Electronic Supplementary Information

Palladium-Catalyzed Oxidative Borylation of Conjugated Enynones through Carbene Migratory Insertion: Synthesis of Furyl-Substituted Alkenylboronates

Yifan Ping,^a Taiwei Chang,^a Kang Wang,^a Jingfeng Huo,^a Jianbo Wang*^{a,b}

^a Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

^b The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

* Email: <u>wangjb@pku.edu.cn</u>

1.	General	.S1
2.	General Procedure for Preparation of Conjugated Enynones	.S1
3.	General Procedure for Pd-Catalyzed Oxidative Borylation Reaction of Conjugated Enynones.	.S2
4.	Procedure for Transformations of Alkenylboronate 3q	.S3
	Procedure for Protodeboronation of 3q	.S3
	Procedure for Chlorination of 3q	.S3
	Procedure for Bromination of 3q	.S3
	Procedure for oxidation of 3q	.S4
	Procedure for Suzuki coupling of 3q	.S4
5.	Double-Bond Configuration of the Products	.S5
6.	Characterization Data	.S6
	Characterization Data of Unknown Conjugated Enynones	.S6
	Characterization Data of the Products	.S7
7.	References	314
8.	¹ H and ¹³ C NMR spectra	315

1. General

All the palladium-catalyzed reactions were performed under nitrogen atmosphere in a flame-dried reaction tube. For chromatography, 200–300 mesh silica gel (Qingdao, China) was employed. HPLC grade methanol was used as the solvent without further purification. ¹H NMR spectra were recorded on Bruker ARX 400 (400 MHz) or Bruker ARX 500 (500 MHz); ¹³C NMR spectra were recorded on Bruker ARX 400 (101 MHz) or Bruker ARX 500 (126 MHz). The data for NMR spectra were reported as follows: chemical shifts (δ) were reported in ppm using tetramethylsilane as internal standard when using CDCl₃ as solvent, and coupling constants (*J*) were in Hertz (Hz). The resonances for carbon atoms directly attached to boron were not observed due to quadrupolar relaxation. IR spectra were recorded on Bruker APEX IV FTMS. Conjugated enynones were synthesized according to the previous report.^{1,2} Other starting materials were purchased from commercial source and used without further purification. (PE: petroleum ether; EA: ethyl acetate).

2. General Procedure for Preparation of Conjugated Enynones

Conjugated enynones **1a-1l**, **1o-1s** were prepared according to our previous report.¹ The alkyne (10 mmol) was dissolved in dry THF (15 mL) and the solution was cooled to -40 °C under nitrogen, *n*-butyllithium (1.6 M in hexanes, 6.8 mL, 11 mmol) was added dropwise over *ca*. 2 minutes while maintaining the temperature between -35 and -40 °C. After completion of the addition, anhydrous DMF (1.55 mL, 20 mmol) was added in one portion and the cold bath was removed. The reaction mixture was allowed to warm to room temperature and aged for 30 minutes. The THF solution was poured into a vigorously stirred biphasic solution prepared from aqueous solution of KH₂PO₄ (50 mL, 30 mmol) and Et₂O (30 mL) cooled over ice to about 5 °C. Layers were separated and the organic extract was washed with water (2 × 30 mL). Combined aqueous layers were back extracted with Et₂O (30 mL). Combined organic layers were dried over Na₂SO₄ and filtered. Then solvent was removed in vacuo to leave a crude acetylenicaldehyde.

The crude product was then dissolved in THF (8 mL), and 1,3-dicarbonyl compounds (10 mmol) were added into the solution. Then HOAc (2 mmol), MgSO₄ (2 mmol) and piperidine (1 mmol) were added to the reaction mixture. The mixture was stirred at room temperature for about 1 hour. When the reaction was completed as monitored by TLC, filtration through celite and removal of the solvent by rotary evaporation gave the crude product. The conjugated enynones were purified by chromatography on silica gel with the appropriate mixture of PE and EA (PE = petroleum ether, EA = ethyl acetate). The unsymmetric 1,3-dicarbonyl compounds would afford conjugated enynones as a mixture of *E*- and *Z*-isomer. The conjugated enynones need to be kept in refrigerator below 0 $^{\circ}$ C.

Conjugated enynones **1m-1n** were prepared according to the literature report.² The alkyne (10 mmol) was dissolved in dry THF (15 mL) and the solution was cooled to -40 °C under nitrogen, *n*-butyllithium (1.6 M in hexanes, 6.8 mL, 11 mmol) was added dropwise over *ca.* 2 minutes while maintaining the temperature between -35 and -40 °C. After completion of the addition, anhydrous DMF (1.55 mL, 20 mmol) was added in one portion and the cold bath was removed. The reaction mixture was allowed to warm to room temperature and aged for 30 minutes. The THF solution was poured into a vigorously stirred biphasic solution prepared from aqueous solution of KH₂PO₄ (50 mL, 30 mmol) and Et₂O (30 mL) cooled over ice to about 5 °C. Layers were separated and the organic extract was washed with water (2 × 30 mL). Combined aqueous layers were back extracted with Et₂O (30 mL). Combined organic layers were dried over Na₂SO₄ and filtered. Then solvent was removed in vacuo to leave a crude acetylenicaldehyde.

The crude product was then dissolved in toluene (15 mL), and carbonyl compounds (10 mmol) were added into the solution. Then ethylenediamine (0.5 mmol) and HOAc (1 mmol) were added to the reaction mixture. The mixture was stirred at room temperature for about 3 hours. When the reaction was completed as monitored by TLC, filtration through celite and removal of the solvent by rotary evaporation gave the crude product. The conjugated enynones were purified by chromatography on silica gel with the appropriate mixture of PE and EA (PE = petroleum ether, EA = ethyl acetate).

