Supporting Information

Bioinspired radical cyclization of tryptamines: synthesis of

peroxypyrroloindolenines as potential anti-cancer agents

Yan Li, Longjie Li, Xunbo Lu, Yulong Bai, Yufan Wang, Yuzhou Wu* and Fangrui Zhong* Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu road, Wuhan 430074, China <u>wuyuzhou@hust.edu.cn</u> <u>chemzfr@hust.edu.cn</u>

Table of contents

(A) General Information	.3
(B) Reaction Condition Optimizations	.3
(C) Representative Procedures and Analytical Data of the Desired Products	.4
(D) Mass Analysis of Reaction Mixtures	13
(E) ¹ H and ¹³ C NMR Spectra Data of All Products	15

(A) General Information

Chemicals and solvents were purchased from commercial suppliers and used as received unless noted. All products were purified by flash chromatography on silica gel. The chemical yields referred are isolated products.¹H NMR and ¹³C NMR spectra were recorded on 400 MHz or 600 MHz Bruker spectrometers. Chemical shifts of ¹H NMR were reported in part per million relative to the CDCl₃ residual peak (δ 7.26). Chemical shifts of ¹³C NMR were reported relative to CDCl₃ (δ 77.16) or CD₃OD (δ 49.00). The used abbreviations are as follows: s (singlet), d (doublet), t (triplet), quart. (quartet), quint. (quintet), m (multiplet), br (broad). Multiplets which arise from accidental equality of coupling constants of magnetically non-equivalent protons are marked as virtual (virt.). High resolution mass spectra (HRMS) data were measured on a ESI-microTOF II. Melting points were measured on a SGW® X-4B and are not corrected. Reactions were monitored by TLC analysis using silica gel 60 Å F-254 thin layer plates and compounds were visualized with a UV light at 254 nm or 365 nm. Further visualization was achieved by staining with iodine, or KMnO₄ followed by heating on a hot plate. Flash column chromatography was performed on silica gel 60

Å, 10–40 µm.

N-tosyl tryptamine derivatives prepared according to known literature procedures.^{1,2}

(B) Reaction Condition Optimizations

Table S1 solvent screening^{*a*}

¹ Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 10796.

Kieffer, M. E.; Chuang, K. V.; Reisman, S. E. Chem. Sci. 2012, 3, 3170.

3	DCE	reflux	24
4	Toluene	90	34
5	THF	reflux	40
6	EtOAc	reflux	61
7	H ₂ O	90	0

^{*a*}Reactions were performed with **1a** (0.2 mmol), TBAI (20 mol%), and TBHP (4.0 eq) in solvent (4.0 ml) for 2 hours. ^{*b*}Isolated yield.

(C) Representative Procedures and Analytical Data of the Desired Products

<u>General procedure</u>: A 50 mL round bottom flask was charged with TBAI (14.8 mg, 20 mol %), tryptamine substrates **1** (0.2 mmol, 1.0 eq) and 1,4-dioxane (4.0 mL), then TBHP (70% in wa-ter, 114.4 μ L, 0.8 mmol, 4.0 eq) was added. The reaction mixture was heat to 90 °C for 2 h before cooled down to room temperature. Saturated aqueous Na₂S₂O₃ (10 mL) solution was slowly introduced and the resulting mixture was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, concentrated under reduced pressure and the residue was purified by chromatography on silica gel (eluent: Hexane/EtOAc, 30:1 to 10:0) to afford perox-ypyrroloindolenine **2**.

3a-(tert-Butylperoxy)-1-tosyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole 2a

