Supporting Information

Palladium-Catalyzed Intramolecular Transfer Hydrogenation & Cycloaddition of *p*-Quinamine-Tethered Alkylidenecyclopropanes to Synthesize Perhydroindole Scaffolds

Bo Cao,^a Yin Wei,^{b,*} and Min Shi^{a,b,c*}

^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.

^bState Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis,

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road,

Shanghai 200032 China.

^cState Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China.

weiyin@mail.sioc.ac.cn. Mshi@mail.sioc.ac.cn. Fax 86-21-64166128

CONTENTS

1.	General remarks	S3
2.	General procedure for synthesis of 1	S4
3.	Characterization and spectra charts for 1	S4-S27
4.	General procedure for the palladium-catalyzed intramolecular trasfer hydrogen	nation and
	cycloaddition	S28
5.	Screening of conditions for the intramolecular transfer hydrogenation and cyc	lization of
	1a	S29-S32
6.	Characterization and spectra charts for 2	\$33-\$57
7.	Characterization and spectra charts for 3a	
8.	General procedure for synthesis of [D]-2a and its spectra chart	.S61-S62
9.	Control experiment	S63
10.	Proposed mechanism	.S64-S68
11.	X-ray crystallographic information of products 2a and 3a	.S69-S70

1. General remarks.

Melting point (MP) was obtained with a Yanagimoto micro melting point apparatus and is uncorrected. Infrared spectra were measured on a spectrometer. ¹H NMR spectra were recorded on a Agilent DD2 400-MR spectrometer for solution in CDCl₃ with tetramethylsilane (TMS) as internal standard; *J*-values are in Hz. ¹³C NMR spectra were recorded at 100 MHz. ¹⁹F NMR spectra were recorded at 376 MHz. Data for ¹H, ¹³C, ¹⁹F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). Mass spectra were recorded with a HP-5989 instrument and HRMS was measured by a Finnigan MA+ mass spectrometer. Organic solvents used were dried by standard methods when necessary. Commercially available reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF₂₅₄ silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure. All reactions were performed under argon using standard Schlenk techniques.

Compounds $A^{[1]}$ and $B^{[2]}$ were prepared according to the previous literature.

2. General procedure for synthesis of 1.

To a solution of **A** (2.0 mmol, 1.0 equiv), 2-cyclopropylideneethan-1-ol **B** (168.0 mg, 2.0 mmol, 1.0 equiv), and triphenylphosphine (628.8 mg, 2.4 mmol, 1.2 equiv) in THF (50 mL), (0.44 mL, 2.2 mmol, 1.1 equiv) was added DIAD dropwise at 0 °C. The resulting mixture was allowed to warm to room temperature and was stirred for 12 hours. Then, the resulting solution was concentrated in vacuum and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / ethyl acetate = 8 / 1) to give white solid **1**.

3. Characterization and spectra charts for 1.

Compound 1a:

2.0 mmol scale, a white solid, 80% yield (548.8 mg). M.p.: 113-115 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.97-1.01 (m, 2H), 1.06-1.11 (m, 2H), 1.54 (s, 3H), 2.44 (s, 3H), 4.12 (d, *J* = 6.4 Hz, 2H), 5.91-5.95 (m, 1H), 6.12 (d, *J* = 10.0 Hz, 2H), 6.91 (d, *J* = 10.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 2.0, 2.3, 21.5, 26.1, 49.3, 59.8, 116.1, 126.2, 127.1, 127.4, 129.6, 139.3, 143.5, 151.7, 184.5. IR (neat) 3050, 2980, 2958, 2924, 2869, 1723, 1667, 1628, 1598, 1494, 1449, 1392, 1327, 1288, 1246, 1181, 1154, 1089, 1020, 960, 889, 862, 813, 718, 706, 676 cm⁻¹. HRMS (ESI) Calcd. for C₁₉H₂₅N₂O₃S⁺¹(M+NH₄)⁺ requires 361.1580, Found: 361.1583.

