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Supporting Information

Topochemical Pyrolytic Synthesis of Quasi-Mxene Hybrids via

Ionic Liquid-Iron Phthalocyanine as Self-template

EXPERIMENTAL SECTIONS

Materials and reagents

Iron phthalocyanine (Fe-Pc) was purchased from TGI (Tokyo Chemical Industry) and 1-ethyl-
3-methylimidazolium dicyanamide ([emim][DCA]) was purchased from CJC (Cheng Jie

Chemical). All reagents were of analytical grade and applied without further purification.

Synthesis of quasi-Mxene structure C/Fe;C/Fe composite

Ionic liquid used here was 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]). Firstly,
[emim][DCA] and Fe-Pc were homogeneously mixed in an agate mortar with the mass ratio of
10:2 (250 mg:50 mg). Then, the uniform reagents were transferred into a crucible for heat
treatment. After the sample were calcined in a tube furnace at 900 °C via heating rate of 5
°C/min for 3h in nitrogen atmosphere, C/Fe;C/Fe hybrids in quasi-Mxene structures were
obtained and marked as QMxene-2. 50 mg of pure Fe-Pc, standing for mass ratio of 0:1, was
treated through the same procedure to get QMxene-0 as control group. Maintained the dosage
of Fe-Pc invariant, QMxene-1 (10:4) and QMxene-3 (10:1) were synthesized by halved or
doubled the amount of [emim][DCA].

Beyond that, a series of temperatures were examined for mass ratio of 10:2 (QMxene-2) to
investigate morphological transformations at different durations. 250 mg [emim][DCA] and 50
mg Fe-Pc were heated in nitrogen atmosphere for 3h at 300 °C, 500 °C, and 900 °C to generate
QMxene-300, QMxene-500, and QMxene-900 respectively. In addition, 50 mg Fe-Pc without
[emim][DCA] was also heated in nitrogen atmosphere for 3h at 300 °C as a contrastive sample
to prove that crystal structure change from room temperature to 300 °C was the result of

intercalation of [emim][DCA].



Characterization

All morphologies were got from a field emission scanning electron microscope (FE-SEM,
JEOL, Model JSM-7600F) and lattice information was obtained through transmission electron
microscope (TEM, JEOL, Model JEM-2100) at 200 kV for further micro-structure. X-ray
diffraction (XRD) was brought out by a Scintag PAD-V X-ray diffractometer with Cu Ka
irradiation for crystal and component information. Thermo gravimetric analysis (TGA, Q500)
was delivered in temperature range of 25-900°C under air flow via heating rate of 5 °C min-! to
confirm precise content of Fe element in the as-synthetic composite. Raman measurements
(Renishaw in Via Raman Spectroscope) were performed using a green laser (532 nm) . And X-
ray photoelectron spectroscopy (XPS, PHI Quantera) was applied for information about more

element and bonding details.

Electrochemical measurements

For preparation of electrode, the obtained quasi-Mxene composite, carbon black, and PVDF
binder were homogenously mixed in NMP with mass ratio of 8:1:1. Coating the slurry we
gained on a copper foil with active materials approximate 1 mg cm!, working electrode was
produced, which was then put into a vacuum oven at 50 °C for 12h to remove the solvent.
Taking lithium metal as reference electrode in LiPFg electrolyte (1 M LiPFg in volume ratio of
1:1 mixture of ethylene carbonate and dimethyl carbonate) with Celgard 2400 membrane as
separator, the electrochemical performance was measured. All rating and cycling ability was
tested using a NEWARE battery tester and electrochemical impedance spectroscopy was
carried out through a CHI 660C electrochemical workstation after the battery went through

several cycles.



Figures referred in this paper:

treatments.
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Fig. S2 Magnified SEM images of synthetic quasi-Mxene structure C/Fe;C/Fe hybrid.
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Fig. S3 TEM and corresponding high resolution TEM (HRTEM) images of microstructures of
quasi-Mxene C/Fe;C/Fe hybrid: (a-c) TEM images, (d) HRTEM image, (¢) Element images,
confiming the existence of Fe;C/Fe nanoballs.
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Fig. S4 XPS of quasi-Mxene structure C/Fe;C/Fe hybrid of (a) Fe 2p orbitals, (b) N 1s
orbitals, and (c) C 1s orbitals.
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Fig. S5 Rate capability of quasi-Mxene structure C/Fe;C/Fe hybrid at different current

densities of 100, 200, 500, 1000, 2000, 5000 mA g!.
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Fig. S6 Cycling stability of quasi-Mxene structure C/Fe;C/Fe hybrid at current density of 200

mA g and 1000 mA g
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Fig. S7 Charge-discharge profiles of quasi-Mxene structure C/Fe;C/Fe hybrid under current
density of 200 mA g at 1%, 10%, 20 and 30 cycles.
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Fig. S8 Cyclic voltammetry curves of quasi-Mxene structure C/Fe;C/Fe hybrid for the first
three cycles.
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Fig. S9 Nyquist plots of quasi-Mxene structure C/Fe;C/Fe hybrid after three cycles.

11