Compound **2a** was synthesized following the *general procedure*. A white solid, 64.1 mg, 80% yield. **m.p.**: $131 - 133 \,^{\circ}$ C. **TLC**: $R_f = 0.67$ (Hexane/EtOAc = 3:1) [UV, KMnO_4]. ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 - 7.95 (m, 2H), 7.39 - 7.19 (m, 5H), 7.00 (*virt*. td, $J \cong 7.4$, 1.1 Hz, 1H), 4.49 (*virt*. td, $J \cong 10.4$, 5.1 Hz, 1H), 4.14 - 4.05 (m, 1H), 2.47 (*virt*. dd, $J \cong 13.7$, 5.1 Hz, 1H), 2.39 (s, 3H), 1.81 (ddd, J = 13.7, 10.4, 8.3 Hz, 1H), 1.04 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 159.4, 145.0, 134.7, 133.0, 130.6, 129.8, 128.1, 124.2, 123.7, 119.8, 93.4, 80.7, 55.8, 29.7, 26.2, 21.7. **IR** (KBr/cm⁻¹) 3068.5, 2978.9, 2928.8, 1632.6, 1601.1, 1366.3, 1169.7, 751.9. **HRMS (ESI)**: C₂₁H₂₅N₂O₄S [(M+H)⁺]: calcd.: 401.1530; found: 401.1534. 3a-(tert-Butylperoxy)-1-(methylsulfonyl)-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole 2b

Compound **2b** was synthesized following the *general procedure*.

A white solid, 44.1 mg, 68% yield.

m.p.: 165 – 170 °C.

TLC: $R_f = 0.28$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 3H), 7.14 – 7.00 (m, 1H), 4.56 (*virt.* td, $J \cong 10.1$, 5.0 Hz, 1H), 4.33 – 4.20 (m, 1H), 3.28 (s, 3H), 2.62 (*virt.* dd, $J \cong 13.6$, 5.0 Hz, 1H), 2.13 (*virt.* dt, $J \cong 13.6$, 10.1 Hz, 1H), 1.09 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 174.4, 159.0, 132.9, 130.7, 124.4, 124.1, 119.7, 93.4, 80.9, 56.2, 38.9, 30.3, 26.3.

IR (ATR/cm⁻¹) 2977.3, 2926.7, 1636.2, 1601.7, 1455.4, 1360.0, 1265.3, 1164.2, 1100.5, 998.4, 965.1, 874.3, 764.3.

HRMS (ESI): $C_{15}H_{20}N_2NaO_4S$ [(M+Na)⁺]: calcd.: 347.1036; found: 347.1037.

3a-(tert-Butylperoxy)-1-((4-nitrophenyl)sulfonyl)-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole 2c

Compound **2c** was synthesized following the *general procedure*.

A white solid, 47.5 mg, 55% yield.

m.p.: 166 – 170 °C.

TLC: $R_f = 0.71$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 – 8.36 (m, 4H), 7.37 – 7.30 (m, 3H), 7.05 (t, *J* = 7.2 Hz, 1H), 4.57 (*virt.* td, *J* \cong 11.2, 5.2 Hz, 1H), 4.21 – 4.12 (m, 1H), 2.51 (*virt.* dd, *J* \cong 11.2, 5.2 Hz, 1H), 1.94 – 1.82 (m, 1H), 1.03 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 158.8, 150.9, 143.2, 132.8, 130.8, 129.5, 124.4, 124.4, 124.4, 124.4, 124.4, 120.1, 93.1, 80.9, 56.3, 29.6, 26.2.

IR (ATR/cm⁻¹) 3105.8, 2981.2, 2930.3, 1636.1, 1602.8, 1533.1, 1371.7, 1262.8, 1175.1, 1095.7, 999.7, 857.2, 741.1, 623.3, 564.1.

HRMS (ESI): C₂₀H₂₁N₃NaO₆S [(M+Na)⁺]: calcd.: 454.1043; found: 454.1045.

Compound **2d** was synthesized following the *general procedure*.

A white solid, 42.3 mg, 51% yield. **m.p.**: 163 – 168 °C. **TLC**: $R_f = 0.66$ (Hexane/EtOAc = 3:1) [UV, KMnO₄]. ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 – 8.03 (m, 2H), 7.32 – 7.30 (m, 2H), 7.18 – 7.17 (m, 2H), 6.86 – 6.74 (m, 1H), 4.52 (*virt.* td, $J \cong 10.1$, 5.2 Hz, 1H), 4.12 (*virt.* t, $J \cong 10.1$ Hz, 1H), 2.50 – 2.42 (m, 1H), 2.41 (s, 3H), 2.26 (s, 3H), 1.96 – 1.84 (m, 1H), 1.04 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 159.4, 145.0, 135.0, 134.9, 130.9, 130.6, 129.8, 128.1, 125.5, 117.3, 93.3, 80.6, 56.0, 29.6, 26.2, 21.7, 18.0. IR (ATR/cm⁻¹) 3049.4, 2981.0, 2924.7, 1628.9, 1594.5, 1432.6, 1361.3, 1240.0, 1171.1, 1090.5, 1050.6, 991.4, 910.6, 809.5, 669.2, 569.8. HRMS (ESI): C₂₂H₂₆N₂NaO₄S [(M+Na)⁺]: calcd.: 437.1505; found: 437.1509.