3. General Procedure for Pd-Catalyzed Oxidative Borylation Reaction of Conjugated Enynones

Pd(OAc)₂ (0.9 mg, 0.004 mmol, 2 mol %), PPh₃ (2.6 mg, 0.01 mmol, 5 mol %), 2,6-dimethyl-1,4-benzoquinone (54.4 mg, 0.4 mmol, 2 equiv), diboron compound (**2**, 0.4 mmol, 2 equiv) were added to a flame-dried 10 mL Schleck reaction tube. The reaction tube was degassed three times with nitrogen, then MeOH (HPLC grade, 4 mL) was added using a syringe. i Pr₂NEt (51.6 mg, 0.4 mmol, 2 equiv), conjugated enynone (**1**, 0.2 mmol) were added by syringe successively. The reaction tube was stirred at 40 °C for 10 h, then cooled to room temperature. The mixture was filtered through a short plug of silica gel and washed with EtOAc as the eluent. Solvent was then removed in vacuo to leave a crude mixture, which was purified by silica gel column chromatography to afford pure product alkenylboronates **3** or **4**.

4. Procedure for Transformations of Alkenylboronate 3q

Procedure for Protodeboronation of 3q

According to the literature procedure,³ a mixture of 3q (34.4 mg, 0.1 mmol), AgNO₃ (1.0 mg, 0.006 mmol, 6 mol %), NEt₃ (10.1 mg, 0.1 mmol) and EtOH/H₂O (0.5 mL/0.5 mL) was stirred at 80 °C for 3 h under air atmosphere. After the completion of reaction, the reaction mixture was quenched with brine (5 mL) and extracted with ethyl acetate (10 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The crude product was then purified by column chromatography on silica gel to afford compound 5a (16.8 mg, 77%).

Procedure for Chlorination of 3q

According to the literature procedure,⁴ a mixture of 3q (34.4 mg, 0.1 mmol), CuCl₂ (26.9 mg, 0.2 mmol) and THF/H₂O (0.5 mL/0.5 mL) was stirred at 70 °C for 8 h at air atmosphere. After the completion of reaction, the reaction mixture was quenched with brine (5 mL) and extracted with ethyl acetate (10 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The crude product was then purified by column chromatography on silica gel to afford compound **5b** (20.6 mg, 82%).

Procedure for Bromination of 3q

According to the literature procedure,⁴ a mixture of 3q (34.4 mg, 0.1 mmol), CuBr₂ (44.7 mg, 0.2 mmol) and THF/H₂O (0.5 mL/0.5 mL) was stirred at 70 °C for 8 h at air atmosphere. After the completion of reaction, the reaction mixture was quenched with brine (5 mL) and extracted with ethyl acetate (10 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The crude product was then

purified by column chromatography on silica gel to afford compound 5c (22.0 mg, 75%).

Procedure for oxidation of 3q

According to the literature procedure,⁵ a mixture of 3q (62.5 mg, 0.18 mmol), NaBO₃ · 4H₂O (138.5 mg, 0.9 mmol) and THF/H₂O (2 mL/2 mL) was stirred at room temperature for 1.5 h. After the completion of reaction, the reaction mixture was quenched with brine (5 mL) and extracted with ethyl acetate (10 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The crude product was then purified by column chromatography on silica gel to afford compound **5d** (30.6 mg, 73%).

Procedure for Suzuki coupling of 3q

According to the literature procedure,⁶ Pd(PPh₃)₄ (11.6 mg, 0.01 mmol) and 4-bromo-1,1'-biphenyl (35.0 mg, 0.15 mmol) were added to a flame-dried 10 mL Schleck reaction tube. The reaction tube was degassed three times with nitrogen, and dioxane (1 mL) was added using a syringe. Then 2 M NaOH aqueous solution (100 μ L, 0.2 mmol) and **3q** (34.4 mg, 0.1 mmol) were added by syringe successively. The reaction tube was stirred at 100 °C for 20 h, then cooled to room temperature. The mixture was then filtered through a short plug of silica gel and washed with PE/EA = 10/1 as the eluent. Solvent was then removed in vacuo to leave a crude mixture, which was purified by silica gel column chromatography to afford **5e** (32.0 mg, 86%).

According to the literature procedure,⁶ Pd(PPh₃)₄ (11.6 mg, 0.01 mmol) was added to a flame-dried 10 mL Schleck reaction tube. The reaction tube was degassed with nitrogen, and dioxane (1 mL) was added using a syringe. Then 2 M NaOH aqueous solution (100 μ L, 0.2 mmol), (1-bromovinyl)benzene (27.5 mg, 0.15 mmol) and

3q (34.4 mg, 0.1 mmol) were added successively. The reaction tube was stirred at 100 °C for 20 h, then cooled to room temperature. The mixture was then filtered through a short plug of silica gel and washed with PE/EA = 10:1 as the eluent. Solvent was then removed in vacuo, and the residue was purified by silica gel chromatography to afford **5f** (31.9 mg, 99%).

5. Double-Bond Configuration of the Products

According to the general procedure for palladium-catalyzed oxidative borylation reaction, 3a (50.7 mg, 0.16 mmol) was synthesized by 1a (0.2 mmol) and 2a (0.4 mmol). To identify the double-bond configuration of 3a, subsequent protodeboronation was carried out to afford 3a' (27.6 mg) in 90% yield according to the procedure (Supplement 4a).

Then we analyzed the ¹H-NMR spectrum of **3a'**. The sp³-sp³ J_{D-E} and J_{C-D} on the propyl group are about 7.3 Hz, and the sp²-sp³ J_{A-C} between the vinyl proton **A** and the adjacent methylene **C** is 6.4 Hz, which are all typical values. The chemical shifts of **A** and **B** are close enough to cause strong second-order coupling, resulting in the "roof-like" peaks. The J_{A-B} value is 15.9 Hz, indicating that **3a'** is a *trans*-disubstituted alkene. Considering that the protodeboronation would resist the double-bond configuration,³ we could judge that boronate group is *cis* to the alkyl group.

