Rhodium(III)-catalyzed sulfonamide directed ortho C-H

carbenoid functionalization *via* metal carbene migratory

insertion

Yi Dong,^{a,b} Jiajing Chen^{a,b} and Heng Xu^{*,a,b}

^aState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

^bBeijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Table of content

General methods	S1
Synthetic procedure, ¹ H NMR, ¹³ C NMR and MS data of substrates	S1
Synthetic procedure ¹ H NMR, ¹³ C NMR and HRMS data of products	S12
Copies of NMR spectra of products	S27
Copies of ¹ H NMR of 1g and [D]-1g	S80
Analysis for ratio of 47/47' and 48/48'	S81

General methods

Dried solvent, such as DCE, MeOH and toluene were purchased from domestic corporations and used without purification. Analytical thin layer chromatography (TLC) plates, preparative TLC and the silica gel for column chromatography were phased from Qingdao Haiyang Chemical and Special Silica Gel Co, Ltd.

High-resolution LC-MS was carried out by Agilent LC/MSD TOF using a column of Agilent ZORBAX SB-C18 (rapid resolution, $3.5 \mu m$, $2.1 \times 30 mm$) at a flow of 0.40 mL/min. The solvent was MeOH/water (75:25 (v/v)), containing 5 mmol/L ammonium formate. The ion source is electrospray ionization (ESI).

Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectroscopy were performed on Bruker Advance 400M NMR and 600M NMR spectrometers. Chemical shifts of ¹H NMR spectra are reported as in units of parts per million (ppm) downfield from SiMe4 (δ 0.0) and relative to the signal of chloroform-*d* (δ = 7.260, singlet) and DMSO-*d6* (δ = 2.500, quintet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); m (multiplets), etc. The number of protons (n) for a given resonance is indicated by nH. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as in units of parts per million (ppm) downfield from SiMe4 (δ 0.0) and relative to the signal of chloroform-*d* (δ = 77.230, triplet) and DMSO-*d6* (δ = 39.510, septet).

Acetylation of sulfonamide derivatives:

General procedure for synthesis of sulfonamide derivertives:

A R^{1} R^{1} R^{1} R^{2} R^{2} R^{2} R^{2} R^{2} R^{2} R^{1} R^{2} R^{2} R^{2} R^{1} R

General procedure for synthesis of diazo compounds

$$\begin{array}{c} \mathsf{B} \\ \mathsf{R}^5 \widehat{} \mathsf{R}^6 \end{array} \xrightarrow[]{\text{TsN}_3, \text{ DBU}} \\ \mathsf{MeCN} \\ \hline \mathsf{Method } D \end{array} \xrightarrow[]{\mathsf{N}_2} \\ \mathsf{R}^5 \underbrace{\overset{\mathsf{N}_2}{\overset{\mathsf{H}_2}}}_{\mathsf{R}^6}$$

Figure

S1. General procedure for synthesis of sulfonamide derivertives and diazo compounds

Method A:

Sulfonamide (5 mmol) was dissolved in 5 mL acid anhydride, $0.1eq^{2}eq$ anhydrous $ZnCl_{2}$ was added, the reaction mixture was stirred at room temperature and monitored by TLC until the free sulfonamide was consumed completely, then poured into a mixture of EtOAc and water (100mL, v/v =

1:1). The organic layer was separated and the aqueous phase was extracted by EtOAc (50 mL). The organic layers were combined and washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, concentrated in *vacuo* to afford solid powder and washed with cold toluene to give the acetyl or propionyl sulfonamide without further purification, the purity was detected by ¹HNMR.

Method B:

Sulfonamide (5 mmol) and DMAP (61 mg, 0.5 mmol) were dissolved in 5 mL pyridine, then Ac_2O (4.7 mL, 50 mmol, 10 equiv) was added. The reaction mixture was stirred at room temperature overnight, and concentrated. The residue was dissolved in EtOAc (50 mL) and washed with saturated NH₄Cl (50 mL). The organic layer was dried over Na₂SO₄, concentrated again in *vacu*o, the residue was purified by silica gel chromatography.

Method C:

Amine (5 mmol) was dissolved in 20 mL DCM, the mixture was cooled to 0°C, then sulfonyl chloride (5 mmol) was added. The reaction mixture was warmed to room temperature and stirred overhight, and concentrated. The residue was dissolved in EtOAc (50 mL) and washed with saturated NH₄Cl (50 mL). The organic layer was dried over Na₂SO₄, concentrated again in *vacu*o, the residue was purified by silica gel chromatography.

Method D:

1,3-dicarbonyl compound (50 mmol) and tosyl azide (55 mmol) were dissolved in acetonitrile (100 mL), the mixture was cooled to 0°C. DBU (55 mmol) was added dropwise, and the reaction mixture was stirred for 3h. Solvent was removed and the residue was dissolved in DCM, washed with water, the aqueous layer was extracted by DCM, and the organic layers were combined and washed with brine, and dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by silica gel chromatography.

N-methoxy-3-methylbenzenesulfonamide (1c)

Method C, (94%, white powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1). m.p.: 79 – 80°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 10.48 (s, 1H), 7.68 – 7.63 (m, 2H), 7.54 – 7.50 (m, 2H), 3.65 (s, 3H), 2.40 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 138.8, 137.2, 134.1, 129.0, 128.1, 125.2, 64.3, 20.8. MS (ESI): m/z (M + H⁺) 202.2.

N-(tert-butyl)-3-methylbenzenesulfonamide (1d)

Method C, (92%, white powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1). m.p.: 82 - 83°C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 - 7.60 (m, 2H), 7.47 - 7.36 (m, 2H), 2.37 (s, 3H), 1.08 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 144.2, 138.5, 132.4, 128.8, 126.4, 123.4, 53.2, 29.7, 20.9. MS (ESI): m/z (M + H⁺) 228.2.

N-(m-tolylsulfonyl)acetamide (1e)

Method A, (95%, white powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1). m.p.: 95 – 96°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.04 (s, 1H), 7.73 – 7.67 (m, 2H), 7.53 – 7.49 (m, 2H), 2.40 (s, 3H), 1.92 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.7, 139.4, 138.8, 134.2, 129.0, 127.5, 124.6, 23.2, 20.8. MS (ESI): m/z (M + H⁺) 214.2.

tert-butyl (m-tolylsulfonyl)carbamate (1f)

Method B, (70%, white powder), $R_f = 0.4$ (EtOAc/Petroleum ether = 1:1). m.p.: 105 – 107°C. ¹H NMR (400 MHz, CDCl₃) δ 11.56 (s, 1H), 7.71 – 7.65 (m, 2H), 7.54 – 7.50 (m, 2H), 2.40 (s, 3H), 1.28 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 149.8, 139.6, 138.7, 134.0, 129.0, 127.3, 124.4, 82.1, 27.5, 20.8. **MS** (ESI): m/z (M + H⁺)

272.2.

N-((3-phenethylphenyl)sulfonyl)acetamide (1g)

(*E*)-*N*-((3-styrylphenyl)sulfonyl)acetamide (3.87 mmol, 1.165 g), NiCl₂·6H₂O (7.75 mmol, 1.84 g) and NaBH₄ (19.36 mmol, 732 mg) were dissolved in a mixture of 15 mL dry THF and 10 mL MeOH, and the reaction mixture was stirred at room temperature overnight. 50 mL H₂O was added and the mixture was

extracted by ethyl acetate. Organic layer was washed by sat. NaCl solution and dried over anhydrous Na₂SO₄. Solvent was removed, and the residue was purified by silica gel chromatography (50% yield, white powder, R_f = 0.4 (EtOAc/Petroleum ether = 1:2). m.p.: 77–78°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.01 (s, 1H), 7.76 – 7.71 (m, 2H), 7.58 – 7.49 (m, 2H), 7.30 – 7.15 (m, 5H), 3.02 – 2.95 (m, 2H), 2.93 – 2.87 (m, 2H), 1.92 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.69, 142.69, 140.92, 139.33, 133.73, 128.99, 128.41, 128.23, 127.00, 125.94, 125.08, 36.61, 36.55, 23.24. MS (ESI): m/z (M + H⁺) 304.2.

<u>N-([1,1'-biphenyl]-3-ylsulfonyl)acetamide (1h)</u>

Method A, (90%, light yellow powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1).
m.p.: 118 – 119°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.18 (s, 1H), 8.18 (s, 1H), 8.00
– 7.96 (m, 2H), 7.75 – 7.65 (m, 3H), 7.55 – 7.37 (m, 3H), 1.96 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 169.0, 141.0, 140.2, 138.5, 131.9, 129.9, 129.2, 128.4, 126.9, 126.3, 125.6, 23.3. MS (ESI): m/z (M + H⁺) 276.2.

N-((3-(furan-2-yl)phenyl)sulfonyl)acetamide (1i)

Method B, (90%, white powder), $R_f = 0.4$ (EtOAc/Petroleum ether = 1:1). m.p.: 146 - 147°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.17 (s, 1H), 8.18 (s, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.83 (s, 2H), 7.67 (t, *J* = 7.8 Hz, 1H), 7.11 (s, 1H), 6.64 (s, 1H), 1.95 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.9, 151.2, 144.0, 140.3, 131.0, 129.9, 128.3, 126.0, 121.8, 112.4, 107.8, 23.3. MS (ESI): m/z (M + H⁺) 266.2.

N-((3-(thiophen-3-yl)phenyl)sulfonyl)acetamide (1j)

Method B, (85%, white powder), R_f = 0.4 (EtOAc/Petroleum ether = 1:1). m.p.: 126 – 127°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.13 (s, 1H), 8.15 (t, *J* = 1.7 Hz, 1H), 8.07 – 8.02 (m, 1H), 8.00 (dd, *J* = 2.9, 1.4 Hz, 1H), 7.85 – 7.82 (m, 1H), 7.72 – 7.65 (m, 2H), 7.57 (dd, *J* = 5.0, 1.4 Hz, 1H), 1.95 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 169.0, 140.2, 139.6, 136.0, 131.1, 129.9, 127.9, 126.0, 125.9, 124.7, 122.8, 23.3.

MS (ESI): m/z (M + H⁺) 282.1.

(E)-N-((3-styrylphenyl)sulfonyl)acetamide (1k)

Method A, (82%, white powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1).
m.p.: 158 – 160°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.13 (s, 1H), 8.08 (d, *J* = 1.8 Hz, 1H), 7.97 (d, *J* = 9.1 Hz, 1H), 7.80 (d, *J* = 8.2 Hz, 1H), 7.74 – 7.59 (m, 3H), 7.46 – 7.25 (m, 5H), 1.95 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.8, 140.0, 138.1, 136.5, 130.8, 130.7, 129.6, 128.7, 128.2, 126.8, 126.7, 126.2,

125.3, 23.3. **MS** (ESI): m/z (M + H⁺) 302.2.

Methyl 3-(N-acetylsulfamoyl)benzoate (11)

N-((3-acetylphenyl)sulfonyl)acetamide (1m)

Method A, (88%, white powder), *R*_f = 0.3 (EtOAc/Petroleum ether = 2:1). m.p.: 146
- 147°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.23 (s, 1H), 8.37 (s, 1H), 8.29 (d, *J* = 7.8 Hz, 1H), 8.15 (d, *J* = 7.9 Hz, 1H), 7.80 (t, *J* = 7.8 Hz, 1H), 2.65 (s, 3H), 1.93 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 196.7, 169.0, 140.1, 137.2, 133.4, 131.6, 129.9, 126.5, 26.8, 23.3. MS (ESI): m/z (M + H⁺) 242.2.