Compound 1b:

2.0 mmol scale, a white solid, 49% yield (347.5 mg). M.p.: 67-68 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.68 (t, J = 7.6 Hz, 3H), 0.98-1.03 (m, 2H), 1.06-1.11 (m, 2H), 1.99 (q, J = 7.6 Hz, 2H), 2.42 (s, 3H), 4.15 (d, J = 6.4 Hz, 2H), 5.92-5.97 (m, 1H), 6.20 (d, J = 10.0 Hz, 2H), 6.81 (d, J = 10.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.9, 2.2, 8.3, 21.4, 29.5, 49.0, 64.3, 116.2, 125.7, 127.2, 129.2, 129.5, 139.2, 143.5, 149.4, 185.0. IR (neat) 3052, 3023, 2984, 2972, 2940, 2916, 2877, 1744, 1670, 1628, 1493, 1442, 1385, 1373, 1340, 1324, 1303, 1287, 1263, 1180, 1146, 1102, 1088, 1068, 1041, 1004, 989, 968, 956, 935, 910, 888, 863, 828, 811, 790, 766, 749, 723, 705, 687 cm⁻¹. HRMS (ESI) Calcd. for C₂₀H₂₄NO₃S⁺¹(M+H)⁺ requires 358.1471, Found: 358.1457.

Compound 1c:

2.0 mmol scale, a white solid, 55% yield (409.6 mg). M.p.: 68-70 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.78 (t, *J* = 7.6 Hz, 3H), 0.99-1.04 (m, 2H), 1.06-1.13 (m, 4H), 1.87-1.92 (m, 2H), 2.42 (s, 3H), 4.14 (d, *J* = 6.4 Hz, 2H), 5.92-5.98 (m, 1H), 6.16 (d, *J* = 10.0 Hz, 2H), 6.84 (d, *J* = 10.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.9, 2.2, 13.8, 17.3, 21.4, 39.0, 48.8, 63.6, 116.3, 125.7, 127.3, 128.7, 129.5, 139.0, 143.5, 149.8, 185.0. IR (neat) 3057, 3034, 2976, 2955, 2941, 2872, 1745, 1667, 1627, 1491, 1462, 1390, 1360, 1329, 1290, 1263, 1157, 1111, 1085, 1044, 994, 963, 943, 899, 865, 802, 767, 746, 703, 682 cm⁻¹. HRMS (ESI) Calcd. for C₂₁H₂₆NO₃S⁺¹(M+H)⁺ requires 372.1628, Found: 372.1619.

Compound 1d:

2.0 mmol scale, a light yellow solid, 64% yield (491.8 mg). M.p.: 57-60 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.77 (t, *J* = 7.2 Hz, 3H), 0.98-1.19 (m, 8H), 1.89-1.94 (m, 2H), 2.42 (s, 3H), 4.14 (d, *J* = 6.4 Hz, 2H), 5.93-5.97 (m, 1H), 6.17 (d, *J* = 10.0 Hz, 2H), 6.83 (d, *J* = 10.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 2.0, 2.3, 13.7, 21.5, 22.6, 26.0, 36.6, 48.9, 63.8, 116.4, 125.7, 127.3, 128.9, 129.5, 139.3, 143.6, 149.8, 185.1. IR (neat) 2923, 2853, 1770, 1746, 1667, 1626, 1492, 1463, 1359, 1329, 1157, 1083, 1035, 1016, 998, 934, 910, 863, 804, 765, 744, 703, 676 cm⁻¹. HRMS (ESI) Calcd. for C₂₂H₂₈NO₃S⁺¹(M+H)⁺ requires 386.1784, Found: 386.1784.