6. Characterization Data

Characterization Data of Unknown Conjugated Enynones

3-(4-Cyclohexylbut-2-yn-1-ylidene)pentane-2,4-dione (1d)

¹**H** NMR (400 MHz, CDCl₃) δ 6.71 (t, J = 2.6 Hz, 1H), 2.47 (s, 3H), 2.34 (dd, J = 6.6, 2.5 Hz, 2H), 2.32 (s, 3H), 1.82 – 1.62 (m, 5H), 1.59 – 1.48 (m, 1H), 1.33 – 1.11 (m, 3H), 1.07 – 0.94 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 201.31, 195.75, 149.40, 123.22, 109.57, 77.59, 37.07, 32.60, 30.87, 27.90, 27.07, 25.99, 25.92; HRMS (ESI, *m/z*): calcd for C₁₅H₂₁O₂ [M+H]⁺ 233.1536, found 233.1534; **IR** (film): 2926, 2853, 2209, 1716, 1690, 1276, 1240, 1164, 1155 – ⁻¹

1665, 1588, 1449, 1420, 1376, 1248, 1164, 1155 cm⁻¹

Benzyl 2-acetyldec-2-en-4-ynoate (1i)

¹**H NMR (400 MHz, CDCl₃)** Major isomer: δ 7.46 – 7.29 (m, overlapping, 5H), 6.81 (t, *J* = 2.4 Hz, 1H), 5.31 (s, 2H), 2.32 (s, 3H), 2.30 (td, *J* = 7.2, 2.4 Hz, 2H), 1.51 – 1.42 (m, 2H), 1.41 – 1.22 (m, overlapping, 4H), 0.94 – 0.85 (t, *J* = 7.0 Hz, overlapping, 3H); Minor isomer: δ 7.46 – 7.29 (m, overlapping, 5H), 6.84 (t, *J* = 2.4 Hz, 1H), 5.23 (s, 2H), 2.44 (s, 3H), 2.41 (td, *J* = 7.2, 2.4 Hz, 2H), 1.59 – 1.51 (m, 2H), 1.41 – 1.22 (m, overlapping, 4H),

0.94 - 0.85 (t, J = 7.0 Hz, overlapping, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.81, 193.93, 165.39, 163.79, 141.69, 140.99, 135.26, 135.23, 128.58, 128.50, 128.36, 128.32, 128.10, 125.97, 124.60, 110.38, 109.01, 76.86, 76.55, 67.10, 67.07, 30.94, 30.91, 30.43, 27.71, 27.34, 22.05, 20.11, 20.04, 13.85; HRMS (ESI, *m/z*): calcd for $C_{19}H_{23}O_3$ [M+H]⁺ 299.1642, found 299.1639; IR (film): 2954, 2926, 2874, 2852, 2212, 1716, 1671, 1594, 1455, 1363, 1248, 1202, 1161, 1059, 757, 747, 698 cm⁻¹.

Benzyl 2-acetyl-6-cyclohexylhex-2-en-4-ynoate (1j)

¹**H NMR (400 MHz, CDCl₃)** Major isomer: δ 7.44 – 7.30 (m, over-lapping, 5H), 6.81 (t, *J* = 2.4 Hz, 1H), 5.31 (s, 2H), 2.32 (s, 3H), 2.21 (dd, *J* = 6.4, 2.4 Hz, 2H), 1.82 – 1.60 (m, overlapping, 5H), 1.56 – 1.38 (m, overlapping, 1H), 1.30 – 1.07 (m, overlapping, 3H), 1.06 – 0.90 (m, overlapping, 2H); Minor isomer: δ 7.44 – 7.30 (m, overlapping, 5H), 6.85 (t, *J* = 2.4 Hz, 1H), 5.23 (s, 2H), 2.44 (s, 3H), 2.31 (dd, *J* = 6.4, 2.4 Hz,

overlapping, 2H), 1.82 – 1.60 (m, overlapping, 5H), 1.56 – 1.38 (m, overlapping, 1H), 1.30 – 1.07 (m, overlapping, 3H), 1.06 – 0.90 (m, overlapping, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 198.84, 193.92, 165.45, 163.81, 141.61, 141.04, 135.25, 128.59, 128.52, 128.38, 128.33, 128.11, 125.93, 124.66, 109.46, 108.15, 77.74, 77.42, 67.11, 67.07, 37.04, 32.59, 30.47, 27.91, 27.87, 27.31, 26.03, 25.96; HRMS (ESI, *m/z*): calcd for C₂₁H₂₅O₃ [M+H]⁺ 325.1798, found 325.1797; **IR** (film): 2924, 2849, 2215, 1719, 1674, 1600, 1450, 1363, 1247, 1207, 1161, 1066 cm⁻¹.

Methyl 2-(cyclopropanecarbonyl)non-2-en-4-ynoate (11)

¹H NMR (400 MHz, CDCl₃) Major isomer: δ 6.86 (t, J = 2.4 Hz, 1H), 3.80 (s, 3H), 2.41 (td, J = 7.0, 2.4 Hz, 2H), 2.31 – 2.19 (m, overlapping, 1H), 1.60 – 1.49 (m, overlapping, 2H), 1.47 – 1.35 (m, overlapping, 2H), 1.26 – 1.20 (m, 2H), 1.05 – 0.97 (m, overlapping, 2H), 0.92 (t, J = 7.2 Hz, overlapping, 3H); Minor isomer: δ 6.82 (t, J = 2.4 Hz, 1H), 3.88 (s, 3H), 2.46 (td, J = 7.0, 2.4 Hz, 2H), 2.31 – 2.19 (m, overlapping, 1H), 1.60 – 1.49 (m,

overlapping, 2H), 1.47 - 1.35 (m, overlapping, 2H), 1.19 - 1.14 (m, 2H), 1.05 - 0.97 (m, overlapping, 2H), 0.93 (t, J = 7.2 Hz, overlapping, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.69, 196.45, 166.15, 164.55, 142.00, 141.57, 124.77, 124.20, 109.22, 107.96, 76.94, 76.57, 52.37, 52.17, 30.16, 30.12, 21.97, 21.81, 21.76, 19.84, 19.71, 18.33, 13.42, 12.35, 12.30; HRMS (ESI, *m/z*): calcd for C₁₄H₁₉O₃ [M+H]⁺ 235.1329, found 235.1327; IR (film): 2961, 2933, 2865, 2211, 1723, 1691, 1597, 1436, 1389, 1258, 1170, 1137, 1039, 1008 cm⁻¹.