N-((3-((trimethylsilyl)ethynyl)phenyl)sulfonyl)acetamide (1n)

Method A, (92%, white powder), *R*_f = 0.5 (EtOAc/Petroleum ether = 1:1).
m.p.: 136 – 137°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.18 (s, 1H), 7.94 – 7.90 (m, 2H), 7.76 (d, *J* = 7.8 Hz, 1H), 7.63 (t, *J* = 8.1 Hz, 1H), 1.94 (s, 3H), 0.24 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d6*)) δ 168.9, 139.8, 136.2, 130.4, 129.8, 127.7, 123.0, 103.0, 96.6, 23.2, -0.3. MS (ESI): m/z (M + H⁺) 296.2.

<u>N-(o-tolylsulfonyl)acetamide (10)</u>

¹³C NMR (101 MHz, DMSO-*d6*) δ 168.6, 137.4, 136.9, 133.5, 132.4, 130.2, 126.2, 23.1, 19.5. MS (ESI): m/z (M + H⁺) 214.2.

<u>N-((2-(benzyloxy)phenyl)sulfonyl)acetamide (1p)</u>

Method A, (92%, white powder), $R_f = 0.4$ (EtOAc/Petroleum ether = 1:1). m.p.: 140 – 141°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.15 (d, *J* = 7.9 Hz, 1H), 6.74 – 6.64 (m, 3H), 6.58 – 6.46 (m, 3H), 6.34 (d, *J* = 8.4 Hz, 1H), 6.24 (t, *J* = 7.6 Hz, 1H), 4.52 (s, 2H), 1.12 (s, 3H). ¹³C NMR (101 MHz,

DMSO-*d6*) δ 161.6, 147.8, 128.2, 127.1, 123.2, 120.2, 119.6, 119.0, 118.6, 111.8, 105.6, 61.9, 13.8. **MS** (ESI): m/z (M + H⁺) 306.2.

N-([1,1'-biphenyl]-2-ylsulfonyl)acetamide (1q)

SO2NHACMethod A, (91%, white powder), $R_f = 0.5$ (EtOAc/Petroleum ether = 1:1).m.p.: 180 - 182°C. ¹H NMR (400 MHz, DMSO-d6) δ 11.50 (s, 1H), 8.08 (d, J =8.0 Hz, 1H), 7.71 (t, J = 7.4 Hz, 1H), 7.62 (t, J = 7.7 Hz, 1H), 7.46 - 7.41 (m, 3H),7.38 - 7.32 (m, 3H), 1.72 (s, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ 168.5, 140.5,

138.7, 137.4, 133.0, 132.5, 129.6, 128.9, 127.9, 127.8, 127.7, 23.0. **MS** (ESI): m/z (M + H⁺) 276.2.

<u>N-((2-(2-methoxyethoxy)phenyl)sulfonyl)acetamide(1r)</u>

SO₂NHAC Method A, (95%, white powder), **R**_f = 0.3 (EtOAc/Petroleum ether = 2:1). **m.p.**: 95 – 96°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 11.77 (s, 1H), 7.82 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.26 (d, *J* = 8.5 Hz, 1H), 7.13 – 7.07 (m, 1H), 4.32 – 4.25 (m, 2H), 3.78 – 3.70 (m, 2H), 3.31 (s, 3H), 1.93 (s, 3H). ¹³C NMR (101 MHz, DMSO-

d6) δ 168.8, 155.8, 135.5, 130.8, 126.9, 120.2, 114.0, 70.1, 68.3, 58.2, 23.1. **MS** (ESI): m/z (M + H+) 274.2.

<u>N-((2-(trifluoromethoxy)phenyl)sulfonyl)acetamide (1s)</u>

SO₂NHAC Method A, (91%, white powder), $R_f = 0.5$ (EtOAc/Petroleum ether = 1:1). m.p.: 166 – 168°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.49 (s, 1H), 8.06 (dd, J = 8.1, 1.7 Hz, 1H), 7.88 – 7.81 (m, 1H), 7.65 – 7.58 (m, 2H), 1.95 (s, 3H). ¹³C NMR (101

MHz, DMSO-*d6*) δ 169.0, 145.2, 136.1, 132.3, 131.2, 127.4, 120.9, 120.0 (q, *J* = 260.6 Hz), 23.0. **MS** (ESI): m/z (M + H⁺) 284.1.

Methyl 2-(N-acetylsulfamoyl)benzoate (1t)

Method A, (75%, white powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1). m.p.: 146 – 147°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.10 (s, 1H), 8.11 – 8.06 (m, 1H), 7.77 (pd, *J* = 7.5, 1.6 Hz, 2H), 7.70 – 7.66 (m, 1H), 3.87 (s, 3H), 1.96 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.8, 167.0, 136.4, 133.7, 132.1,

130.75, 130.74, 129.0, 53.2, 23.2. **MS** (ESI): m/z (M + H⁺) 258.2.

N-((2-nitrophenyl)sulfonyl)acetamide (1u)

Method A, (75%, white powder), **R**_f = 0.4 (EtOAc/Petroleum ether = 1:1). m.p.: 166 – 167°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.62 (d, *J* = 38.3 Hz, 1H), 8.15 (dd, *J* = 7.5, 1.7 Hz, 1H), 8.00 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.94 – 7.84 (m, 2H), 1.97 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 169.1, 147.6, 135.5, 132.4, 132.2, 130.7, 124.6,

23.1. **MS** (ESI): m/z (M + H⁺) 215.2.

<u>N-((2,4-dimethylphenyl)sulfonyl)acetamide (1v)</u>

Method A, (95%, white powder), R_f = 0.3 (EtOAc/Petroleum ether = 1:1). m.p.: 137 – 138°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.07 (s, 1H), 7.88 – 7.79 (m, 1H), 7.25 – 7.18 (m, 2H), 2.53 (s, 3H), 2.34 (s, 3H), 1.92 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.5, 143.9, 136.7, 134.5, 132.8, 130.4, 126.6, 23.1, 20.8, 19.4. MS (ESI): m/z (M +

H⁺) 228.2.

Methyl 5-(N-acetylsulfamoyl)-2-methoxybenzoate (1w)

Method A, (77%, white powder), R_f = 0.3 (EtOAc/Petroleum ether = 2:1).
m.p.: 169 – 171°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.06 (s, 1H), 8.16 (d, J = 2.5 Hz, 1H), 8.05 (dd, J = 8.9, 2.5 Hz, 1H), 7.38 (d, J = 9.0 Hz, 1H), 3.93 (s, 3H), 3.83 (s, 3H), 1.91 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.9, 164.7, 161.8, 133.4, 130.8, 130.4, 119.8, 113.2, 56.6, 52.4, 23.2. MS (ESI): m/z (M

+ H⁺) 288.2.

<u>N-((2-methoxy-4-methylphenyl)sulfonyl)acetamide (1x)</u>

56.2, 23.1, 21.4. **MS** (ESI): m/z (M + H⁺) 244.1.

N-((3,4-dimethoxyphenyl)sulfonyl)acetamide (1y)

SO₂NHAC Method A, (95%, white powder), $R_f = 0.2$ (EtOAc/Petroleum ether = 1:1). m.p.: 125 – 126°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 11.89 (s, 1H), 7.51 (dd, J = 8.5, 2.1Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H), 7.16 (d, J = 8.6 Hz, 1H), 3.85 (s, 3H), 3.81 (s, 3H), 1.91 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.7, 152.9, 148.3, 130.8, 121.6,

111.1, 110.1, 55.9, 55.8, 23.2. **MS** (ESI): m/z (M + H⁺) 260.2.

<u>N-((4-bromo-3-methylphenyl)sulfonyl)acetamide (1z)</u>

168.9, 138.7, 138.7, 132.9, 130.0, 129.4, 126.7, 23.3, 22.4. **MS** (ESI): m/z (M + H⁺) 292.1.

N-((2,5-dimethoxyphenyl)sulfonyl)acetamide (1aa)

SO₂NHAc **Method A**, (92%, white powder), $R_f = 0.2$ (EtOAc/Petroleum ether = 1:1). m.p.: MeO 164 – 165 °C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.00 (s, 1H), 7.31 (s, 1H), 7.24 (d, J = 9.1 Hz, 1H), 7.18 (d, J = 9.0 Hz, 1H), 3.85 (s, 3H), 3.76 (s, 3H), 1.93 (s, 3H). OMe

¹³C NMR (101 MHz, DMSO-*d6*) δ 168.8, 152.2, 150.6, 127.2, 120.7, 115.5, 114.7, 56.7, 55.8, 23.1. MS (ESI): m/z (M + H⁺) 260.1.

N-(thiophen-2-ylsulfonyl)acetamide (1ab)

Method A, (85%, white powder), $R_f = 0.3$ (EtOAc/Petroleum ether = 1:1). m.p.: 90 – SO₂NHAc 91°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.24 (s, 1H), 8.02 (d, *J* = 4.9 Hz, 1H), 7.78 (d, *J* = 3.2 Hz, 1H), 7.19 (t, J = 4.2 Hz, 1H), 1.95 (s, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ 168.8, 139.7, 134.6, 134.1, 127.5, 23.3. **MS** (ESI): m/z (M + H⁺) 206.1

N-tosylacetamide (1ac)

SO₂NHAc Method A (95%, white powder), $R_f = 0.5$ (EtOAc/Petroleum ether = 1:1). m.p.: 133 – 135°C. ¹H NMR (400 MHz, DMSO-*dθ*) δ 12.03 (s, 1H), 7.80 – 7.77 (m, 2H), 7.44 – 7.41 (m, 2H), 2.39 (s, 3H), 1.90 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.7, 144.2, 136.5, 129.5, 127.6, 23.2, 21.1. **MS** (ESI): m/z (M + H⁺) 214.2.

N-((4-methoxyphenyl)sulfonyl)acetamide (1ad)

SO₂NHAc Method A, (97%, white powder), R_f = 0.4 (EtOAc/Petroleum ether = 2:1). m.p.: 142 – 143°C. ¹H NMR (400 MHz, DMSO-*d*6) δ 11.94 (s, 1H), 7.86 (d, *J* = 8.7 Hz, 2H), 7.11 (d, *J* = 8.7 Hz, 2H), 3.82 (s, 3H), 1.90 (s, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ 168.8, 163.2, 130.9, 130.0, 114.3, 55.8, 23.2. **MS** (ESI): m/z (M + H⁺) 230.2.

N-((4-chlorophenyl)sulfonyl)acetamide (1ae)

Method A, (88%, white powder), *R*_f = 0.5 (EtOAc/Petroleum ether = 1:1). m.p.: 192 – 193°C. ¹H NMR (400 MHz, DMSO-*dθ*) δ 12.21 (s, 1H), 7.94 – 7.89 (m, 2H), 7.74 – 7.69 (m, 2H), 1.93 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 169.0, 138.7, 138.1, 129.5, 129.3, 23.2. MS (ESI): m/z (M + H⁺) 234.1.

Methyl 4-(N-acetylsulfamoyl)benzoate (1af)

SO₂NHAc Method A, (77%, white powder), R_f = 0.3 (EtOAc/Petroleum ether = 1:1). m.p.: 193 -195°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.27 (s, 1H), 8.15 – 8.10 (m, 2H), 8.03 – 7.98 (m, 2H), 3.86 (s, 3H), 1.90 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*6) δ 169.0, 165.0, 143.2, 133.9, 129.9, 128.0, 52.7, 23.2. **MS** (ESI): m/z (M + H⁺) 258.2. CO₂Me

N-((4-nitrophenyl)sulfonyl)acetamide (1ag)

Method A, (75%, white powder), $R_f = 0.2$ (EtOAc/Petroleum ether = 1:1). m.p.: 196 – SO₂NHAc 198°C. ¹H NMR (400 MHz, DMSO-*dθ*) δ 12.43 (s, 1H), 8.42 – 8.37 (m, 2H), 8.15 – 8.11 (m, 2H), 1.92 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 169.1, 150.3, 144.5, 129.2, 124.5, 23.3. **MS** (ESI): m/z (M + H⁺) 215.2.