Compound 1e:

2.0 mmol scale, a white solid, 71% yield (587.6 mg). M.p.: 37-38 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.82 (t, *J* = 7.2 Hz, 3H), 0.98-1.12 (m, 10H), 1.16-1.22 (m, 2H), 1.88-1.93 (m, 2H), 2.41 (s, 3H), 4.15 (d, *J* = 6.0 Hz, 2H), 5.93-5.97 (m, 1H), 6.16 (d, *J* = 10.0 Hz, 2H), 6.85 (d, *J* = 10.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.8, 2.1, 13.7, 21.2, 22.2, 23.6, 28.8, 31.1, 36.6, 48.7, 63.5, 116.2, 125.4, 127.1, 128.6, 129.3, 139.0, 143.3, 149.7, 184.8. IR (neat) 3050, 2981, 2953, 2928, 2872, 2857, 1745, 1667, 1627, 1594, 1493, 1456, 1330, 1154, 1085, 1017, 994, 959, 931, 909, 887, 870, 856, 811, 766, 746, 717, 705, 682 cm⁻¹. HRMS (ESI) Calcd. for C₂₄H₃₂NO₃S⁺¹(M+H)⁺ requires 414.2097, Found: 414.2101.

Compound 1f:

2.0 mmol scale, a light yellow solid, 34% yield (255.4 mg). M.p.: 123-126 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.84 (s, 3H), 0.86 (s, 3H), 0.98-1.03 (m, 2H), 1.08-1.13 (m, 2H), 2.40 (s, 3H), 2.59-2.66 (m, 1H), 4.14 (d, *J* = 6.0 Hz, 2H), 5.94-5.99 (m, 1H), 6.17 (d, *J* = 10.0 Hz, 2H), 6.91 (d, *J* = 10.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.8, 2.3, 17.3, 21.4, 33.3, 48.7, 66.6, 116.1, 125.3, 127.6, 129.4, 129.5, 137.9, 143.6, 147.2, 185.0. IR (neat) 3052, 2974, 2934, 2869, 1745, 1666, 624, 1492, 1456, 1359, 1330, 1157, 1104, 1083, 1018, 994, 909, 887, 871, 809, 789, 767, 745, 704, 683, 660 cm⁻¹. HRMS (ESI) Calcd. for C₂₁H₂₆NO₃S⁺¹(M+H)⁺ requires 372.1628, Found: 372.1628.

Compound 1g:

2.0 mmol scale, a yellow solid, 35% yield (288.8 mg). M.p.: 83-86 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.83-0.92 (m, 2H), 1.01-1.07 (m, 5H), 1.11-1.15 (m, 2H), 1.62-1.78 (m, 5H), 2.07-2.14 (m, 1H), 2.40 (s, 3H), 4.15 (d, *J* = 6.0 Hz, 2H), 5.96-6.00 (m, 1H), 6.13 (d, *J* = 10.0 Hz, 2H), 6.93 (d, *J* = 10.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.8, 2.3, 21.4, 26.1, 26.4, 27.7, 43.7, 48.6, 66.1, 116.3, 124.9, 127.5, 129.1, 129.3, 137.8, 143.6, 147.6, 185.2. IR (neat) 2953, 2942, 2932, 2853, 1745, 1618, 1493, 1462, 1359, 1327, 1288, 1246, 1188, 1159, 1035, 1017, 984, 932, 851, 813, 765, 744, 728, 703, 660 cm⁻¹. HRMS (ESI) Calcd. for C₂₄H₃₀NO₃S⁺¹(M+H)⁺ requires 412.1941, Found: 412.1943.