(E)-2-PivaloyInon-2-en-4-ynenitrile (1n)

¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, J = 2.4 Hz, 1H), 2.56 (td, J = 7.0, 2.4 Hz, 2H), 1.68 - 1.58 (m, 2H), 1.54 - 1.42 (m, 2H), 1.35 (s, 9H), 0.95 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.43, 139.83, 118.51, 116.52, 115.37, 77.92, 44.01, 29.96, 26.00, 21.87, 20.18, 13.43; HRMS (ESI, *m/z*): calcd for C₁₄H₂₀NO [M+H]⁺ 218.1539, found 218.1537; IR (film): 2962, 2874, 2206, 1694, 1556, 1479, 1368, 1275, 1143, 962 cm⁻¹.

Ethyl 2-acetyl-5-cyclopentylpent-2-en-4-ynoate (1s)

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 6.82 (d, J = 2.4 Hz, 1H), 6.80 (d, J = 2.4 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 4.25 (q, J = 7.2 Hz, 2H), 2.90 – 2.79 (m, 2H), 2.45 (s, 3H), 2.35 (s, 3H), 2.02 – 1.90 (m, 4H), 1.77 – 1.56 (m, 12H), 1.36 (t, J = 7.2 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 199.09, 193.97, 165.60, 163.97, 141.81, 141.30, 125.50, 124.08, 113.86, 112.57, 76.44, 76.16, 61.41, 61.35, 33.43, 33.38, 31.33, 31.21, 30.37, 27.24, 25.01, 24.97, 14.09, 14.02; **HRMS** (**ESI**, *m/z*): calcd for C₁₄H₁₉O₃ [M+H]⁺ 235.1329,

found 235.1328; **IR (film):** 2968, 2207, 1719, 1671, 1598, 1373, 1251, 1212, 1064 cm⁻¹.

Characterization Data of the Products

(*E*)-1-(2-Methyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1-en-1-yl)furan-3-yl)ethan-1-one (3a)

Yield: 80% (50.9 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.80 (t, J = 7.9 Hz, 1H), 6.57 (s, 1H), 2.57 (s, 3H), 2.45 (q, J = 7.4 Hz, 2H), 2.39 (s, 3H), 1.49 (h, J = 7.3 Hz, 2H), 1.35 (s, 12H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.44, 156.94, 153.00, 144.98, 122.79, 106.87, 83.53, 33.25, 29.01, 24.76, 22.94, 14.35, 13.74; ¹¹B NMR (160 MHz, CDCl₃) δ 29.88; HRMS (ESI, *m/z*): calcd for C₁₈H₂₈BO₄ [M+H]⁺ 319.2075, found 319.2071; IR (film): 2979, 2960, 2929, 2870, 1677, 1582, 1543, 1416, 1391, 1315, 1265, 1230, 1144, 1010, 951, 854 cm⁻¹.

(*E*)-1-(2-Methyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-en-1-yl)furan-3-yl)ethan-1-one (3b)

Yield: 80% (53.1 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.80 (t, J = 7.9 Hz, 1H), 6.57 (s, 1H), 2.57 (s, 3H), 2.47 (q, J = 7.5 Hz, 2H), 2.39 (s, 3H), 1.51 – 1.37 (m, 4H), 1.35 (s, 12H), 0.92 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.42, 156.91, 153.01, 145.30, 122.79, 106.83, 83.51, 31.88, 30.94, 29.00, 24.76, 22.26, 14.34, 13.86; HRMS (ESI, *m*/z): calcd for C₁₉H₃₀BO₄ [M+H]⁺ 333.2232, found 333.2229; IR (film): 2976, 2961, 2927, 2865, 1677, 1581, 1414, 1263, 1142, 1015, 950, 855 cm⁻¹.

(*E*)-1-(2-Methyl-5-(3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)furan-3-yl)etha n-1-one (3c)

Yield: 37% (27.3 mg); yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 4H), 7.23 – 7.18 (m, 1H), 6.90 (t, J = 8.0 Hz, 1H), 6.66 (s, 1H), 3.84 (d, J = 8.0 Hz, 2H), 2.53 (s, 3H), 2.39 (s, 3H), 1.37 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 194.42, 157.19, 152.68, 142.90, 140.43, 128.73, 128.48, 126.08, 122.87, 107.74, 83.78, 37.58, 29.04, 24.84, 14.36; HRMS (ESI, *m*/*z*): calcd for C₂₂H₂₈BO₄ [M+H]⁺ 367.2075, found 367.2071; IR (film): 2995, 2981, 1677, 1582, 1415, 1263, 1145, 754 cm⁻¹.

(*E*)-1-(5-(2-Cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-2-methylfuran-3-yl)ethan-1-o ne (3d)

Yield: 80% (57.3 mg); yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 6.60 (d, J = 9.7 Hz, 1H), 6.54 (s, 1H), 2.74 – 2.64 (m, 1H), 2.57 (s, 3H), 2.38 (s, 3H), 1.78 – 1.64 (m, 5H), 1.35 (s, 12H), 1.30 – 1.10 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 194.41, 156.95, 152.95, 149.94, 122.77, 106.93, 83.52, 39.98, 33.40, 29.00, 25.87, 25.78, 24.71, 14.35; HRMS (ESI, *m*/*z*): calcd for C₂₁H₃₂BO₄ [M+H]⁺ 359.2388, found 359.2387; IR (film): 2979, 2927, 2847, 1678, 1583, 1416, 1391, 1269, 1229, 1143, 855 cm⁻¹.