N-(quinolin-8-ylsulfonyl)acetamide (1ah)

Method B, (77%, white powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1). m.p.: 200 – 201°C.¹H NMR (400 MHz, DMSO-*d6*) δ 12.30 (s, 1H), 9.09 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.56 (dd, *J* = 8.4, 1.7 Hz, 1H), 8.46 (dd, *J* = 7.4, 1.4 Hz, 1H), 8.35 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.83 – 7.78 (m, 1H), 7.72 (dd, *J* = 8.3, 4.2 Hz, 1H), 1.88 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d6*) δ 169.0, 151.5, 142.8, 137.1, 135.2, 134.7, 133.1, 128.4, 125.6, 122.6, 23.1. MS (ESI): m/z (M + H⁺) 250.2.

N-((2-(tert-butyl)benzo[d]oxazol-7-yl)sulfonyl)acetamide (1ai)

Method A, (89%, gray powder), R_f = 0.5 (EtOAc/Petroleum ether = 1:1).
m.p.: 178 – 179°C. ¹H NMR (400 MHz, DMSO-d6) δ 12.64 (s, 1H), 8.06 (dd, J = 8.0, 1.1 Hz, 1H), 7.82 (dd, J = 7.9, 1.1 Hz, 1H), 7.54 (t, J = 7.9 Hz, 1H), 1.95 (s, 3H), 1.47 (s, 9H). ¹³C NMR (101 MHz, DMSO-d6) δ 174.2, 169.0,

145.2, 142.3, 125.2, 124.9, 124.4, 122.9, 34.0, 27.9, 23.1. **MS** (ESI): m/z (M + H⁺) 297.2.

N-(benzo[c][1,2,5]thiadiazol-4-ylsulfonyl)acetamide (1aj)

N-((5-(dimethylamino)naphthalen-1-yl)sulfonyl)acetamide (1ak)

Method B, (87%, yellow powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1). m.p.:
216 – 218°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.38 (s, 1H), 8.52 (d, *J* = 8.5 Hz, 1H), 8.29 (d, *J* = 7.3 Hz, 1H), 8.21 (d, *J* = 8.6 Hz, 1H), 7.65 (dt, *J* = 16.1, 8.0 Hz, 2H),
7.25 (d, *J* = 7.5 Hz, 1H), 2.82 (s, 6H), 1.89 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.5, 151.6, 134.2, 130.9, 130.7, 128.8, 128.8, 128.4, 123.5, 117.9, 115.2,

45.0, 23.2. **MS** (ESI): m/z (M + H⁺) 293.2.

N-((2-(4-methoxypiperidin-1-yl)phenyl)sulfonyl)acetamide (1ah)

Method A, (85%, yellow powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1).
m.p.: 125 – 127°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 11.67 (s, 1H),
7.93 (d, *J* = 7.9 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.50 (d, *J* = 7.9 Hz, 1H),
7.34 (t, *J* = 7.6 Hz, 1H), 3.38 – 3.30 (m, 1H), 3.28 (s, 3H), 2.98 – 2.91 (m,

2H), 2.74 – 2.68 (m, 2H), 2.02 – 1.94 (m, 2H), 1.92 (s, 3H), 1.85 – 1.74 (m, 2H). ¹³**C NMR** (101 MHz, DMSO*d6*) δ 168.3, 152.7, 135.4, 134.7, 131.1, 125.1, 124.6, 75.3, 54.9, 51.1, 30.3, 22.9. **MS** (ESI): m/z (M + H⁺) 313.2.

N-((3-(dimethylamino)phenyl)sulfonyl)acetamide (1ai)

Method B, (83%, white powder), *R*_f = 0.3 (EtOAc/Petroleum ether = 1:1). m.p.:
112 - 113°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 11.92 (s, 1H), 7.42 - 7.35 (m, 1H),
7.16 - 7.11 (m, 2H), 7.01 - 6.96 (m, 1H), 2.95 (s, 6H), 1.92 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.64 150.1, 140.2, 129.6, 116.6, 114.0, 109.7, 39.8, 23.3.

MS (ESI): m/z (M + H⁺) 243.2.

N-((3-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl)sulfonyl)acetamide (1aj)

Method B, (88%, brown powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1).
m.p.: 193 – 194°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.22 (s, 1H), 7.96 (d, *J* = 7.7 Hz, 1H), 7.78 (t, *J* = 7.9 Hz, 1H), 7.71 (s, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 5.85 (s, 2H), 1.98 (s, 6H), 1.95 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 167.0, 140.2, 138.6, 133.1, 130.4, 127.7, 127.0, 126.3, 106.7, 23.2, 12.7. MS (ESI): m/z (M +

H⁺) 293.2.

<u>N-((3-(quinolin-8-yl)phenyl)sulfonyl)acetamide (1ak)</u>

SO₂NHAC Method B, (82%, white powder), *R*_f = 0.3 (EtOAc/Petroleum ether = 1:1).
m.p.: 173°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.13 (s, 1H), 8.92 (dd, *J* = 4.1, 1.8 Hz, 1H), 8.48 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.21 (t, *J* = 1.7 Hz, 1H), 8.08 (dd, *J* = 8.2, 1.4 Hz, 1H), 8.03 - 8.00 (m, 1H), 7.97 (ddd, *J* = 7.9, 1.7, 1.1 Hz, 1H), 7.84 (dd, *J* = 7.1, 1.4 Hz, 1H), 7.76 - 7.71 (m, 2H), 7.61 (dd, *J* = 8.3, 4.1 Hz, 1H), 1.96 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.9, 150.6, 144.8, 139.8, 139.0,

137.8, 136.6, 135.7, 130.3, 129.3, 128.8, 128.6, 128.4, 126.5, 126.1, 121.7, 23.3. **HRMS** (ESI): m/z (M + H⁺) calcd for $C_{17}H_{15}O_3N_2S$, 327.0798, found: 327.0786.

N-((3-methyl-4-(quinolin-8-yl)phenyl)sulfonyl)acetamide (1al)

Method B, (80%, white powder), $R_f = 0.3$ (EtOAc/Petroleum ether = 1:1). **m.p.**:215 °C .¹H NMR (400 MHz, DMSO-*d6*) δ 12.14 (s, 1H), 8.83 (dd, J = 4.2, 1.8 Hz, 1H), 8.46 (dd, J = 8.3, 1.8 Hz, 1H), 8.07 (dt, J = 7.5, 3.7 Hz, 1H), 7.84 (d, J = 1.4 Hz, 1H), 7.81 (dd, J = 8.0, 1.8 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.65 (dd, J = 7.1, 1.5 Hz, 1H), 7.57 (dd, J = 8.3, 4.2 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 2.02 (s, 3H), 2.00 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.9, 150.5, 145.5, 145.3, 138.8, 138.3, 137.8, 136.5,

130.9, 130.0, 128.6, 128.0, 127.9, 126.3, 124.4, 121.6, 23.4, 20.1. **HRMS** (ESI): m/z (M + H⁺) calcd for $C_{18}H_{17}O_3N_2S$, 341.0954, found: 341.0945.

[E]-N-((3-methyl-4-(phenyldiazenyl)phenyl)sulfonyl)acetamide (1am)

Method B, (85%, red powder), *R*_f = 0.3 (EtOAc/Petroleum ether = 1:2). m.p.: 137-138°C. ¹H NMR (400 MHz, DMSO-*dθ*) δ 12.17 (s, 1H), 7.97 – 7.93 (m, 3H), 7.86 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.65 – 7.61 (m, 3H), 2.73 (s, 3H), 1.96 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.9, 152.6, 152.2, 140.7, 137.9, 132.4, 130.4,

129.6, 126.2, 123.0, 116.2, 23.3, 17.1. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₅H₁₆O₃N₃S, 318.0907, found: 318.0897

<u>N-((4-acetamido-3-methylphenyl)sulfonyl)acetamide (1an)</u>

Method B, (82%, light yellow powder), $R_f = 0.5$ (EtOAc/Petroleum ether = 1:1). m.p.: 238-240°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 11.98 (s, 1H), 9.46 (s, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.73 – 7.67 (m, 2H), 2.30 (s, 3H), 2.12 (s, 3H), 1.91 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.8, 168.7, 141.4, 134.4, 130.7, 129.4, 125.7, 123.6, 23.6, 23.2, 17.9. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₁H₁₅O₄N₂S, 271. 0747, found: 271.0737.

N-((4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl)sulfonyl)acetamide (1ao)

Method B, (81%, gray powder), $R_f = 0.5$ (EtOAc/Petroleum ether = 1:1). m.p.: 204 – 206°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.22 (s, 1H), 8.04 (d, *J* = 8.5 Hz, 2H), 7.51 (t, J = 10.8 Hz, 2H), 5.85 (s, 2H), 1.99 (s, 6H), 1.97 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 169.0, 142.7, 138.1, 128.7, 128.5, 127.7, 107.0, 23.3, 12.9. **MS** (ESI): m/z (M + H⁺) 293.2.

N-((2,3-dihydro-1H-inden-5-yl)sulfonyl)acetamide (1ap)

SO₂NHAc Method A, (95%, white powder), *R*_f = 0.4 (EtOAc/Petroleum ether = 1:1). **m.p.**: 136 - 137°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 11.97 (s, 1H), 7.73 (s, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.44 (d, J = 7.9 Hz, 1H), 2.93 (td, J = 7.3, 2.6 Hz, 4H), 2.06 (p, J = 7.5 Hz, 2H), 1.91 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.6, 150.4, 144.9, 137.3, 125.9,

124.6, 123.2, 32.4, 32.1, 25.0, 23.2. **MS** (ESI): m/z (M + H⁺) 240.2.

N-((4-(5-methyl-3-phenylisoxazol-4-yl)phenyl)sulfonyl)propionamide (1aq)

Method A, (89%, white powder), $R_f = 0.4$ (EtOAc/Petroleum ether = 1:1). m.p.: 142 – 143°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.09 (s, 1H), 7.95 – 7.89 (m, 2H), 7.50 – 7.39 (m, 5H), 7.36 – 7.31 (m, 2H), 2.49 (s, 3H), 2.24 (q, J = 7.4 Hz, 2H), 0.90 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 172.4, 167.8, 160.7, 137.8, 130.1, 129.8,

128.8, 128.3, 128.2, 127.9, 114.0, 28.8, 11.5, 8.3. MS (ESI): m/z (M + H⁺) 371.2.

N-((3-methyl-4-(1H-pyrazol-1-yl)phenyl)sulfonyl)acetamide (1ar)

Method B, (77%, light yellow powder), *R*_f = 0.3 (EtOAc/Petroleum ether = 1:1). m.p.: 148-149°C. ¹H NMR (400 MHz, DMSO-*d*6) δ 12.21 (s, 1H), 8.19 (d, *J* = 2.4 Hz, 1H), 7.91 (d, J = 1.8 Hz, 1H), 7.85 (dd, J = 8.4, 2.1 Hz, 1H), 7.80 (d, J = 1.6 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 6.57 – 6.52 (m, 1H), 2.35 (s, 3H), 1.93 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 169.0, 143.3, 141.2, 138.3, 133.2, 131.8, 130.5, 126.3, 126.1, 107.3, 23.4, 18.5. **MS** (ESI): m/z (M + H⁺) 280.1.

