	4	4	4	4
$ ho_{ m calc}$ / g-cm ⁻³	1.585	1.600	1.625	1.644	1.654	1.667
μ / mm ⁻¹	3.338	3.368	3.421	3.462	3.483	3.509
radiation(λ) / Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
R_1	0.0358	0.0777	0.0645	0.0302	0.0267	0.0263
wR_2	0.1131	0.2031	0.1683	0.0726	0.0671	0.0533
GOF	1.120	1.074	1.001	1.094	1.037	1.016

Mn–Br ^[a]	$Mn \cdots Mn^{[b]}$	O-Mn-Br ^[c]
4.766(2)	5.708(2)	173.0(1)
4.652(1)	5.548(1)	171.4(1)
4.600(1)	5.473(1)	170.2(1)
4.568(2)	5.430(2)	169.9(2)
4.496(1)	5.332(1)	169.5(1)
4.191(1)	5.031(1)	168.0(1)
4.588(1)	5.350(1)	168.4(1)
4.043(3)	4.883(3)	167.2(1)
4.515(3)	5.273(3)	167.9(1)
3.749(1)	4.592(1)	167.16(7)
4.280(1)	5.039(1)	167.59(7)
3.739(2)	4.583(2)	167.6(2)
3.754(3)	4.558(3)	168.1(2)
3.432(1)	4.340(1)	166.8(1)
3.490(1)		168.4(1)
3.1946(8)	4.1187(9)	167.40(6)
3.2221(8)		168.48(6)
3.0757(7)	4.0084(6)	167.73(6)
3.0918(7)		168.62(6)
2.9962(5)	3.9292(5)	167.83(5)
3.0042(5)		168.41(5)
	Mn-Br ^[a] 4.766(2) 4.652(1) 4.600(1) 4.568(2) 4.496(1) 4.191(1) 4.588(1) 4.043(3) 4.515(3) 3.749(1) 4.280(1) 3.739(2) 3.754(3) 3.432(1) 3.432(1) 3.490(1) 3.1946(8) 3.2221(8) 3.0757(7) 3.0918(7) 2.9962(5) 3.0042(5)	Mn-Br ^[a] Mn···Mn ^[b] 4.766(2) 5.708(2) 4.652(1) 5.548(1) 4.600(1) 5.473(1) 4.568(2) 5.430(2) 4.496(1) 5.332(1) 4.191(1) 5.031(1) 4.588(1) 5.350(1) 4.043(3) 4.883(3) 4.515(3) 5.273(3) 3.749(1) 4.592(1) 4.280(1) 5.039(1) 3.739(2) 4.583(2) 3.754(3) 4.558(3) 3.432(1) 4.340(1) 3.490(1) . 3.0757(7) 4.0084(6) 3.0918(7) 2.9962(5) 3.0042(5) .

Table S2. Selected interatomic distances (Å) and angles (°) of complex 1 at various temperatures.

[a] The shortest Mn–Br distances between adjacent manganese(II) coordination chains. [b] The shortest Mn…Mn distances between adjacent coordination chains. [c] The axial O-Mn-Br angles in trigonal bipyramidal geometry.

temp (K)	80	100	140	180	220	260	280	300	320
$\lambda_{\rm em}$ (nm)	617	615	612	609	604	599	595	588	585
τ _{em} (μs)	2097	2077	2020	1894	1738	1311	949	658	266 37.3
CIE coordinate	0.6508 0.3483	0.6450 0.3542	0.6302 0.3690	0.6115 0.3876	0.5888 0.4101	0.5641 0.4342	0.5504 0.4474	0.5341 0.4631	0.5157 0.4786
temp (K)	340	360	380	390	400	410	420	440	480
$\lambda_{\rm em}$ (nm)	584	581	581	580	517 592	514 596	508 612	506 615	502
τ _{em} (μs)	231 27.3	97.9 8.3	79.4 5.8	68.3 4.7	46.4 4.1	48.7 3.9	57.1 3.4	67.4 3.2	78.5 2.7
CIE coordinate	0.5077 0.4820	0.4922 0.4886	0.4685 0.4965	0.4557 0.4985	0.4406 0.4999	0.4303 0.4953	0.4106 0.4970	0.3237 0.5285	0.1959 0.5631

Table S3. The Emission Wavelengths, Luminescent Lifetimes and CIE Chromatic Coordinates of Manganese(II) Complex 1 at various temperatures in the range of 480–80 K.

Fig. S1 The perspective views of one-dimensional manganese(II) complex **1** (30% thermal ellipsoids) at 480 K (a), 360 K (b), 300 K (c), 200 K (d), and 80 K (e), showing gradually reduced Mn–Br distances between two adjacent chains so as to produce interchain Mn–Br linkages. Phenyl rings on the phosphorus atoms are omitted for clarity.

Fig. S2 Thermogravimetric (TG) curves of complex 1 at the temperature of 25–900 °C.

Fig. S3 The UV-Vis absorption spectrum of complex 1 in solid state at ambient temperature.

Fig. S4 The excitation spectra of complex 1 at various temperatures.

Fig. S5 The normalized emission spectral change of complex 1 upon gradually raising the temperature from 80 to 480 K.

Fig. S6 The emission decay curves of complex 1 measured at various temperatures.

Fig. S7 The emission decay curve of complex 1 at 480 K, fitted by two-exponential components to give a longer emissive lifetime of 78.5 μ s and shorter lifetime of 2.7 μ s.

Fig. S8 The emission decay curve of complex 1 at 400 K, fitted by two-exponential components to give a longer emissive lifetime of 46.4 μ s and shorter lifetime of 4.1 μ s.

Fig. S9 The emission decay curve of complex 1 at 320 K, fitted by two-exponential components to give a longer emissive lifetime of 266 μ s and shorter lifetime of 37.3 μ s.

Fig. S10 The emission decay curve of complex 1 at 300 K, fitted by single exponential component to give $658 \mu s$ of emissive lifetime.

Fig. S11 The emission decay curve of complex 1 at 180 K, fitted by single exponential component to give 1894 μ s of emissive lifetime.

Fig. S12 The emission decay curve of complex 1 at 80 K, fitted by single exponential component to give 2097 μ s of emissive lifetime.