3a-(tert-Butylperoxy)-5-fluoro-1-tosyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole 2e

Compound 2e was synthesized following the general procedure.

A white solid, 57.7 mg, 67% yield.

m.p.: 148 – 153 °C.

TLC: $R_f = 0.57$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 – 8.02 (m, 2H), 7.37 – 7.27 (m, 3H), 7.04 – 6.92 (m, 2H), 4.47 (m, 1H), 4.15 – 4.06 (m, 1H), 2.51 – 2.44 (m, 1H), 2.42 (s, 3H), 1.90 – 1.77 (m, 1H), 1.05 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.6, 159.9 (d, J = 243.2 Hz), 155.0, 145.1, 134.7, 134.5 (d, J = 8.5

Hz), 129.9, 128.1, 120.2 (d, *J* = 8.3 Hz), 116.5 (d, *J* = 23.2 Hz), 112.4 (d, *J* = 25.2 Hz), 93.7 – 92.9 (m), 80.9, 55.6, 29.7, 26.2, 21.7.

IR (ATR/cm⁻¹) 2978.6, 2930.0, 1604.0, 1479.0, 1366.4, 1285.7, 1172.7, 1143.4, 1095.5, 1002.5, 813.0, 675.7, 581.7, 548.3.

HRMS (ESI): C₂₁H₂₃FN₂NaO₄S [(M+Na)⁺]: calcd.: 441.1255; found: 441.1259.

Compound **2f** was synthesized following the *general procedure*.

A white solid, 51.1 mg, 61% yield.

m.p.: 147 − 150 °C.

TLC: $R_f = 0.47$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 – 8.02 (m, 2H), 7.32 – 7.30 (m, 2H), 7.26 (d, J = 8.3 Hz, 1H), 6.90 (s, 1H), 6.80 (d, J = 8.3 Hz, 1H), 4.51 – 4.39 (m, 1H), 4.08 (*virt*. t, $J \cong 9.2$ Hz, 1H), 3.77 (s, 3H), 2.45 (*virt*. dd, $J \cong 13.4$, 5.1 Hz, 1H), 2.41 (s, 3H), 1.85 – 1.77 (m, 1H), 1.06 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 156.7, 152.4, 144.9, 134.8, 134.3, 129.8, 128.0, 119.9, 114.1, 112.0, 93.4, 80.7, 55.8, 55.5, 29.6, 26.2, 21.7. IR (ATR/cm⁻¹) 2958.3, 2926.9, 1634.2, 1468.1, 1367.3, 1264.7, 1170.8, 1095.9, 1017.4, 926.1,

816.8, 668.9, 574.0, 548.0.

HRMS (ESI): $C_{22}H_{26}N_2NaO_5S$ [(M+Na)⁺]: calcd.: 453.1455; found: 453.1455.

3a-(tert-butylperoxy)-5-chloro-1-tosyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole 2g

Compound **2g** was synthesized following the *general procedure*.

A white solid, 61.7 mg, 71% yield.

m.p.: 147.9 – 155.1°C.

TLC: $R_f = 0.72$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.26 (m, 3H),

4.48 (*virt*. td, *J* ≅ 10.2, 5.1 Hz, 1H), 4.11 (*virt*. t, *J* ≅ 9.1 Hz, 1H), 2.48–2.43 (m, 1H), 2.42 (s, 3H), 1.87 – 1.79 (m, 1H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 173.9, 157.7, 145.1, 134.5, 134.4, 130.3, 129.8, 129.1, 127.9, 124.6, 120.4, 93.2, 80.9, 55.6, 29.6, 26.1, 21.6.