N-((3-methyl-4-(pyridin-2-yl)phenyl)sulfonyl)acetamide (1as)

SO₂NHAc Method B, (86%, white powder), R_f = 0.3 (EtOAc/Petroleum ether = 1:1). m.p.: 187 - 189°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.17 (s, 1H), 8.68 (ddd, J = 4.7, 1.6, 0.9 Hz, 1H), 7.95 (td, J = 7.6, 1.7 Hz, 1H), 7.87 - 7.81 (m, 2H), 7.62 (ddd, J = 7.7, 2.5, 1.3 Hz, 2H), 7.45 (ddd, J = 7.7, 4.8, 1.1 Hz, 1H), 2.40 (s, 3H), 1.95 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 169.3, 157.5, 149.4, 144.8, 139.2, 137.0, 136.7, 130.5, 129.2, 125.1, 124.3, 122.9, 23.5, 20.2. MS (ESI): m/z (M + H⁺) 291.1.

Dimethyl 2-diazomalonate (2a)

MeO₂C CO₂Me

Method C, (78%, yellow oil), $R_f = 0.4$ (EtOAc/Petroleum ether = 1:4). ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 52.6. MS (ESI): m/z (M + H⁺) 159.2.

Methyl 2-diazo-3-oxobutanoate (2b)

Method C, (76%, yellow oil), $R_f = 0.4$ (EtOAc/Petroleum ether = 1:4). ¹H NMR (400 MHz, CDCl₃) δ 3.80 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.9, 161.7, 52.1, 28.0. MS (ESI): m/z (M + H⁺) 143.2.

Methyl 2-diazo-2-(diethoxyphosphoryl)acetate (2c)

Method C, (76%, yellow oil), $R_f = 0.3$ (EtOAc/Petroleum ether = 1:1). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 4.28 - 4.05 \text{ (m, 4H)}, 3.77 \text{ (s, 3H)}, 1.35 - 1.30 \text{ (m, 6H)}. ^{13}C \text{ NMR}$ (101 MHz, CDCl₃) δ 163.4, 63.5, 63.4, 52.3, 15.9, 15.8. MS (ESI): m/z (M + H⁺) 237.2.

Methyl 2-diazo-2-(methylsulfonyl)acetate (2d)

Method C, (75%, white thick solid), R_f = 0.3 (EtOAc/Petroleum ether = 1:2).¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 3.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 53.3, 45.0. MS (ESI): m/z (M + H⁺) 179.1.

Methyl 2-diazo-2-tosylacetate (2e)

Method C, (75%, yellow powder, $R_f = 0.3$ (EtOAc/Petroleum ether = 1:2). m.p.: 58 – 69°C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.99 (m, 2H), 7.67 – 7.61 (m, 1H), 7.57 – 7.52 (m, 2H), 3.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 141.8, 134.3,

129.4, 128.0, 53.0. **MS** (ESI): m/z (M + H⁺) 254.1.

General procedure for the Rh-catalyzed C-H bond carbenoid founctionalization: A 10 mL tube equipped with a magnetic stir bar was charged with $[RhCp*Cl_2]_2(2.5 \sim 5.0 \text{ mol}\%)$, AgOAc (10 ~ 20 mol%), *N*-Ac substituted sulfonamide (0.25 mmol) and 2.5 mL DCE, then diazo compound (1.1 ~ 2.0 equivlent) was added. The tube was sealed, and the reaction mixture was stirred at 60°C for 5h. DCE was removed under vacuo, and 10 mL DCM was added. The mixture was then filtered, the filtrate was concentrated, and the residue was purified by preparative TLC on silica gel to afford desired compound.

<u>Dimethyl 2-(2-(N-acetylsulfamoyl)-4-methylphenyl)malonate (3)</u>

A 10 mL tube equipped with a magnetic stir bar was charged with [RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), **1a** (53.3 mg, 0.25 mmol) and 2.5 mL DCE, then **2a** (79 mg, 0.5 mmol) was added. The tube was sealed, and the reaction mixture was stirred at 60°C for 5h. DCE was removed under vacuo, and 10 mL DCM was added. The mixture was then filtered, the filtrate

was concentrated, and the residue was purified by preparative TLC on silica gel (EAOAc/ Petroleum ether = 1:1, \mathbf{R}_{f} = 0.4) to afford **3** (80 mg) which was dissolved in 2 mL toluene and followed by adding a small amount of petroleum ether under ultrasonic condition to 71.5 mg white powder (83% yield). **m.p.**: 157 – 159°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.40 (s, 1H), 7.83 (d, *J* = 1.3 Hz, 1H), 7.54 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 5.73 (s, 1H), 3.69 (s, 6H), 2.40 (s, 3H), 1.89 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.8, 168.0, 138.4, 137.4, 134.5, 130.8, 130.8, 128.4, 53.0, 52.2, 23.1, 20.5. HRMS (ESI): m/z (M + H⁺) calcd for C₁₄H₁₈O₇NS, 344.0798, found: 344.0792.

Dimethyl 2-(2-(N-acetylsulfamoyl)-4-phenethylphenyl)malonate (4)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((3-phenethylphenyl)sulfonyl)acetamide (75.7 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C for 5h. 85.2 mg 4 was obtained (79% yield, white powder, EAOAc/ Petroleum ether = 1:1, *R*_f = 0.3). m.p.: 101 – 102°C.

¹**H NMR** (400 MHz, DMSO-*d6*) δ 7.81 (d, *J* = 1.8 Hz, 1H), 7.41 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.31 – 7.28 (m, 4H), 7.26 – 7.15 (m, 2H), 6.03 (s, 1H), 3.65 (s, 6H), 3.01 – 2.80 (m, 4H), 1.69 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 173.4, 168.6, 142.5, 141.3, 141.0, 131.2, 129.9, 128.7, 128.3, 128.3, 126.0, 125.3, 52.6 (X2), 36.7, 36.6, 25.4. **HRMS** (ESI): m/z (M + H⁺) calcd for C₂₁H₂₄O₇NS, 434.1268, found: 434.1269.

Dimethyl 2-(3-(N-acetylsulfamoyl)-[1,1'-biphenyl]-4-yl)malonate (5)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-([1,1'biphenyl]-3-ylsulfonyl)acetamide (68.7 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C for 5h. 89 mg 5 was obtained (88% yield, white powder, EAOAc/ Petroleum ether = 1:1, R_f = 0.4). m.p.: 97–98°C. ¹H

NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 8.46 (d, *J* = 2.0 Hz, 1H), 7.87 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.64 – 7.61 (m, 2H), 7.49 – 7.44 (m, 2H), 7.42 – 7.38 (m, 1H), 5.96 (s, 1H), 3.79 (s, 6H), 2.02 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 168.7, 168.6, 142.1, 138.5, 137.8, 132.6, 132.2, 130.3, 130.2, 129.3, 128.7, 127.4, 23.5. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₉H₂₀O₇NS, 406.0955, found: 406.0949.

Dimethyl 2-(2-(N-acetylsulfamoyl)-4-(furan-2-yl)phenyl)malonate (6)

NHAc CO₂Me CO₂Me

2-yl)phenyl)sulfonyl)acetamide (66.2 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C for 5h. 86 mg **6** was obtained (87% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4). m.p.: 155 – 156°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 8.13 (d, *J* = 2.0 Hz, 1H), 7.79 (dd, *J* = 1.8, 0.7 Hz, 1H), 7.73 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.29 (d, *J* = 8.1 Hz, 1H), 6.97 (dd, *J* = 3.4, 0.7 Hz, 1H), 6.63 (dd, *J* = 3.4, 1.8 Hz, 1H), 6.19 (s, 1H), 3.64 (s, 6H), 1.59 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 175.7, 168.8, 152.2, 145.7, 143.5, 130.2, 129.3, 129.1, 124.8, 123.3, 112.3, 106.7, 52.9, 52.5, 26.5. HRMS (ESI): m/z (M + H⁺) calcd for C₁₇H₁₈O₈NS, 396.0748, found: 396.0744.

Dimethyl 2-(2-(N-acetylsulfamoyl)-4-(thiophen-3-yl)phenyl)malonate (7)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((3-(thiophen-3-yl)phenyl)sulfonyl)acetamide (70.2 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C for 5h. 87.7 mg 7 was obtained (85% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4). m.p.: 144 – 145°C. ¹H NMR (400 MHz, DMSO-*d*6) δ 8.09 (d, *J* = 2.0 Hz,

1H), 7.87 (dd, J = 2.9, 1.3 Hz, 1H), 7.75 (dd, J = 8.1, 2.0 Hz, 1H), 7.68 (dd, J = 5.0, 2.9 Hz, 1H), 7.51 (dd, J = 5.0, 1.3 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 6.18 (s, 1H), 3.65 (s, 6H), 1.61 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 175.2, 168.8, 145.3, 140.4, 134.0, 130.1, 129.1, 127.6, 127.5, 126.1, 125.9, 121.8, 52.8, 52.5, 26.3. HRMS (ESI): m/z (M + H⁺) calcd for C₁₇H₁₈O₇NS₂, 412.0519, found: 412.0514.

Dimethyl (E)-2-(2-(N-acetylsulfamoyl)-4-styrylphenyl)malonate (8)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *(E)-N-((3-styrylphenyl)sulfonyl)acetamide* (75.2 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C for 5h. 94 mg **8** was obtained (87% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.5). m.p.: 211 – 212°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 8.02 (d, *J* = 1.7 Hz, 1H), 7.66 (d, *J* = 7.5 Hz,

3H), 7.39 (t, J = 7.6 Hz, 2H), 7.36 – 7.22 (m, 4H), 6.19 (s, 1H), 3.64 (s, 6H), 1.59 (s, 3H). ¹³**C** NMR (101 MHz, DMSO-*d6*) δ 175.3, 168.8, 145.6, 136.8, 135.8, 129.8, 129.5, 129.3, 128.7, 127.9, 127.5, 127.4, 126.7, 126.4, 52.8, 52.4, 26.5. HRMS (ESI): m/z (M + H⁺) calcd for C₂₁H₂₂O₇NS, 432.1111, found: 432.1109.

Dimethyl 2-(2-(N-acetylsulfamoyl)-4-(methoxycarbonyl)phenyl)malonate (9)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *methyl 3-(N-acetylsulfamoyl)benzoate* (64.2 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 67.3 mg **9** was obtained (69% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.5). m.p.: 171 – 172°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.66 (s, 1H), 8.54 (d, *J* =

1.5 Hz, 1H), 8.25 (dd, J = 8.1, 1.3 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 5.89 (s, 1H), 3.92 (s, 3H), 3.71 (s, 6H),

1.87 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*)) δ 169.8, 167.4, 164.7, 135.9, 133.6, 131.7, 131.1, 129.6, 53.2, 52.7, 52.6, 23.4. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₅H₁₈O₉NS, 388.0697, found: 388.0685.

Dimethyl 2-(4-acetyl-2-(N-acetylsulfamoyl)phenyl)malonate (10)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N-((3-acetylphenyl)sulfonyl)acetamide* (60.2 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 70 mg 10 was obtained (71% yield, white powder, EAOAc/ Petroleum ether = 2:1, *R*_f = 0.5). m.p.: 125 – 126°C.

¹**H NMR** (400 MHz, DMSO-*d6*) δ 8.48 (s, 1H), 8.27 (d, *J* = 6.0 Hz, 1H), 7.63 (d, *J* = 6.7 Hz, 1H), 5.92 (s, 1H), 3.70 (s, 6H), 2.64 (s, 3H), 1.87 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 196.5, 169.9, 167.5, 139.2, 136.2, 135.6, 133.1, 131.6, 129.6, 53.2, 52.6, 26.8, 23.5. **HRMS** (ESI): m/z (M + Na⁺) calcd for C₁₅H₁₇O₈NNaS, 394.0567, found: 394.0555.