(*E*)-1-(2-Ethyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-en-1-yl)furan-3-yl)propan-1-one (3e)

Yield: 81% (58.3 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.80 (t, J = 7.9 Hz, 1H), 6.58 (s, 1H), 3.00 (q, J = 7.6 Hz, 2H), 2.73 (q, J = 7.3 Hz, 2H), 2.47 (q, J = 7.5 Hz, 2H), 1.51 – 1.37 (m, 4H), 1.35 (s, 12H), 1.24 (t, J = 7.7 Hz, 3H), 1.15 (t, J = 7.3 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.34, 161.82, 152.91, 145.11, 121.26, 106.40, 83.52, 34.17, 31.94, 31.02, 24.79, 22.31, 21.66, 13.88, 12.13, 7.78; HRMS (ESI, m/z): calcd for C₂₁H₃₄BO₄ [M+H]⁺ 361.2545, found 361.2541; IR (film): 2976, 2930, 1679, 1579, 1416, 1373, 1215, 1143, 924, 859 cm⁻¹.

Methyl (*E*)-2-methyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1-en-1-yl)furan-3-carboxylate (3f)

Yield: 66% (44.2 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.78 (t, J = 7.9 Hz, 1H), 6.58 (s, 1H), 3.81 (s, 3H), 2.56 (s, 3H), 2.44 (q, J = 7.6 Hz, 2H), 1.48 (h, J = 7.3 Hz, 2H), 1.34 (s, 12H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.85, 157.78, 153.14, 144.58, 114.53, 107.08, 83.53, 51.12, 33.27, 24.77, 22.99, 13.79, 13.76; HRMS (ESI, *m*/*z*): calcd for C₁₈H₂₈BO₅ [M+H]⁺ 335.2024, found 335.2025; IR (film): 2972, 2955, 1719, 1602, 1439, 1416, 1372, 1271, 1230, 1144, 1089, 778 cm⁻¹.

Ethyl (*E*)-2-methyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1-en-1-yl)furan-3-carboxylate (3g)

Yield: 55% (38.3 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.77 (t, J = 7.9 Hz, 1H), 6.59 (s, 1H), 4.27 (q, J = 7.2 Hz, 2H), 2.55 (s, 3H), 2.43 (q, J = 7.5 Hz, 2H), 1.48 (h, J = 7.3 Hz, 2H), 1.36 – 1.31 (m, 15H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.40, 157.52, 153.07, 144.38, 114.86, 107.16, 83.51, 59.86, 33.28, 24.75, 22.98, 14.33, 13.81, 13.76; HRMS (ESI, *m*/*z*): calcd for C₁₉H₃₀BO₅ [M+H]⁺ 349.2181, found 349.2182; IR (film): 2979, 2930, 2871, 1716, 1600, 1416, 1372, 1270, 1228, 1211, 1144, 1085, 855, 778 cm⁻¹.

t-Butyl (*E*)-2-methyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1-en-1-yl)furan-3-carboxylate (3h)

Yield: 61% (45.9 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.74 (t, J = 7.9 Hz, 1H), 6.55 (s, 1H), 2.52 (s, 3H), 2.42 (q, J = 7.5 Hz, 2H), 1.54 (s, 9H), 1.47 (h, J = 7.4 Hz, 2H), 1.33 (s, 12H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.83, 156.81, 152.81, 143.93, 116.32, 107.63, 83.53, 80.16, 33.32, 28.30, 24.78, 23.02, 13.88, 13.79; HRMS (ESI, *m/z*): calcd for C₂₁H₃₄BO₅ [M+H]⁺ 377.2494, found 377.2490; IR (film): 2979, 1712, 1603, 1417, 1371, 1288, 1231, 1172, 1145, 1089 cm⁻¹.

Benzyl (*E*)-2-methyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-en-1-yl)furan-3-carboxylate (3i)

Yield: 81% (68.6 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.30 (m, 5H), 6.77 (t, *J* = 7.9 Hz, 1H), 6.64 (s, 1H), 5.28 (s, 2H), 2.55 (s, 3H), 2.45 (q, *J* = 7.5 Hz, 2H), 1.46 – 1.34 (m, 4H), 1.32 (s, 12H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.12, 157.86, 153.21, 144.85, 136.45, 128.44, 127.91, 127.77, 114.55, 107.18, 83.51, 65.56, 31.90, 30.97, 24.75, 22.28, 13.91, 13.88; HRMS (ESI, *m*/*z*): calcd for C₂₅H₃₄BO₅ [M+H]⁺ 425.2494, found 425.2490; **IR (film):** 2978, 2958, 2926, 1717, 1600, 1415, 1267, 1216, 1143, 1085, 1076, 851, 775, 698 cm⁻¹.

Benzyl (*E*)-5-(2-cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-2-methylfuran-3-carboxylate (3j)

Yield: 79% (71.1 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.31 (m, 5H), 6.60 (s, 1H), 6.58 (d, J = 9.7 Hz, 1H), 5.27 (s, 2H), 2.72 – 2.61 (m, 1H), 2.55 (s, 3H), 1.78 – 1.62 (m, 5H), 1.33 (s, 12H), 1.26 – 1.08 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 164.13, 157.92, 153.17, 149.50, 136.47, 128.46, 127.93, 127.77, 114.56, 107.29, 83.54, 65.58, 40.03, 33.45, 25.91, 25.82, 24.73, 13.94; HRMS (ESI, *m*/*z*): calcd for C₂₇H₃₆BO₅ [M+H]⁺ 451.2650, found 451.2644; **IR (film):** 2973, 2927, 2846, 1717, 1600, 1414, 1269, 1225, 1207, 1142, 1084, 1074, 775 cm⁻¹.