IR (ATR/cm⁻¹) 2980.6, 2928.5, 1632.5, 1596.6, 1448.5, 1367.7, 1254.6, 1172.1, 1095.4, 915.6, 817.7, 673.9, 580.5, 547.3.

HRMS (ESI): C₂₁H₂₃³⁵ClN₂NaO₄S [(M+Na)⁺]: calcd.: 457.0959; found: 457.0961.

Compound **2h** was synthesized following the *general procedure*.

A white solid, 74.8 mg, 78% yield.

m.p.: 159 – 165 °C.

TLC: $R_f = 0.65$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H** NMR (400 MHz, CDCl₃) δ 8.03 – 8.01 (m, 2H), 7.48 – 7.37 (m, 2H), 7.34 – 7.32 (m, 2H), 7.22 (d, J = 7.7 Hz, 1H), 4.48 (*virt*. td, $J \cong 10.4$, 5.2 Hz, 1H), 4.11 (*virt*. t, $J \cong 9.2$ Hz, 1H), 2.48 –

4.46 (m, 1H), 2.41 (s, 3H), 1.88 - 1.78 (m, 1H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 174.0, 158.3, 145.2, 134.9, 134.6, 133.4, 129.9, 128.0, 127.5, 121.1, 116.8, 93.3, 81.0, 55.8, 29.7, 26.2, 21.7.

IR (ATR/cm⁻¹) 2979.6, 2927.5, 1632.5, 1596.8, 1442.8, 1368.7, 1254.4, 1171.1, 1095.4, 915.2, 818.8, 673.8, 581.6, 547.7.

HRMS (ESI): $C_{21}H_{23}^{79}BrN_2NaO_4S$ [(M+Na)⁺]: calcd.: 501.0454; found: 501.0454. **HRMS (ESI)**: $C_{21}H_{23}^{81}BrN_2NaO_4S$ [(M+Na)⁺]: calcd.: 503.0433; found: 503.0437.

3a-(tert-Butylperoxy)-5-methyl-1-tosyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole 2i

Compound **2i** was synthesized following the *general procedure*.

A white solid, 60.5 mg, 73% yield.

m.p.: 143 – 146 °C.

TLC: $R_f = 0.41$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 – 8.01 (m, 2H), 7.30 – 7.26 (m, 3H), 6.90 (s, 1H), 6.80 (d, J = 8.1 Hz, 1H), 4.53 – 4.39 (m, 1H), 4.08 (*virt*, t, $J \cong 9.1$ Hz, 1H), 3.77 (s, 3H), 2.45 (*virt*. dd, $J \cong$

13.9, 4.8 Hz, m, 1H), 2.40 (s, 3H), 1.86 – 1.75 (m, 1H), 1.06 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 172.4, 156.7, 152.4, 144.9, 134.8, 134.3, 129.8, 128.0, 119.8, 114.1, 112.0, 93.3, 80.7, 55.8, 55.5, 29.6, 26.2, 21.7.

IR (ATR/cm⁻¹) 2980.5, 1634.1, 1468.3, 1367.4, 1264.6, 1170.9, 1095.8, 1017.0, 925.4, 816.4, 731.8, 668.6, 547.9.

HRMS (ESI): C₂₂H₂₆N₂NaO₄S [(M+Na)⁺]: calcd.: 437.1505; found: 437.1507.