Compound 1h:

2.0 mmol scale, a white solid, 86% yield (700.2 mg). M.p.: 68-71 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.54-0.59 (m, 2H), 0.94-1.00 (m, 2H), 2.42 (s, 3H), 4.01 (d, *J* = 6.4 Hz, 2H), 5.91-5.97 (m, 1H), 6.11 (d, *J* = 10.0 Hz, 2H), 7.16 (d, *J* = 10.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.26-7.29 (m, 3H), 7.35-7.38 (m, 2H), 7.59 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.3, 2.3, 21.5, 49.9, 65.1, 115.4, 126.0, 127.0, 127.3, 127.9, 128.7, 128.8, 129.4, 137.3, 138.0, 143.9, 147.9, 184.8. IR (neat) 3056, 3023, 2979, 2921, 2848, 1666, 1627, 1597, 1488, 1448, 1398, 1338, 1289, 1269, 1236, 1182, 1155, 1092, 1048, 1006, 957, 919, 908, 861, 811, 751, 735, 718, 699, 682 cm⁻¹. HRMS (ESI) Calcd. for C₂₄H₂₄NO₃S⁺¹(M+H)⁺ requires 406.1471, Found: 406.1474.

Compound 1i:

2.0 mmol scale, a white solid, 74% yield (622.6 mg). M.p.: 152-154 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.39 (br, 2H), 0.89-0.93 (m, 2H), 2.41 (s, 3H), 2.60 (s, 3H), 4.02 (d, *J* = 5.2 Hz, 2H), 5.93-5.97 (m, 1H), 6.07 (d, *J* = 10.0 Hz, 2H), 7.03-7.19 (m, 4H), 7.19-7.24 (m, 4H), 7.58 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 0.9, 2.3, 21.2, 21.4, 49.6, 65.3, 114.7, 126.3, 126.4, 126.5, 127.9, 129.0, 129.2, 133.2, 135.3, 136.9, 138.0, 143.8, 184.6. IR (neat) 3094, 3057, 3033, 3013, 2981, 2925, 2848, 1669, 1628, 1597, 1485, 1432, 1402, 1377, 1336, 1313, 1281, 1243, 1189, 1156, 1116, 1097, 1083, 1038, 1016, 1001, 970, 955, 939, 912, 867, 842, 823, 809, 792, 758, 718, 705, 686 cm⁻¹. HRMS (ESI) Calcd. for C₂₅H₂₆NO₃S⁺¹(M+H)⁺ requires 420.1628, Found: 420.1633.

Compound 1j:

2.0 mmol scale, a white solid, 62% yield (522.1 mg). M.p.: 134-137 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.57-0.62 (m, 2H), 0.95-1.00 (m, 2H), 2.25 (s, 3H), 2.41 (s, 3H), 4.01 (d, *J* = 6.4 Hz, 2H), 5.93-5.98 (m, 1H), 6.10 (d, *J* = 10.0 Hz, 2H), 7.07-7.10 (m, 1H), 7.14-7.16 (m, 4H), 7.18 (s, 1H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.2, 2.3, 21.3, 21.4, 49.8, 65.0, 115.4, 123.8, 125.7, 127.1, 127.8, 128.6, 129.2, 129.4, 137.3, 137.6, 138.5, 143.7, 148.0, 184.8. IR (neat) 3029, 2976, 2926, 2887, 2858, 1745, 1623, 1492, 1462, 1361, 1332, 1290, 1245, 1187, 1157, 1096, 1081, 1036, 1017, 994, 959, 911, 887, 865, 804, 765, 744, 703, 682, 659 cm⁻¹. HRMS (ESI) Calcd. for C₂₅H₂₆NO₃S⁺¹(M+H)⁺ requires 420.1628, Found: 420.1629.

Compound 1k:

2.0 mmol scale, a white solid, 76% yield (641.8 mg). M.p.: 93-95 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.57-0.62 (m, 2H), 0.96-1.00 (m, 2H), 2.31 (s, 3H), 2.42 (s, 3H), 4.00 (d, *J* = 6.8 Hz, 2H), 5.89-5.95 (m, 1H), 6.09 (d, *J* = 10.0 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 10.0 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 7.59 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.3, 2.3, 21.0, 21.5, 49.7, 64.9, 115.4, 125.8, 126.8, 127.1, 127.9, 129.3, 129.4, 134.9, 137.3, 138.8, 143.8, 148.1, 184.9. IR (neat) 3053, 3023, 2979, 2921, 2864, 1666, 1626, 1598, 1506, 1494, 1435, 1396, 1338, 1289, 1268, 1236, 1181, 1156, 1091, 1048, 1006, 957, 910, 861, 828, 812, 788, 734, 714, 705, 682 cm⁻¹. HRMS (ESI) Calcd. for C₂₅H₂₆NO₃S⁺¹(M+H)⁺ requires 420.1628, Found: 420.1629.