Methyl (*E*)-2-ethyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1-en-1-yl)furan-3-carboxylate (3k)

Yield: 70% (48.7 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.78 (t, J = 7.9 Hz, 1H), 6.58 (s, 1H), 3.80 (s, 3H), 2.98 (q, J = 7.6 Hz, 2H), 2.44 (q, J = 7.6 Hz, 2H), 1.48 (q, J = 7.4 Hz, 2H), 1.34 (s, 12H), 1.24 (t, J = 7.5 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.77, 162.71, 153.06, 144.57, 113.57, 107.04, 83.53, 51.11, 33.31, 24.78, 23.02, 21.21, 13.80, 12.42; HRMS (ESI, m/z): calcd for C₁₉H₃₀BO₅ [M+H]⁺ 349.2181, found 349.2181; **IR** (film): 2979, 1719, 1597, 1438, 1417, 1312, 1248, 1215, 1145, 1094, 1044 cm⁻¹.

Methyl (*E*)-2-cyclopropyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1-en-1-yl)furan-3-carboxylate (3l)

Yield: 51% (36.7 mg); yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.61 (t, J = 7.9 Hz, 1H), 6.56 (s, 1H), 3.82 (s, 3H), 2.79 – 2.71 (m, 1H), 2.40 (q, J = 7.6 Hz, 2H), 1.46 (h, J = 7.3 Hz, 2H), 1.33 (s, 12H), 1.07 – 1.00 (m, 4H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.11, 161.81, 151.89, 144.07, 114.05, 107.26, 83.52, 51.10, 33.29, 24.77, 23.04, 13.78, 9.30, 8.81; HRMS (ESI, *m*/z): calcd for C₂₀H₃₀BO₅ [M+H]⁺ 361.2181, found 361.2184; IR (film): 2972, 2958, 1717, 1594, 1441, 1230, 1145, 1071 cm⁻¹.

Dimethyl (*E*)-(2-methyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1-en-1-yl)furan-3-yl) phosphonate (3m)

Yield: 99% (76.0 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.80 (t, J = 7.9 Hz, 1H), 6.41 (d, J = 3.3 Hz, 1H), 3.74 (s, 3H), 3.71 (s, 3H), 2.50 (d, J = 2.1 Hz, 3H), 2.44 (q, J = 7.5 Hz, 2H), 1.48 (h, J = 7.4 Hz, 2H), 1.33 (s, 12H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.17 (d, J = 26.7 Hz), 154.38 (d, J = 15.3 Hz), 145.15, 108.52 (d, J = 12.1 Hz), 106.52 (d, J = 215.3 Hz), 83.57, 52.32, 52.26, 33.29, 24.79, 22.98, 13.79, 13.50; HRMS (ESI, m/z): calcd for C₁₈H₃₁BO₆P [M+H]⁺ 385.1946, found 385.1952; IR (film):

2975, 1585, 1417, 1346, 1242, 1144, 1056, 1030, 832, 785 cm⁻¹.

Yield: 45% (30.9 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.81 (t, J = 7.9 Hz, 1H), 6.48 (s, 1H), 2.46 (q, J = 7.6 Hz, 2H), 1.51 – 1.44 (m, 2H), 1.42 (s, 9H), 1.33 (s, 12H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.24, 153.55, 146.77, 115.50, 108.52, 91.62, 83.66, 34.72, 33.23, 28.88, 24.79, 22.92, 13.77; ¹¹B NMR (160 MHz, CDCl₃) δ 29.77; HRMS (ESI, *m*/*z*): calcd for C₂₀H₃₁BNO₃ [M+H]⁺ 344.2392, found 344.2387; IR (film): 2983, 2232, 1417, 1372, 1317, 1249, 1144, 980, 854 cm⁻¹.

1-(2-Methyl-5-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)furan-3-yl)ethan-1one (3o)

Yield: 89% (54.1 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.34 (s, 1H), 2.55 (s, 3H), 2.39 (s, 3H), 2.06 (s, 3H), 1.97 (s, 3H), 1.33 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 194.35, 156.33, 152.92, 149.75, 122.43, 107.85, 83.62, 29.04, 25.56, 24.60, 23.37, 14.35; HRMS (ESI, *m/z*): calcd for C₁₇H₂₆BO₄ [M+H]⁺ 305.1919, found 305.1917; IR (film): 2983, 2232, 1417, 1372, 1317, 1249, 1144, 980, 854 cm⁻¹.

1-(5-(Cyclopentylidene(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-2-methylfuran-3-yl)ethan-1-one (3p)

Yield: 82% (54.3 mg); yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 6.45 (s, 1H), 2.66 – 2.58 (m, 4H), 2.56 (s, 3H), 2.39 (s, 3H), 1.75 – 1.67 (m, 4H), 1.34 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 194.52, 161.89, 156.11, 153.58, 122.49, 107.39, 83.42, 35.14, 34.83, 29.05, 26.38, 26.28, 24.72, 14.45; HRMS (ESI, *m/z*): calcd for C₁₉H₂₈BO₄ [M+H]⁺ 331.2075, found 331.2075; **IR** (film): 2975, 2952, 1677, 1581, 1398, 1368, 1306, 1237, 1144, 1011, 961, 858 cm⁻¹.

1-(5-(Cyclohexylidene(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-2-methylfuran-3-yl)ethan-1-o ne (3q)

Yield: 98% (67.6 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.31 (s, 1H), 2.55 (s, 3H), 2.48 – 2.42 (m, 4H), 2.38 (s, 3H), 1.70 – 1.58 (m, 6H), 1.31 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 194.30, 158.29, 156.52, 152.46, 122.36, 107.67, 83.55, 35.71, 32.62, 29.02, 28.59, 27.98, 26.34, 24.53, 14.34; HRMS (ESI, *m/z*): calcd for C₂₀H₃₀BO₄ [M+H]⁺ 345.2232, found 345.2231; **IR (film):** 2975, 2926, 2852, 1677, 1582, 1390, 1356, 1329, 1304, 1232, 1145, 1009, 952, 854 cm⁻¹.