Compound **2j** was synthesized following the *general procedure*. A white solid, 52.7 mg, 63% yield. **m.p.**: 146 – 149 °C. **TLC**: $R_f = 0.67$ (Hexane/EtOAc = 3:1) [UV, KMnO₄]. ¹**H NMR** (400 MHz, CDCl₃) δ 8.04 – 8.02 (m, 2H), 7.34 – 7.32 (m, 2H), 7.20 (s, 1H), 7.07 (d, J = 9.3 Hz, 1H), 6.69 (t, J = 8.7 Hz, 1H), 4.50 (*virt.* td, $J \cong 10.5$, 10.1, 4.8 Hz, 1H), 4.12 (*virt.* t, $J \cong 9.1$ Hz, 1H), 2.47 (s, 1H), 2.42 (s, 3H), 1.92 – 1.66 (m, 1H), 1.04 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 175.5, 164.6 (d, J = 246.9 Hz), 161.4 (d, J = 11.8 Hz), 145.3, 134.6, 129.9, 128.5 (d, J = 2.6 Hz), 128.1, 124.8 (d, J = 10.0 Hz), 109.8 (d, J = 22.9 Hz), 108.1 (d, J = 25.0 Hz), 92.8, 80.8, 55.9, 29.8, 26.2, 21.7. **IR** (ATR/cm⁻¹) 2979.5, 2927.5, 1599.4, 1470.8, 1367.5, 1281.5, 1173.1, 1096.6, 1004.2, 904.3, 813.3, 674.9, 579.7, 547.4. **HRMS (ESI)**: C₂₁H₂₃FN₂NaO₄S [(M+Na)⁺]: calcd.: 441.1255; found: 441.1259.

3a-(tert-Butylperoxy)-6-chloro-1-tosyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole 2k

Compound **2k** was synthesized following the *general procedure*.

A white solid, 65.3 mg, 75% yield.

m.p.: 148 – 154 °C.

TLC: $R_f = 0.74$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 – 8.02 (m, 2H), 7.34 – 7.32 (m, 3H), 7.18 (d, *J* = 7.9 Hz, 1H), 6.99 (d, *J* = 7.3 Hz, 1H), 4.50 (*virt.* td, *J* \cong 10.0, 5.0 Hz, 1H), 4.11 (*virt.* t, *J* \cong 9.0 Hz, 1H), 2.51 – 2.44 (m, 1H), 2.42 (s, 3H), 1.88 – 1.76 (m, 1H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 175.1, 160.7, 145.3, 136.2, 134.6, 131.3, 129.9, 128.1, 124.7, 123.6, 120.4, 93.0, 80.9, 55.9, 29.9, 26.2, 21.7.

IR (ATR/cm⁻¹) 2980.7, 2929.3, 1632.5, 1596.6, 1449.3, 1366.6, 1281.2, 1172.5, 1095.3, 1003.2, 870.3, 814.9, 673.9, 576.8, 547.3.

HRMS (ESI): $C_{21}H_{23}^{35}CIN_2NaO_4S$ [(M+Na)⁺]: calcd.: 457.0959; found: 457.0963.

Compound **2l** was synthesized following the *general procedure*.

A white solid, 65.2 mg, 68% yield.

m.p.: 156 – 160 °C.

TLC: $R_f = 0.71$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 – 8.01 (m, 2H), 7.49 (s, 1H), 7.34 – 7.32 (m, 2H), 7.17 – 7.13 (m, 2H), 4.51 (*virt.* td, $J \cong 10.1$, 5.1 Hz, 1H), 4.11 (*virt.* t, $J \cong 8.9$ Hz, 1H), 2.52 – 2.44 (m, 1H), 2.42 (s, 3H), 1.87 – 1.75 (m, 1H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 175.0, 160.8, 145.3, 134.6, 131.8, 129.9, 128.1, 126.5, 125.1, 124.2, 123.2, 93.1, 81.0, 55.9, 29.8, 26.2, 21.7.

IR (ATR/cm⁻¹) 2981.5, 2928.4, 1632.9, 1595.9, 1447.8, 1365.5, 1282.1, 1171.1, 1097.9, 1003.4, 871.4, 815.5, 674.8, 577.2.

HRMS (ESI): $C_{21}H_{23}^{79}BrN_2NaO_4S$ [(M+Na)⁺]: calcd.: 501.0454; found: 501.0450. **HRMS (ESI)**: $C_{21}H_{23}^{81}BrN_2NaO_4S$ [(M+Na)⁺]: calcd.: 503.0433; found: 503.0429.

3a-(tert-Butylperoxy)-6-methoxy-1-tosyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole 2m

Compound **2m** was synthesized following the *general procedure*.