Dimethyl 2-(2-(N-acetylsulfamoyl)-4-((trimethylsilyl)ethynyl)phenyl)malonate (11)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((3-((trimethylsilyl)ethynyl)phenyl)sulfonyl)acetamide (73.7 mg, 0.25 mmol), 2a (59.2 mg, 0.375 mmol), 2.5 mL DCE, 60°C for 5h. 44.5 mg 11 was obtained (42% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.5). m.p.: 88 – 89°C. ¹H NMR (400 MHz, CDCl₃) δ

8.27 (s, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 8.1 Hz, 1H), 5.83 (s, 1H), 3.75 (s, 6H), 2.02 (s, 3H), 0.22 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 168.5, 168.2, 137.5, 137.1, 134.8, 131.8, 131.4, 124.6, 102.3, 98.5, 53.6, 53.2, 23.6, -0.1. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₈H₂₄O₇NSSi, 426.1037, found: 426.1028.

Dimethyl 2-(2-(N-acetylsulfamoyl)-3-methylphenyl)malonate (12)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N-(o*tolylsulfonyl)acetamide (53.2 mg, 0.25 mmol), **2a** (40 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 78 mg **12** was obtained (91% yield, white powder, EAOAc/

 \dot{CO}_2 Me Petroleum ether = 1:1, **R**_f = 0.4), **m.p.**: 160 – 161°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.46 (s, 1H), 7.56 (t, *J* = 7.7 Hz, 1H), 7.41 (d, *J* = 7.3 Hz, 1H), 7.18 (d, *J* = 7.1 Hz, 1H), 6.10 (s, 1H), 3.67 (s, 6H), 2.66 (s, 3H), 1.93 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 170.0, 168.8, 140.2, 136.3, 134.2, 133.2, 132.8, 128.7, 54.3, 52.7, 23.1, 22.2. HRMS (ESI): m/z (M + H⁺) calcd for C₁₄H₁₈O₇NS, 344.0798, found: 344.0795.

Dimethyl 2-(2-(N-acetylsulfamoyl)-3-(benzyloxy)phenyl)malonate (13)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-((2-(benzyloxy)phenyl)sulfonyl)acetamide (76.2 mg, 0.25 mmol), 2a (40 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 100 mg 13 was obtained (92% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4), m.p.: 178 - 179°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.24 (s, 1H), 7.55 - 7.48 (m, 3H), 7.41 - 7.35 (m, 2H), 7.30 (ddd, *J* = 7.2, 3.8, 1.3 Hz, 1H), 7.25 - 7.21 (m, 1H), 6.77 (dd, *J* = 7.9, 0.8 Hz, 1H), 6.08 (s, 1H), 5.42 (s, 2H), 3.67 (s, 6H), 1.95 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 169.7, 168.7, 157.0, 136.4, 135.4, 134.2, 128.5, 127.9, 127.2, 125.8, 121.6, 114.5, 69.8, 54.2, 52.6, 23.1. HRMS (ESI): m/z (M + H⁺) calcd for $C_{20}H_{22}O_8NS$, 436.1061, found: 436.1054.

Dimethyl 2-(2-(N-acetylsulfamoyl)-[1,1'-biphenyl]-3-yl)malonate (14)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-([1,1'-biphenyl]-2ylsulfonyl)acetamide (68.7 mg, 0.25 mmol), 2a (40 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 89.4 mg 14 was obtained (88% yield, white powder, EAOAc/ Petroleum ether = 1:1, R_f = 0.3), m.p.: 147 – 148°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 11.92 (s, 1H), 7.63 (t, *J* = 7.7 Hz, 1H), 7.40 (d, *J* = 7.7 Hz, 1H), 7.36 – 7.28 (m, 5H), 7.20 (d, *J* = 7.5 Hz, 1H), 6.15 (s, 1H), 3.70 (s, 6H), 1.76 (s, 3H). ¹³C NMR (101 MHz,

DMSO-*d6*) δ 170.2, 168.6, 143.3, 141.1, 137.5, 133.2, 133.1, 131.7, 130.3, 128.9, 127.2, 126.9, 54.1, 52.8, 23.5. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₉H₂₀O₇NS, 406.0955, found: 406.0947.

Dimethyl 2-(2-(N-acetylsulfamoyl)-3-(2-methoxyethoxy)phenyl)malonate (15)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-((2-(2-methoxyethoxy)phenyl)sulfonyl)acetamide (68.2 mg, 0.25 mmol), 2a (40 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 93.7 mg **15** was obtained (93% yield, white powder, EAOAc/ Petroleum ether = 3:1, R_f = 0.4), m.p.: 159 – 160°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 11.80 (s, 1H), 7.60 (t, *J* = 8.2 Hz,

1H), 7.33 (d, J = 8.0 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 6.03 (s, 1H), 4.37 – 4.26 (m, 2H), 3.77 – 3.74 (m, 2H), 3.68 (s, 6H), 3.32 (s, 3H), 1.93 (s, 3H). ¹³**C** NMR (101 MHz, DMSO-*d6*) δ 169.6, 168.7, 157.8, 135.1, 134.4, 126.1, 121.8, 115.0, 70.1, 69.0, 58.3, 54.3, 52.7, 23.0. HRMS (ESI): m/z (M + H⁺) calcd for C₁₆H₂₂O₉NS, 404.1010, found: 404.1002.

Dimethyl 2-(2-(N-acetylsulfamoyl)-3-(trifluoromethoxy)phenyl)malonate (16)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-((2-(trifluoromethoxy)phenyl)sulfonyl)acetamide (70.7 mg, 0.25 mmol), 2a (40 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 93 mg 16 was obtained (90% yield, white powder, EAOAc/ Petroleum ether = 1:1, R_f = 0.3), m.p.: 153 – 154°C. ¹H NMR (400 MHz, DMSO-*d*6) δ 12.70 (s, 1H), 7.83 (t, *J* = 8.1 Hz, 1H), 7.63 (d, *J* =

8.4 Hz, 1H), 7.36 (d, *J* = 7.2 Hz, 1H), 6.12 (s, 1H), 3.71 (s, 6H), 1.94 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 170.2, 168.3, 146.9, 146.9, 136.3, 135.1, 130.6, 129.2, 121.5, 119.9 (q, *J* = 260.5), 53.8, 52.9, 23.0. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₄H₁₅O₈NF₃S, 414.0465, found: 414.0456.

Dimethyl 2-(2-(N-acetylsulfamoyl)-3-(methoxycarbonyl)phenyl)malonate (17)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), **methyl 2-(***N***-acetylsulfamoyl)benzoate** (64.2 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C for 5h. 74 mg **17** was obtained (76% yield, yellow powder, DCM/ MeOH = 25:1, R_f = 0.3), m.p.: 177 – 178°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.46 (t, *J* = 7.7 Hz, 1H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.23 (d, *J* = 7.5 Hz, 1H), 6.35 (s, 1H), 3.70 (s, 3H), 3.63 (s, 6H), 1.59 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 175.7,

169.8, 168.7, 142.0, 133.7, 131.8, 131.2, 129.6, 126.5, 53.2, 52.5, 52.3, 26.3. HRMS (ESI): m/z (M + H⁺) calcd for $C_{15}H_{18}O_9NS$, 388.0697, found: 388.0689.

Dimethyl 2-(2-(N-acetylsulfamoyl)-3-nitrophenyl)malonate (18)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((2-nitrophenyl)sulfonyl)acetamide (61 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 31 mg **18** was obtained (33% yield, white powder, DCM/ MeOH = 20:1, R_f = 0.3), m.p.: 168 – 169°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.67 – 7.50 (m, 2H), 7.45 (d, *J* = 6.8 Hz, 1H), 6.47 (d, *J* = 45.7 Hz, 1H), 3.65 (s,

6H), 1.61 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 175.5, 168.5, 149.7, 136.6, 133.4, 132.3, 130.7, 122.7, 53.2, 52.7, 26.1. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₃H₁₅O₉N₂S, 375.0493, found: 375.0476.

Dimethyl 2-(2-(N-acetylsulfamoyl)-3,5-dimethylphenyl)malonate (19)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-((2,4dimethylphenyl)sulfonyl)acetamide (56.7 mg, 0.25 mmol), 2a (40 mg, 0.25 Me mmol), 2.5 mL DCE, 60°C for 5h. 81.2 mg 19 was obtained (91% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.5), m.p.: 175 – 176°C. ¹H NMR

(400 MHz, DMSO-*d6*) δ 12.38 (s, 1H), 7.24 (s, 1H), 6.95 (s, 1H), 6.05 (s, 1H), 3.68 (s, 6H), 2.62 (s, 3H), 2.32 (s, 3H), 1.92 (s, 3H). ¹³**C** NMR (101 MHz, DMSO-*d6*) δ 169.6, 168.7, 143.1, 140.1, 134.2, 133.7, 133.4, 129.0, 54.1, 52.7, 22.9, 22.1, 20.7. HRMS (ESI): m/z (M + H⁺) calcd for C₁₅H₂₀O₇NS, 358.0955, found: 358.0942.

Dimethyl 2-(2-(N-acetylsulfamoyl)-5-methoxy-4-(methoxycarbonyl)phenyl)malonate (20)

 $[RhCp*Cl_2]_2 (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), methyl 5-$ NHAC (*N*-acetylsulfamoyl)-2-methoxybenzoate (71.7 mg, 0.25 mmol), 2a $CO_2Me (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C for 5h. 74 mg 20 was obtained$ $O_2Me (71% yield, white powder, EAOAc/ Petroleum ether = 3:1, <math>R_f = 0.4$,

m.p.: $178 - 179^{\circ}$ C. ¹**H NMR** (400 MHz, DMSO-*d6*) δ 8.24 (s, 1H), 7.05 (s, 1H), 5.96 (s, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.71 (s, 6H), 1.77 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 171.3, 167.7, 164.6, 160.3, 136.6, 133.3, 132.1, 118.8, 114.0, 56.4, 53.1, 52.7, 52.4, 24.3. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₆H₂₀O₁₀NS, 418.0802, found: 418.0792.

Dimethyl 2-(2-(N-acetylsulfamoyl)-3-methoxy-5-methylphenyl)malonate (21)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-((2-methoxy-4-methylphenyl)sulfonyl)acetamide (60.7 mg, 0.25 mmol), 2a (40 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 88.6 mg 21 was obtained (95% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4), m.p.: 167 – 168°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.03 (s, 1H), 7.13 (s, 1H), 6.59 (s, 1H), 6.02 (s, 1H),

3.90 (s, 3H), 3.68 (s, 6H), 2.35 (s, 3H), 1.90 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 169.6, 168.7, 158.4, 145.2, 134.8, 123.0, 122.2, 114.3, 56.9, 54.0, 52.6, 23.0, 21.4. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₅H₂₀O₈NS, 374.0904, found: 374.0895.

Dimethyl 2-(2-(N-acetylsulfamoyl)-4,5-dimethoxyphenyl)malonate (22)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((3,4-dimethoxyphenyl)sulfonyl)acetamide (64.7 mg, 0.25 mmol), 2a (40 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 1h. 78.8 mg 22 was obtained (81% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.3), m.p.: 171 –

172°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.31 (s, 1H), 7.47 (s, 1H), 6.92 (s, 1H), 5.76 (s, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.70 (s, 6H), 1.87 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.9, 168.0, 152.2, 147.5, 129.8, 124.8, 113.5, 112.8, 55.9, 53.0, 52.0, 23.1. HRMS (ESI): m/z (M + H⁺) calcd for C₁₅H₂₀O₉NS, 390.0853, found: 390.0843.