Ethyl 2-methyl-5-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)furan-3-carboxylate (3r)

Yield: 67% (44.8 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.37 (s, 1H), 4.27 (q, J = 7.1 Hz, 2H), 2.53 (s, 3H), 2.04 (s, 3H), 1.96 (s, 3H), 1.34 – 1.31 (m, 15H); ¹³C NMR (101 MHz, CDCl₃) δ 164.45, 156.96, 152.99, 149.20, 114.42, 108.13, 83.61, 59.87, 25.61, 24.63, 23.34, 14.37, 13.77; HRMS (ESI, *m*/*z*): calcd for C₁₈H₂₈BO₅ [M+H]⁺ 335.2024, found 335.2026; **IR (film):** 2979, 2933, 1715, 1602, 1372, 1346, 1306, 1233, 1145, 1092, 856, 778 cm⁻¹.

Ethyl 5-(cyclopentylidene(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-2-methylfuran-3-carboxylate (3s)

Yield: 63% (45.3 mg); yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 6.46 (s, 1H), 4.27 (q, J = 7.1 Hz, 2H), 2.64 – 2.56 (m, 4H), 2.54 (s, 3H), 1.75 – 1.66 (m, 4H), 1.35 – 1.28 (m, 15H); ¹³C NMR (101 MHz, CDCl₃) δ 164.57, 161.19, 156.74, 153.64, 114.51, 107.66, 83.43, 59.86, 35.09, 34.75, 26.44, 26.31, 24.74, 14.38, 13.87; HRMS (ESI, *m/z*): calcd for C₂₀H₃₀BO₅ [M+H]⁺ 361.2181, found 361.2180; IR (film): 2974, 2958, 2936, 1715, 1604, 1370, 1306, 1234, 1145, 1084 cm⁻¹.

(E)-1-(2-Methyl-5-(1-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)pent-1-en-1-yl)furan-3-yl)ethan-1-one (4a)

Yield: 70% (44.8 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.63 (t, J = 7.9 Hz, 1H), 6.48 (s, 1H), 4.35 (dqd, J = 12.3, 6.2, 3.0 Hz, 1H), 2.56 (s, 3H), 2.39 – 2.32 (m, 5H), 1.89 (dd, J = 14.0, 3.0 Hz, 1H), 1.61 (dd, J = 14.0, 11.8 Hz, 1H), 1.48 (h, J = 7.3 Hz, 2H), 1.39 (s, 3H), 1.37 (s, 3H), 1.33 (d, J = 6.2 Hz, 3H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.51, 156.82, 153.59, 141.33, 122.73, 106.52, 71.54, 65.30, 45.93, 33.43, 31.14, 28.98, 28.12, 23.10, 23.03, 14.39, 13.88; HRMS (ESI, *m/z*): calcd for C₁₈H₂₈BO₄ [M+H]⁺ 319.2075, found 319.2073; **IR (film):** 2975, 2958, 2868, 1678, 1583, 1396, 1304,

 1230 cm^{-1} .

(*E*)-1-(2-Methyl-5-(1-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)pent-1-en-1-yl)furan-3-yl)ethan-1-one (4b)

Yield: 76% (50.3 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.62 (t, J = 7.9 Hz, 1H), 6.47 (s, 1H), 2.56 (s, 3H), 2.39 – 2.31 (m, 5H), 1.94 (s, 2H), 1.48 (h, J = 7.4 Hz, 2H), 1.44 (s, 12H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.46, 156.80, 153.68, 140.70, 122.69, 106.40, 71.39, 48.83, 33.45, 31.74, 28.94, 23.06, 14.36, 13.88; HRMS (ESI, *m*/z): calcd for C₁₉H₃₀BO₄ [M+H]⁺ 333.2232, found 333.2235; IR (film): 2974, 2927, 1677, 1583, 1405, 1386, 1369, 1228, 1205, 773 cm⁻¹.

1-(5-(Cyclohexylidenemethyl)-2-methylfuran-3-yl)ethan-1-one (5a)

Yield: 77% (16.8 mg); colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 6.34 (s, 1H), 5.88 (s, 1H), 2.58 (s, 3H), 2.55 (t, J = 5.3 Hz, 2H), 2.39 (s, 3H), 2.23 (t, J = 5.5 Hz, 2H), 1.65 – 1.58 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 194.2, 156.5, 150.9, 144.8, 122.5, 110.2, 107.5, 37.6, 30.2, 29.1, 28.5, 27.5, 26.3, 14.4; HRMS (ESI, *m*/*z*): calcd for C₁₄H₁₉O₂ [M+H]⁺ 219.1380, found 219.1378; **IR (film):** 2927, 2852, 1678, 1585, 1236, 958 cm⁻¹.

1-(5-(Chloro(cyclohexylidene)methyl)-2-methylfuran-3-yl)ethan-1-one (5b)

Yield: 82% (20.6 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.58 (s, 1H), 2.61 (s, 3H), 2.55 – 2.50 (m, 2H), 2.48 – 2.43 (m, 2H), 2.41 (s, 3H), 1.69 – 1.56 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 193.88, 157.88, 148.02, 142.85, 122.20, 112.20, 110.65, 32.21, 32.10, 29.10, 27.73, 27.13, 26.14, 14.52; HRMS (ESI, *m/z*): calcd for C₁₄H₁₈ClO₂ [M+H]⁺ 253.0990, found 253.0987; IR (film): 2939, 2856, 1682, 1582, 1452, 1396, 1231, 956

 cm^{-1} .