A white solid, 63.7 mg, 74% yield.

m.p.: 165 – 168 °C.

TLC: $R_f = 0.40$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 – 8.02 (m, 2H), 7.33 – 7.31 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.02 – 6.91 (m, 1H), 6.51 (d, *J* = 7.9 Hz, 1H), 4.48 (*virt*. td, *J* \cong 10.1, 5.1 Hz, 1H), 4.09 (*virt*. t, *J* \cong 9.2 Hz, 1H), 3.81 (s, 3H), 2.49 – 2.43 (m, 1H), 2.41 (s, 3H), 1.81 (*virt*. dt, *J* \cong 13.3, 10.1 Hz, 1H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 175.1, 162.0, 161.3, 145.1, 134.8, 129.8, 128.1, 124.9, 124.6, 108.3, 106.7, 93.1, 80.7, 55.9, 55.5, 30.0, 26.3, 21.7.

IR (ATR/cm⁻¹) 2981.4, 2930.4, 1636.8, 1605.8, 1460.6, 1369.2, 1262.0, 1169.9, 1096.6, 929.7, 819.4, 733.1, 669.1, 592.2, 551.1.

HRMS (ESI): $C_{22}H_{26}N_2NaO_5S$ [(M+Na)⁺]: calcd.: 453.1455; found: 453.1455.

Compound **2n** was synthesized following the *general procedure*.

A white solid, 44.8 mg, 54% yield.

m.p.: 147 – 153 °C.

TLC: $R_f = 0.73$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 – 8.03 (m, 2H), 7.32 – 7.30 (m, 2H), 7.18 (s, 1H), 7.15 (d, J = 7.4 Hz, 1H), 6.82 (d, J = 7.1 Hz, 1H), 4.49 (*virt.* td, $J \cong$ 10.1, 5.2 Hz, 1H), 4.08 (*virt.* t, $J \cong$ 9.1 Hz, 1H), 2.46 (*virt.* dd, $J \cong$ 13.7, 4.9 Hz, 1H), 2.41 (s, 3H), 2.35 (s, 3H), 1.83 – 1.73 (m, 1H), 1.06 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 174.2, 159.6, 145.0, 140.9, 134.8, 130.0, 129.8, 128.1, 124.2, 123.9, 120.8, 93.2, 80.7, 55.9, 29.9, 26.3, 21.9, 21.7.

IR (ATR/cm⁻¹) 2979.8, 2927.0, 1604.0, 1456.3, 1364.8, 1262.8, 1172.0, 1094.6,1004.2, 814.5, 675.1, 578.1, 547.7.

HRMS (ESI): C₂₂H₂₆N₂NaO₄S [(M+Na)⁺]: calcd.: 437.1505; found: 437.1509.

3a-(tert-Butylperoxy)-7-methyl-1-tosyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole 2o

20

Compound **20** was synthesized following the *general procedure*.

A white solid, 51.4 mg, 62% yield.

m.p.: 140 – 146 °C.

TLC: $R_f = 0.82$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 6.9 Hz, 2H), 6.91 (t, *J* = 6.9 Hz, 1H), 4.53 (*virt.* td, *J* \cong 10.2, 5.2 Hz, 1H), 4.10 (*virt.* t, *J* \cong 9.3 Hz, 1H), 2.48 (s, 3H), 2.40 (s, 3H), 1.79 - 1.70 (m, 1H), 1.67 (s, 1H), 1.09 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 157.3, 145.0, 134.5, 133.0, 132.1, 129.6, 129.2, 128.4,

123.5, 121.7, 93.4, 80.7, 67.2, 56.0, 26.3, 21.7, 16.8.

IR (ATR/cm⁻¹) 3053.8, 2977.8, 2926.4, 1632.3, 1599.5, 1459.3, 1367.8, 1276.1, 1170.5, 1095.8, 926.5, 759.2, 669.9, 588.5, 547.4.

HRMS (ESI): C₂₂H₂₆N₂NaO₄S [(M+Na)⁺]: calcd.: 437.1505; found: 437.1508.

Methyl 3a-(*tert*-butylperoxy)-1-tosyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole-2-carboxylate 2p

Compound **2p** was synthesized following the *general procedure*.