Dimethyl 2-(2-(N-acetylsulfamoyl)-5-bromo-4-methylphenyl)malonate (23)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((4-bromo-3-methylphenyl)sulfonyl)acetamide (73 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C for 5h. 74 mg 23 was obtained (70% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4), m.p.: 141 – 142°C. ¹H NMR

(400 MHz, DMSO -*d*6) δ 7.79 (s, 1H), 7.41 (s, 1H), 6.11 (s, 1H), 3.65 (s, 6H), 2.37 (s, 3H), 1.60 (s, 3H). ¹³**C NMR** (101 MHz, DMSO -*d*6) δ 175.31, 168.47, 143.98, 136.58, 132.75, 130.88, 129.71, 125.71, 52.75, 52.24, 26.18, 22.09. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₄H₁₇O₇NBrS, 421.9904, found: 421.9894.

Dimethyl 2-(2-(N-acetylsulfamoyl)-3,6-dimethoxyphenyl)malonate (24)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-((2,5-dimethoxyphenyl)sulfonyl)acetamide (64.7 mg, 0.25 mmol), 2a (40 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 92.4 mg 24 was obtained (95% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4), m.p.: 195 – 196°C. ¹H NMR

(400 MHz, DMSO-*d6*) δ 12.10 (s, 1H), 7.40 (d, J = 9.2 Hz, 1H), 7.27 (d, J = 9.2 Hz, 1H), 6.13 (s, 1H), 3.87 (s, 3H), 3.68 (s, 3H), 3.61 (s, 6H), 1.93 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 169.5, 167.9, 152.3, 152.1, 126.5, 125.1, 119.1, 114.7, 57.4, 57.2, 52.1, 49.5, 23.1. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₅H₂₀O₉NS, 390.0853, found: 390.0843.

Dimethyl 2-(2-(N-acetylsulfamoyl)thiophen-3-yl)malonate (25)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-(thiophen-2-ylsulfonyl)acetamide (51.2 mg, 0.25 mmol), 2a (40 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 68 mg 25 was obtained (81% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4), m.p.: 121 – 122°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.44 (s, 1H), 8.02 (d, *J* = 5.2 Hz, 1H), 7.16 (d, *J* = 5.2 Hz, 1H), 5.65 (s, 1H), 3.70 (s, 6H),

1.92 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 169.1, 167.2, 137.0, 136.7, 133.0, 129.5, 53.2, 50.1, 23.2. HRMS (ESI): m/z (M + H⁺) calcd for C₁₁H₁₄O₇NS₂, 336.0206, found: 336.0198.

<u>Methyl (E)-2-(2-(N-acetylsulfamoyl)-3-methylphenyl)-3-hydroxybut-2-enoate and methyl 2-(2-</u> (N-acetylsulfamoyl)-3-methylphenyl)-3-oxobutanoate (26 + 26')

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-(*o*-tolylsulfonyl)acetamide (53.2 mg, 0.25 mmol), **2b** (35.5 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 71 mg **26** and **26'** were obtained (87% yield, white powder, EAOAc/ Petroleum ether = 1:1, $R_f = 0.5$), m.p.:

195 – 197°C. **26**: ¹H NMR (400 MHz, DMSO-*d6*) δ 12.75 (s, 1H), 12.03 (s, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.18 – 7.12 (m, 1H), 3.54 (s, 3H), 2.66 (s, 3H), 1.90 (s, 3H), 1.73 (s, 3H). **26'**: ¹H NMR (400 MHz, DMSO-*d6*) δ 12.48 (s, 1H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.42 (d, *J* = 7.3 Hz, 1H), 7.03 (d, *J* = 7.6 Hz, 1H), 6.28 (s, 1H), 3.65 (s, 3H), 2.67 (s, 3H), 2.16 (s, 3H), 1.96 (s, 3H). **26+26'**: ¹³C NMR (101 MHz, DMSO-*d6*) δ 202.1, 172.0, 171.1, 170.1, 169.2, 168.9, 140.3, 139.2, 137.2, 136.3, 135.9, 134.3, 133.1, 132.9, 132.8, 132.6, 132.3, 129.2, 103.1, 61.2, 52.4, 51.5, 29.5, 23.1, 22.9, 22.2, 21.8, 19.8. HRMS (ESI): m/z (M + H⁺) calcd for C₁₄H₁₈O₆NS, 328.0849, found: 328.0841.

Methyl 2-(2-(N-acetylsulfamoyl)-3-methylphenyl)-2-(diethoxyphosphoryl)acetate (27)

7.72 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 6.07 (d, J = 28.2 Hz, 1H), 4.16 – 4.02 (m, 2H), 3.92 – 3.77 (m, 1H), 3.76 – 3.66 (m, 1H), 3.65 (s, 3H), 2.65 (s, 3H), 1.83 (s, 3H), 1.24 (t, J = 7.0 Hz, 3H), 0.94 (t, J = 7.0 Hz, 3H). ¹³**C** NMR (101 MHz, DMSO-*d6*) δ 170.7, 167.5 (d, J = 4.4 Hz), 139.5, 137.8, 132.6 (d, J = 4.7 Hz), 132.4, 131.1, 130.9 (d, J = 5.8 Hz), 62.6 (t, J = 6.1 Hz), 52.5, 47.2, 46.0, 23.7, 22.7, 16.2 (d, J = 5.9 Hz), 15.8 (d, J = 5.8 Hz). HRMS (ESI): m/z (M + H⁺) calcd for C₁₆H₂₅O₈NPS, 422.1033, found: 422.1023.

Methyl 2-(2-(N-acetylsulfamoyl)-3-methylphenyl)-2-(methylsulfonyl)acetate (28)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N-(o*tolylsulfonyl)acetamide (53.2 mg, 0.25 mmol), 2d (44.5 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 82.5 mg **28** was obtained (91% yield, white powder, EAOAc/ Petroleum ether = 3:1, $R_f = 0.4$), m.p.: 204 – 205°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.63 (s, 1H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.37 (d, *J* = 7.3 Hz, 1H), 7.27 (s, 1H), 3.74 (s, 3H), 3.18 (s, 3H), 2.65 (s, 3H), 1.79 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 172.8, 165.1, 140.5, 139.4, 133.4, 130.4, 129.7, 128.7, 68.1, 53.2, 42.2, 24.6, 22.6. HRMS (ESI): m/z (M + H⁺) calcd for C₁₃H₁₈O₇NS₂, 364.0519, found: 364.0511.

Methyl 2-(2-(N-acetylsulfamoyl)-3-methylphenyl)-2-(phenylsulfonyl)acetate (29)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-(*o*-tolylsulfonyl)acetamide (53.2 mg, 0.25 mmol), 2e (60 mg, 0.25 mmol), 2.5 mL DCE, 60°C for 5h. 94.7 mg 29 was obtained (89% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4), m.p.: 171 – 172°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.54 (s, 1H), 7.94 – 7.90 (m, 2H), 7.87 (d, *J* = 7.2 Hz, 1H), 7.79 (ddd, *J* = 8.5, 2.2,

1.1 Hz, 1H), 7.71 – 7.60 (m, 3H), 7.48 (d, J = 7.4 Hz, 1H), 7.38 (s, 1H), 3.56 (s, 3H), 2.66 (s, 3H), 1.86 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 170.8, 164.7, 139.8, 139.3, 138.2, 134.3, 134.1, 131.6, 130.5, 129.2, 129.1, 128.7, 68.7, 52.8, 23.5, 22.5. HRMS (ESI): m/z (M + H⁺) calcd for C₁₈H₂₀O₇NS₂, 426.0676, found: 426.0663.

Tetramethyl 2,2'-(2-(N-acetylsulfamoyl)-5-methyl-1,3-phenylene)dimalonate (30)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-tosylacetamide (53.2 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 98 mg **30** was obtained (83% yield, white powder, EAOAc/ Petroleum ether = 3:1, R_f = 0.4, m.p.: 173 – 174°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.77 (s, 1H), 7.15 (s, 2H), 6.03 (s, 2H), 3.69 (s, 12H),

2.37 (s, 3H), 1.91 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 171.12, 169.01, 143.85, 134.83, 132.01, 120.00, 54.53, 53.36, 23.61, 21.38. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₉H₂₄O₁₁NS, 474.1065, found: 474.1059.

Tetramethyl 2,2'-(2-(*N*-acetylsulfamoyl)-5-methoxy-1,3-phenylene)dimalonate (31)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((4-methoxyphenyl)sulfonyl)acetamide (57.2 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 104.2 mg **31** was obtained (85% yield, white powder, EAOAc/ Petroleum ether = 3:1, R_f = 0.3, m.p.: 183 – 184°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.69 (s, 1H), 6.85 (s, 2H), 6.05 (s,

2H), 3.82 (s, 3H), 3.70 (s, 12H), 1.92 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*)) δ 170.3, 168.3, 161.2, 136.7, 130.0, 116.1, 55.8, 54.1, 53.0, 23.0. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₉H₂₄O₁₂NS, 490.1014, found: 490.0997.

phenylene)dimalonate (32)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((4-chlorophenyl)sulfonyl)acetamide (58 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 96.5 mg **32** was obtained (78% yield, white powder, DCM/ MeOH = 25:1, R_f = 0.3, m.p.: 193 – 194°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.16 (s, 2H), 6.61 (s, 2H), 3.65 (s, 12H), 1.61 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 171.8, 168.5, 137.4, 136.7, 131.1, 125.8, 54.1, 53.66, 23.8. HRMS (ESI): m/z (M + H⁺) calcd for C₁₈H₂₁O₁₁NCIS, 494.0518, found: 494.0516.

Tetramethyl 2,2'-(2-(N-acetylsulfamoyl)-5-nitro-1,3-phenylene)dimalonate (33)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((4-nitrophenyl)sulfonyl)acetamide (61 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 44 mg **33** was obtained (35% yield, white powder, DCM/ MeOH = 20:1, R_f = 0.3, m.p.: 217 – 218°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 8.01 (s, 2H), 6.69 (s, 2H), 3.67 (s, 12H), 1.64 (s,

3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 177.1, 168.8, 150.9, 146.4, 134.9, 124.0, 53.8, 52.76, 26.0. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₈H₂₁O₁₃N₂S, 505.0759, found: 505.0756.

Tetramethyl 2,2'-(2-(N-acetylsulfamoyl)-5-(methoxycarbonyl)-1,3-phenylene)dimalonate (34)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), **methyl 4**-(*N*-acetylsulfamoyl)benzoate (64.2 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 92 mg **34** was obtained (71% yield, white powder, DCM/ MeOH = 20:1, $R_f = 0.3$, m.p.: 161 – 162°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.75 (s, 1H), 6.64 (s, 1H), 3.87 (s, 2H),

3.64 (s, 7H), 1.62 (s, 2H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 176.9, 169.3, 165.1, 149.2, 133.6, 130.0, 129.4, 54.0, 52.7, 52.5, 26.1. **HRMS** (ESI): m/z (M + H⁺) calcd for C₂₀H₂₄O₁₃NS, 518.0963, found: 518.0961.

Dimethyl 2-(8-(N-acetylsulfamoyl)quinolin-7-yl)malonate (35)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N-(quinolin-8-ylsulfonyl)acetamide* (62.5 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 73 mg **35** was obtained (77% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4), m.p.: 235 – 237°C. ¹H NMR (400 MHz, DMSO-*d*6) δ 12.47 (s, 1H), 9.09 (dd, *J* = 4.1, 1.7 Hz, 1H), 8.53 (dd, *J* = 8.2, 1.4

Hz, 1H), 8.32 (d, J = 8.6 Hz, 1H), 7.72 (dd, J = 8.3, 4.2 Hz, 1H), 7.50 (d, J = 8.6 Hz, 1H), 6.56 (s, 1H), 3.71 (s, 6H), 1.86 (s, 3H). ¹³**C** NMR (101 MHz, DMSO-*d6*) δ 170.2, 168.4, 151.1, 143.9, 137.1, 136.7, 134.2, 133.7, 127.8, 127.7, 122.6, 54.2, 52.8, 23.2. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₆H₁₇O₇N₂S, 381.0750, found: 381.0747.