1-(5-(Bromo(cyclohexylidene)methyl)-2-methylfuran-3-yl)ethan-1-one (5c)

Yield: 75% (22.0 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.54 (s, 1H), 2.61 (s, 3H), 2.57 – 2.51 (m, 2H), 2.43 – 2.38 (m, 5H), 1.70 – 1.54 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 193.86, 157.89, 148.76, 146.74, 122.25, 110.58, 102.35, 35.41, 33.01, 29.10, 27.78, 27.18, 26.08, 14.56; HRMS (ESI, *m/z*): calcd for C₁₄H₁₈BrO₂ [M+H]⁺ 297.0485, found 297.0482; IR (film): 2933, 2853, 1681, 1581, 1448, 1408, 1230, 1003, 955, 815, 795

 cm^{-1} .

1-(5-(Cyclohexanecarbonyl)-2-methylfuran-3-yl)ethan-1-one (5d)

Yield: 73% (30.6 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 1H), 3.01 (tt, *J* = 11.7, 3.2 Hz, 1H), 2.69 (s, 3H), 2.47 (s, 3H), 1.91 – 1.80 (m, 4H), 1.57 – 1.24 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 193.36, 192.50, 162.21, 149.54, 123.09, 117.14, 46.18, 29.02, 28.91, 25.69, 25.64, 14.86; HRMS (ESI, *m/z*): calcd for C₁₄H₁₉O₃ [M+H]⁺ 235.1329, found 235.1327; **IR (film):** 2934, 2855, 1675, 1577, 1528, 1450, 1244, 1212,

1155, 1003, 953 cm⁻¹.

1-(5-([1,1'-biphenyl]-4-yl(cyclohexylidene)methyl)-2-methylfuran-3-yl)ethan-1-one (5e)

Yield: 86% (32.0 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 2H), 7.58 – 7.53 (m, 2H), 7.47 – 7.41 (m, 2H), 7.37 – 7.30 (m, 1H), 7.24 – 7.19 (m, 2H), 6.18 (s, 1H), 2.64 – 2.58 (m, 2H), 2.56 (s, 3H), 2.35 (s, 3H), 2.23 – 2.15 (m, 2H), 1.73 – 1.54 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 194.33, 157.15, 152.85, 144.04, 140.77, 139.49, 139.33, 130.20, 128.74, 127.21, 126.97, 126.78, 123.24, 122.31, 109.74, 32.89, 32.53, 29.14, 28.60, 28.46, 26.62, 14.56; HRMS (ESI, *m/z*): calcd for C₂₆H₂₇O₂ [M+H]⁺

371.2006, found 371.2000; IR (film): 2928, 2921, 2851, 1677, 1582, 1484, 1444, 1392, 1233, 1006, 957, 764, 733

 cm^{-1} .

1-(5-(1-Cyclohexylidene-2-phenylallyl)-2-methylfuran-3-yl)ethan-1-one (5f)

Yield: 99% (31.9 mg); orange oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.31 – 7.20 (m, 3H), 6.27 (s, 1H), 5.75 (d, J = 1.5 Hz, 1H), 5.18 (d, J = 1.5 Hz, 1H), 2.62 (t, J = 6.0 Hz, 2H), 2.53 (s, 3H), 2.30 (s, 3H), 2.26 (t, J = 6.0 Hz, 2H), 1.74 – 1.66 (m, 2H), 1.65 – 1.58 (m, 2H), 1.57 – 1.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 194.28, 156.97, 151.85, 146.28, 143.76, 139.46, 128.30, 127.58, 126.11, 122.69, 122.36, 115.32, 109.42, 33.11, 31.91, 29.05, 28.56, 28.40, 26.60, 14.56; HRMS (ESI, *m/z*): calcd for C₂₂H₂₅O₂ [M+H]⁺

321.1849, found 321.1846; **IR** (film): 2927, 2853, 1678, 1582, 1492, 1446, 1396, 1232, 953, 905, 808, 780, 703 cm⁻¹.

(E)-1-(2-methyl-5-(pent-1-en-1-yl)furan-3-yl)ethan-1-one (3a')

Yield: 90% (27.6 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.31 (s, 1H), 6.18 (dt, J = 15.9, 6.4 Hz, 1H), 6.11 (d, J = 15.9 Hz, 1H), 2.58 (s, 3H), 2.38 (s, 3H), 2.16 (q, J = 7.0 Hz, 2H), 1.48 (h, J = 7.3 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.17, 157.33, 150.97, 130.91, 122.61, 117.74, 105.92, 34.81, 29.07, 22.28, 14.38, 13.65; HRMS (ESI, m/z): calcd for C₁₂H₁₇O₂ [M+H]⁺ 193.1223, found 193.1222; IR (film): 2961, 2930, 2871, 1674, 1585, 1399, 1238, 950 cm⁻¹.

7. References

- 1. Y. Xia, S. Qu, Q. Xiao, Z.-X. Wang, P. Qu, L. Chen, Z. Liu, L. Tian, Z. Huang, Y. Zhang and J. Wang, J. Am. Chem. Soc., 2013, 135, 13502.
- 2. J. S. Clark, A. Boyer, A. Aimon, P. E. Garc á, D. M. Lindsay, A. D. F. Symington and Y. Danoy, *Angew. Chem., Int. Ed.*, 2012, **51**, 12128.
- 3. J. Zhang, W. Dai, Q. Liu and S. Cao, Org. Lett., 2017, 19, 3283.
- 4. C. Wang, C. Wu and S. Ge, ACS Catal., 2016, 6, 7585.
- 5. Z. Niu, J. Chen, Z. Chen, M. Ma, C. Song and Y. Ma, J. Org. Chem., 2015, 80, 602.
- 6. H.-Y. Bin, X. Wei, J. Zi, Y.-J. Zuo, T.-C. Wang and C.-M. Zhong, ACS Catal., 2015, 5, 6670.

8. ¹H and ¹³C NMR spectra