A white solid, 73.4 mg, 80% yield. The product contains a mixture of two inseparable diastereoisomers (1.5:1).

TLC: $R_f = 0.55$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

Minor product:

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 – 8.11 (m, 2H), 7.36 (m, 5H), 7.04 (d, *J* = 8.1 Hz, 1H), 5.29 – 5.22 (m, 1H), 3.84 (s, 3H), 3.00 – 2.91 (m, 1H), 2.42 (s, 3H), 2.21 (m, 1H), 0.91 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 173.2, 169.8, 159.7, 144.9, 136.0, 132.6, 130.9, 129.6, 128.7, 124.5, 124.2, 120.3, 92.2, 80.7, 68.8, 52.9, 32.6, 26.0, 21.7.

Major product:

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.1 Hz, 3H), 7.33 – 7.21 (m, 7.5H), 6.99 (d, *J* = 8.1 Hz, 1.5H), 5.20 (m, 1.5H), 3.75 (s, 4.5H), 2.88 (m, 1.5H), 2.42 (s, 4.5H), 2.04 (m, 1.5H), 0.91 (s, 13.5H).
¹³C NMR (101 MHz, CDCl₃) δ 173.0, 170.0, 159.2, 145.2, 134.9, 132.7, 130.7, 129.6, 128.2, 124.4, 123.8, 119.9, 92.7, 80.7, 68.6, 52.9, 35.5, 26.1, 21.7.

IR (ATR/cm⁻¹) 3063.9, 2981.1, 1757.5, 1637.9, 1601.5, 1449.0, 1365.9, 1171.0, 1090.4, 912.6, 810.1, 733.5, 666.4, 571.0.

HRMS (ESI): $C_{23}H_{26}N_2NaO_6S$ [(M+Na)⁺]: calcd.: 481.1404; found: 481.1407.

A 50 ml round bottom flask was charged with substrate **2a** (0.2 mmol, 1.0 equiv) and THF (8.0 mL), then NaBH₄ (3.0 equiv) was added portionwise at room temperature and the mixture was stirred until the starting material was disappeared and monitored by analysis TLC (1 h). Saturated aqueous NH₄Cl solution (20 mL) was added to the mixture carefully, extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, concentrated under reduced pressure and the residue was purified by chromatography on silica gel (eluent: Hexane/EtOAc, 30:1 to 10:0) to afford peroxypyrroloindoline **3a**.

3a-(tert-Butylperoxy)-1-tosyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole 3a

A white solid, 70.0 mg, 87% yield.

m.p.: 98 – 101 °C.

TLC: $R_f = 0.71$ (Hexane/EtOAc = 3:1) [UV, KMnO₄].

¹**H** NMR (400 MHz, CDCl₃) δ 7.79 – 7.77 (m, 2H), 7.34 – 7.32 (m, 2H), 7.12 – 7.22 (m, 1H), 6.76 (*virt.* t, $J \cong$ 7.4 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 5.43 (d, J = 1.8 Hz, 1H), 4.91 (s, 1H), 3.38 (ddd, J = 10.0, 8.0, 5.0 Hz, 1H), 3.32 – 3.21 (m, 1H), 2.54 (*virt.* dt, $J \cong 12.5$, 8.0 Hz, 1H), 2.43 (s, 3H), 2.16 (ddd, J = 12.5, 6.8, 5.0 Hz, 1H), 1.06 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 150.2, 143.8, 135.1, 130.9, 129.8, 127.7, 126.0, 124.8, 119.1, 110.3, 97.9, 80.1, 79.4, 47.4, 33.9, 26.5, 21.6.

IR (KBr/cm⁻¹) 3438.2, 3057.5, 2976.1, 2889.5, 1613.0, 1339.5, 1164.0, 754.1.

HRMS (ESI): C21H26N2NaO4S [(M+Na)⁺]: calcd.: 425.1505; found: 425.1504.

(D) Mass Analysis of Reaction Mixtures

MS analysis of reaction mixture of substrate 4

(E) ¹H and ¹³C NMR Spectra Data of All Products