Dimethyl 2-(7-(N-acetylsulfamoyl)-2-(tert-butyl)benzo[d]oxazol-6-yl)malonate (36)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), N-((2-(tert-butyl)benzo[d]oxazol-7-

yl)sulfonyl)acetamide (74 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C ovenight. 89.1 mg **36** was obtained (84% yield, white powder, EAOAc/ Petroleum ether = 2:1, *R*_f = 0.4), m.p.: 171 – 172°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.79 (s, 1H), 8.04 (d, *J* = 8.3 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 6.02 (s, 1H), 3.70 (s, 6H), 1.47 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d6*) δ

175.0, 169.6, 168.1, 147.4, 142.1, 128.9, 126.2, 124.4, 122.3, 53.0, 52.4, 34.0, 27.8, 23.1. HRMS (ESI): m/z (M + H⁺) calcd for $C_{18}H_{23}O_8N_2S$, 427.1170, found: 427.1163.

Dimethyl 2-(4-(N-acetylsulfamoyl)benzo[c][1,2,5]thiadiazol-5-yl)malonate (37)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-(*benzo[c][1,2,5]thiadiazol-4-ylsulfonyl)acetamide* (64.2 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C ovenight. 63 mg 37 was obtained (65% yield, white powder, EAOAc/ Petroleum ether = 2:1, *R*_f = 0.3), m.p.: 202 –

203°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.86 (s, 1H), 8.44 (d, *J* = 9.2 Hz, 1H), 7.70 (d, *J* = 9.2 Hz, 1H), 6.57 (s, 1H), 3.73 (s, 6H), 1.89 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d6*) δ 170.2, 167.7, 153.9, 149.6, 137.0, 131.5, 125.9, 53.1, 52.6, 23.1. HRMS (ESI): m/z (M + H⁺) calcd for C₁₃H₁₄O₇N₃S₂, 388.068, found: 388.0265.

Dimethyl 2-(1-(N-acetylsulfamoyl)-5-(dimethylamino)naphthalen-2-yl)malonate (38)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl)acetamide (73 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C ovenight. 93 mg **38** was obtained (88% yield, yellow powder, EAOAc/ Petroleum ether = 2:1, $R_{\rm f}$

= 0.4), **m.p.**: 108 – 109°C. ¹**H NMR** (400 MHz, DMSO-*d6*) δ 12.71 (s, 1H), 8.52 (d, *J* = 9.0 Hz, 1H), 8.39 (d, *J* = 8.9 Hz, 1H), 7.64 – 7.57 (m, 1H), 7.38 (d, *J* = 9.0 Hz, 1H), 7.27 (d, *J* = 7.5 Hz, 1H), 6.50 (s, 1H), 3.70 (s, 6H), 2.82 (s, 6H), 1.91 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 170.0, 168.8, 151.3, 135.0, 133.2, 130.6, 130.2, 128.6, 128.3, 126.0, 119.6, 115.3, 54.8, 52.7, 45.1, 23.1. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₉H₂₃O₇N₂S, 423.1220, found: 423.1216.

Dimethyl 2-(2-(N-acetylsulfamoyl)-3-(4-methoxypiperidin-1-yl)phenyl)malonate (39)

[RhCp*Cl₂]₂ (3.9 mg, 2.5 mol%), AgOAc (4.2 mg, 10 mol%), *N*-((2-(4-methoxypiperidin-1-yl)phenyl)sulfonyl)acetamide (40 mg, 0.25 mmol), 2a (40 mg, 0.25 mmol), 2.5 mL DCE, 60°Covenight. 98.3 mg **39** was obtained (89% yield, brown powder, DCE/MeOH = 20:1, R_f = 0.5), m.p.: 172 – 174°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 11.75 (s, 1H), 7.69 – 7.63 (m, 2H), 7.13 (dd, *J* = 6.0, 2.5 Hz, 1H), 6.05 (s, 1H), 3.68 (s, 6H), 3.32 (s, 1H), 3.29 (s, 3H), 3.14 – 2.63 (m, 4H), 2.08 – 1.94

(m, 2H), 1.90 (s, 3H), 1.88 – 1.74 (m, 2H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 170.7, 169.1, 153.9, 135.8, 135.4, 134.3, 128.5, 126.0, 77.1, 55.4, 55.0, 53.1, 49.6, 31.1, 23.5. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₉H₂₇O₈N₂S, 443.1483, found: 443.1480.

Dimethyl 2-(2-(N-acetylsulfamoyl)-4-(dimethylamino)phenyl)malonate (40)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((3-(dimethylamino)phenyl)sulfonyl)acetamide (60.5 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 78.1 mg 40 was obtained (84% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4). m.p.: 148 – 149°C. ¹H NMR (400 MHz, DMSO-*d*6) δ 7.21 (d, *J* = 2.9 Hz, 1H), 7.15 (d, *J* =

8.7 Hz, 1H), 6.87 (dd, J = 8.7, 2.8 Hz, 1H), 5.81 (s, 1H), 3.63 (s, 6H), 2.94 (s, 6H), 1.74 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 171.9, 169.0, 149.1, 141.6, 130.8, 117.2, 114.9, 112.4, 52.5, 51.9, 39.9, 24.7. HRMS (ESI): m/z (M + H⁺) calcd for C₁₅H₂₁O₇N₂S, 373.1064, found: 373.1061.

Dimethyl 2-(2-(N-acetylsulfamoyl)-4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl)malonate (41)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((3-(2,5dimethyl-1H-pyrrol-1-yl)phenyl)sulfonyl)acetamide (73 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 85.8 mg 41 was obtained (81% yield, white powder, EAOAc/ Petroleum ether = 3:1, $R_{\rm f}$ = 0.5). m.p.: 243 – 244°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.64 (s,

1H), 7.48 – 7.32 (m, 2H), 6.15 (s, 1H), 5.82 (s, 2H), 3.68 (s, 6H), 2.00 (s, 6H), 1.63 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 175.5, 168.6, 145.5, 136.8, 130.4, 129.4, 129.2, 128.1, 127.7, 106.3, 52.7, 52.5, 26.3, 13.0. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₉H₂₃O₇N₂S, 423.1220, found: 423.1216.

Dimethyl 2-(2-(N-acetylsulfamoyl)-4-(quinolin-8-yl)phenyl)malonate (42)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N-((3-(quinolin-8-yl)phenyl)sulfonyl)acetamide* (81.4 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 82 mg **42** was obtained (72% yield, white powder, EAOAc/ Petroleum ether = 2:1, $R_{\rm f}$ = 0.3), m.p.: 233 – 235°C. ¹H NMR (400 MHz, DMSO-*d*6) δ 12.48

(s, 1H), 8.94 (dd, J = 4.1, 1.8 Hz, 1H), 8.49 (dd, J = 8.3, 1.7 Hz, 1H), 8.31 (d, J = 1.9 Hz, 1H), 8.13 – 8.04 (m, 2H), 7.86 (dd, J = 7.1, 1.3 Hz, 1H), 7.80 – 7.73 (m, 1H), 7.66 – 7.58 (m, 2H), 5.88 (s, 1H), 3.75 (s, 6H), 1.92 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 169.0, 167.9, 150.7, 144.7, 139.1, 137.2, 137.2, 136.7, 135.8, 132.5, 130.3, 129.9, 129.0, 128.4, 126.6, 125.3, 121.8, 53.1, 52.4, 23.1. **HRMS** (ESI): m/z (M + H⁺) calcd for C₂₂H₂₁O₇N₂S, 457.1064, found: 457.1051.

Dimethyl 2-(2-(N-acetylsulfamoyl)-4-methyl-5-(quinolin-8-yl)phenyl)malonate (43)

[RhCp*Cl₂]₂ (3.9 mg, 5 mol%), AgOAc (4.2 mg, 20 mol%), *N-((3-methyl-4-(quinolin-8-yl)phenyl)sulfonyl)acetamide* (42.5 mg, 0.125 mmol), **2a**

(22 mg, 1.1 equiv), 12.5 mL toluene, 60°C overnight. 53 mg **43** was obtained (91% yield, white powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.3), m.p.: 143 – 145°C. ¹H NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 8.43 (d, J = 7.8 Hz, 1H), 8.17 (s, 1H), 8.02 – 7.99 (m, 1H), 7.73 (d, J = 4.7 Hz, 2H), 7.63 – 7.56 (m, 2H), 6.26 (s, 1H), 3.77 (s, 3H), 3.70 (s, 3H), 2.24 (s, 3H), 1.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 169.0, 149.8, 144.8, 143.9, 139.2, 139.0, 137.7, 136.8, 133.7, 132.4, 132.0, 130.5, 129.1, 128.9, 127.4, 121.9, 53.3, 53.0, 23.5, 20.6. HRMS (ESI): m/z (M + H⁺) calcd for C₂₃H₂₃O₇N₂S, 471.1220, found: 471.1225.

Dimethyl (E)-2-(2-(N-acetylsulfamoyl)-4-methyl-5-(phenyldiazenyl)phenyl)malonate (44)

[RhCp*Cl₂]₂ (7.8 mg, 5 mol%), AgOAc (8.3 mg, 20 mol%), *(E)-N-((3-methyl-4-(phenyldiazenyl)phenyl)sulfonyl)acetamide* (79.2 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 95 mg **44** was obtained (85% yield, red powder, EAOAc/ Petroleum ether = 2:1, R_f = 0.4), m.p.: 211 – 212°C. ¹H NMR (400 MHz, DMSO-*d*6) δ 12.55 (s, 1H),

8.10 (s, 1H), 7.99 – 7.93 (m, 2H), 7.66 – 7.62 (m, 3H), 7.60 (s, 1H), 5.79 (s, 1H), 3.71 (s, 6H), 2.73 (s, 3H), 1.92 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 169.1, 167.8, 152.2, 152.0, 137.3, 133.8, 132.5, 129.8, 129.6, 123.2, 119.9, 117.5, 53.2, 52.2, 23.2, 16.8. **HRMS** (ESI): m/z (M + H⁺) calcd for C₂₀H₂₂O₇N₃S, 448.1773, found: 448.1158.

Dimethyl 2-(5-acetamido-2-(N-acetylsulfamoyl)-4-methylphenyl)malonate (45)

[RhCp*Cl₂]₂ (7.8 mg, 5 mol%), AgOAc (8.3 mg, 20 mol%), *N-((4-acetamido-3-methylphenyl)sulfonyl)acetamide* (67.4 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 92 mg **45** was obtained (92% yield, white powder, EAOAc/ Petroleum ether = 1:1, $R_{\rm f}$

= 0.3), **m.p.**: 219 – 221°C. ¹**H NMR** (400 MHz, DMSO-*d6*) δ 12.32 (s, 1H), 9.48 (s, 1H), 7.86 (s, 1H), 7.81 (d, *J* = 8.6 Hz, 1H), 5.68 (s, 1H), 3.68 (s, 6H), 2.31 (s, 3H), 2.12 (s, 3H), 1.88 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 168.9, 168.7, 167.9, 141.5, 132.7, 132.1, 129.6, 129.4, 124.5, 52.9, 52.5, 23.7, 23.0, 17.7. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₆H₂₁O₈N₂S, 401.1013, found: 401.0997.

<u>Tetramethyl</u> 2,2'-(2-(*N*-acetylsulfamoyl)-5-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3-phenylene)dimalonate (46)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl)sulfonyl)acetamide (73 mg, 0.25 mmol), 2a (79 mg, 0.5 mmol), 2.5 mL DCE, 60°C overnight. 100.8 mg 46 was obtained (73% yield, white powder, DCM/MeOH = 20:1, R_f = 0.3, m.p.: 267 – 268°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.01 (s, 2H), 6.66 (s,

2H), 5.84 (s, 2H), 3.63 (s, 12H), 1.99 (s, 6H), 1.67 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 176.8, 169.2, 143.7, 137.6, 133.8, 128.4, 127.5, 107.0, 53.7, 52.4, 26.3, 12.9. **HRMS** (ESI): m/z (M + H⁺) calcd for C₂₄H₂₉O₁₁N₂S, 553.1487, found: 553.1492.

Dimethyl 2-(2-(*N*-acetylsulfamoyl)-4-methyl-5-(1H-pyrazol-1-yl)phenyl)malonate (47) and Dimethyl 2-(5-(*N*-acetylsulfamoyl)-3-methyl-2-(1H-pyrazol-1-yl)phenyl)malonate (47')

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.4 mg, 20 mol%), N-((3-methyl-4-(1H-pyrazol-1-yl)phenyl) sulfonyl)acetamide (69.4 mg, 0.25 mmol), 2a (44 mg, 1.1 equiv), 2.5 mL DCE, 60°C overnight. 15.6 mg

47 was obtained (15% yield, white powder, DCM/MeOH = 20:1, *R*_f = 0.3), **m.p.**: 83 – 85°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.60 (s, 1H), 8.18 (s, 1H), 8.00 (s, 1H), 7.80 (s, 1H), 7.46 (s, 1H), 6.57 (s, 1H), 5.89 (s, 1H), 3.69 (s, 6H), 2.37 (s, 3H), 1.85 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 170.3, 167.8, 142.4, 141.1, 136.9, 133.4, 132.2, 131.8, 131.6, 129.6, 126.9, 107.3, 53.0, 52.0, 23.8, 18.2. HRMS (ESI): m/z (M + H⁺) calcd for C₁₇H₂₀O₇N₃S, 410.1016, found: 410.1007; 67 mg **47'** was obtained (66% yield, white powder, DCM/MeOH = 20:1, *R*_f = 0.4), **m.p.**: 157 – 159°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.31 (br s, 1H), 8.01 (d, *J* = 1.8 Hz, 1H), 7.96 (s, 1H), 7.90 (s, 1H), 7.82 (s, 1H), 6.59 (s, 1H), 4.24 (s, 1H), 3.66 (s, 6H), 2.07 (s, 3H), 1.96 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 169.1, 167.0, 142.6, 141.3, 140.0, 137.5, 132.7, 131.8, 129.2, 126.2, 107.1, 53.1, 51.9, 23.4, 17.3. HRMS (ESI): m/z (M + H⁺) calcd for C₁₇H₂₀O₇N₃S, 410.1016, found: 410.1011.

Dimethyl 2-(5-(N-acetylsulfamoyl)-3-methyl-2-(pyridin-2-yl)phenyl)malonate (48')

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.4 mg, 20 mol%), *N-((3-methyl-4-(pyridin-2-yl)phenyl)sulfonyl)acetamide* (72.4 mg, 0.25 mmol), **2a** (44 mg, 1.1 equiv), 2.5 mL DCE, 60°C overnight. 80 mg **48'** was obtained (76% yield, white powder, DCM/MeOH = 20:1, R_f = 0.4, m.p.: 187 – 188°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.18 (s, 1H), 8.71 (d, J = 4.7 Hz, 1H), 7.96

(t, J = 7.7 Hz, 1H), 7.86 (s, 1H), 7.81 (s, 1H), 7.50 – 7.45 (m, 1H), 7.39 (d, J = 7.7 Hz, 1H), 4.41 (s, 1H), 3.63 (s, 6H), 2.10 (s, 3H), 1.95 (s, 3H). ¹³**C** NMR (101 MHz, DMSO-*d6*) δ 169.2, 167.5, 155.5, 149.9, 145.0, 139.4, 137.4, 137.1, 132.1, 128.2, 125.3, 124.7, 123.2, 54.1, 52.9, 23.5, 20.2. HRMS (ESI): m/z (M + H+) calcd for C₁₉H₂₁O₇N₂S, 421.1064, found: 421.1055.

Methyl 2-(2-(N-acetylsulfamoyl)-3-methylphenyl)acetate (49)

The mixture of **12** (2.803 g, 8.17 mmol), LiCl (520 mg, 12.26 mmol), H_2O (1.634 mL) in 65 mL DMSO was refluxed at 150°C for 3.5 h, then poured into 100 mL sat. NaCl solution and extracted by ethyl acetate. The organic layers were dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified

by silica gel chromatography to afford **49** as yellow solid (1.304 g, 56% yield, EAOAc/ Petroleum ether = 1:2, $R_f = 0.5$). m.p.: 152 – 153°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.23 (s, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 7.4 Hz, 1H), 7.27 (d, J = 7.4 Hz, 1H), 4.18 (s, 2H), 3.57 (s, 3H), 2.64 (s, 3H), 1.91 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 171.5, 169.4, 139.1, 136.5, 136.2, 132.7, 132.3, 132.0, 51.4, 40.1, 23.0, 21.7. HRMS (ESI): m/z (M + H⁺) calcd for C₁₂H₁₆O₅NS, 286.0744, found: 286.0732.

8-Methyl-2H-benzo[e][1,2]thiazin-3(4H)-one 1,1-dioxide (50)

The mixture of **49** (163 mg, 0.57 mmol) and *p*-TsOH (11 mg, 0.057 mmol) in 20 mL toluene was refluxed at 150°C overnight, then poured into 30 mL sat. NaCl solution and extracted by ethyl acetate. The organic layers were dried over Na_2SO_4 , and concentrated in *vacuo*. The residue was purified by silica gel chromatography

to afford **50** as light yellow solid (115.5 mg, 96% yield, EAOAc/ Petroleum ether = 1:2, R_f = 0.2). m.p.: 213 – 215°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.51 (t, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 7.3 Hz, 2H), 4.01 (s, 2H), 2.60 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 169.6, 134.3, 134.1, 132.2, 132.1, 131.0, 127.1, 37.3, 19.4. HRMS (ESI): m/z (M + H⁺) calcd for C₉H₁₀O₃NS, 212.0375, found: 212.0371.

8-Methyl-3,4-dihydro-2H-benzo[e][1,2]thiazine 1,1-dioxide (51)

The mixture of **50** (32 mg, 0.15 mmol) and LiAlH₄ (12 mg, 0.3 mmol) in 5 mL dry THF was stirred at room temperature for 1h. Solvent was removed in *vacuo*, and the residue was purified by silica gel chromatography to afford **51** as light yellow solid (26.5 mg, 90% yield, EAOAc/ Petroleum ether = 1:2, $R_f = 0.3$). m.p.: 163 – 164°C. ¹H

NMR (400 MHz, CDCl₃) δ 7.26 (t, *J* = 7.6 Hz, 1H), 7.12 (dd, *J* = 7.6, 0.4 Hz, 1H), 7.01 (d, *J* = 7.7 Hz, 1H), 3.71 (s, 2H), 2.94 (t, *J* = 5.9 Hz, 2H), 2.66 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 137.2, 137.1, 136.08, 131.5, 131.0, 127.5, 41.9, 30.2, 20.4. **HRMS** (ESI): m/z (M + H⁺) calcd for C₉H₁₂O₂NS, 198.0583, found: 198.0580.

Dimethyl 2-(6-(N-acetylsulfamoyl)-2,3-dihydro-1H-inden-5-yl)malonate (52)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((2,3-dihydro-1H-inden-5-yl)sulfonyl)acetamide (59.7 mg, 0.25 mmol), 2a (79 mg, 0. 5 mmol), 2.5 mL DCE, 60°C for 1h. 56.1 mg 52 was obtained (61% yield, white powder, EAOAc/ Petroleum ether = 1:1, R_f = 0.3), m.p.: 165 – 166°C. ¹H NMR

(400 MHz, DMSO-*d6*) δ 7.78 (s, 1H), 7.18 (s, 1H), 5.96 (s, 1H), 3.65 (s, 6H), 2.94 –2.86 (s, 4H), 2.14 – 2.00 (m, 2H), 1.73 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d6*) δ 172.0, 168.6, 148.2, 143.5, 139.3, 129.0, 125.6, 125.4, 52.7, 52.6, 32.3, 32.0, 25.0, 24.7. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₆H₂₀O₇NS, 370.0955, found: 370.0950.

<u>Dimethyl 2-(6-sulfamoyl-2,3-dihydro-1H-inden-5-yl)malonate (53)</u>

52 (55mg, 0.15 mmol) was dissolved in 3.0 mL MeOH, and 2 drops con. H_2SO_4 was added, the reaction mixture was stirred at room temperature LCO_2Me for 4h. 47.5 mg 53 was obtained (97% yield, white solid, EAOAc/ Petroleum D_2Me ether = 1:1, R_f = 0.3), m.p.: 174 – 176°C. ¹H NMR (400 MHz, DMSO-*d6*) δ

7.77 (s, 1H), 7.56 (s, 2H), 7.21 (s, 1H), 5.72 (s, 1H), 3.67 (s, 6H), 2.92 (t, J = 7.4 Hz, 4H), 2.06 (p, J = 7.5 Hz, 2H). ¹³**C NMR** (151 MHz, DMSO-*d6*) δ 168.4, 148.3, 144.2, 140.5, 128.5, 126.1, 123.2, 53.2, 52.7, 32.3, 32.0, 25.0. **HRMS** (ESI): m/z (M + H⁺) calcd for C₁₄H₁₈O₆NS, 328.0849, found: 328.0843.

 Tetramethyl
 2,2'-(5-(5-methyl-3-phenylisoxazol-4-yl)-2-(N-propionylsulfamoyl)-1,3-phenylene)

 dimalonate (54)

[RhCp*Cl₂]₂ (7.8 mg, 5.0 mol%), AgOAc (8.3 mg, 20 mol%), *N*-((4-(5-methyl-3-phenylisoxazol-4-yl)phenyl)sulfonyl)propionamide (92.5 mg, 0.25 mmol), **2a** (79 mg, 0.5 mmol), 2.5 mL toluene, 60°C overnight. 127.6 mg **54** was obtained (81% yield, white powder, EAOAc/ Petroleum ether = 3:1, R_f = 0.3, m.p.: 215 – 216°C. ¹H NMR (400 MHz, DMSO-*d6*) δ 12.86 (s, 1H), 7.53 – 7.49 (m, 1H), 7.48 – 7.43 (m, 2H), 7.38 – 7.35 (m, 2H), 7.24 (s, 2H), 6.05 (s, 2H), 3.60 (s, 12H), 2.28 – 2.20 (m, 2H), 0.95 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (151

MHz, DMSO-*d6*) δ 174.7, 170.8, 169.1, 168.6, 160.8, 135.0, 134.0, 131.8, 130.3, 129.5, 128.6, 128.4, 113.5, 54.3, 53.3, 29.5, 12.0, 9.0. **HRMS** (ESI): m/z (M + H⁺) calcd for C₂₉H₃₁O₁₂N₂S, 631.1592, found: 631.1578.

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 F1 (ppm)

¹H NMR of compound **14**

 $^1\mathrm{H}\,\mathrm{NMR}$ of compound $\mathbf{15}$

и 4 4 8 8 7 11.5 12.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0

 $^{\rm 13}{\rm C}$ NMR of compound $\bf 24$

S49

4.5 4.0

280 270 280 250 240 250 220 210 200 190 180 170 180 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 -20 -50 -40

¹H NMR of compound **33**

¹H NMR of compound **34**

280 270 260 280 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 -20 -30 -40 fl [space]

S68

S69

S72

¹³C NMR of compound **48'**

¹H NMR of compound **53**

¹H NMR of compound **54**

 1 H NMR of **1g**

Analysis for the ratio of 47:47'