Compound 11:

2.0 mmol scale, a white solid, 20% yield (174.1 mg). M.p.: 182-183 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.62-0.66 (m, 2H), 0.97-1.02 (m, 2H), 2.42 (s, 3H), 3.78 (s, 3H), 4.01 (d, *J* = 6.4 Hz, 2H), 5.91-5.96 (m, 1H), 6.09 (d, *J* = 10.0 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 10.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.8 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.4, 2.3, 21.5, 49.6, 55.4, 64.6, 114.1, 115.6, 125.8, 127.0, 127.9, 128.3, 129.4, 129.6, 137.4, 143.8, 148.2, 159.8, 184.9. IR (neat) 3050, 2955, 2924, 2851, 1764, 1746, 1622, 1492, 1462, 1360, 1330, 1246, 1188, 1158, 1082, 1035, 1018, 993, 910, 887, 870, 810, 766, 744, 705, 659 cm⁻¹. HRMS (ESI) Calcd. for C₂₅H₂₆NO₄S⁺¹(M+H)⁺ requires 436.1577, Found: 436.1580.

Compound 1m:

2.0 mmol scale, a light yellow solid, 77% yield (649.7 mg). M.p.: 104-106 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.62-0.66 (m, 2H), 0.96-1.01 (m, 2H), 2.41 (s, 3H), 4.01 (d, *J* = 6.0 Hz, 2H), 5.90-5.95 (m, 1H), 6.12 (d, *J* = 10.0 Hz, 2H), 6.92-6.97 (m, 2H), 7.17 (d, *J* = 10.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.32-7.37 (m, 2H), 7.56 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 1.3, 2.2, 21.3, 49.6, 64.3, 115.2, 115.5 (d, *J* = 21.7 Hz), 125.9, 127.2, 127.6, 128.7 (d, *J* = 8.2 Hz), 129.2, 133.8 (d, *J* = 3.2 Hz), 137.1, 143.8, 147.6, 162.3 (d, *J* = 247.9 Hz), 184.4. ¹⁹F NMR (CDCl₃, CFCl₃, 376 MHz) δ -112.24- -112.17 (m). IR (neat) 2974, 2921, 2887, 2853, 1767, 1745, 1665, 1623, 1594, 1493, 1462, 1360, 1330, 1236, 1188, 1158, 1082, 1042, 1016, 993, 931, 909, 887, 870, 809, 766, 745, 704, 681, 659 cm⁻¹. HRMS (ESI) Calcd. for C₂₄H₂₃FNO₃S⁺¹(M+H)⁺ requires 424.1377, Found: 424.1377.

Compound 1n:

2.0 mmol scale, a white solid, 50% yield (392.6 mg). M.p.: 80-82 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.77-0.82 (m, 2H), 1.01-1.06 (m, 2H), 2.41 (s, 3H), 4.09 (d, *J* = 6.4 Hz, 2H), 5.88-5.94 (m, 1H), 6.14 (d, *J* = 10.0 Hz, 2H), 6.30 (dd, *J* = 0.8 Hz, 1.6 Hz, 1H), 7.15 (d, *J* = 10.0 Hz, 2H), 7.19 (dd, *J* = 0.8 Hz, 1.6 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.27 (dd, *J* = 1.6 Hz, 1.6 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.5, 2.3, 21.5, 49.0, 59.1, 109.7, 115.6, 123.5, 125.9, 127.5, 127.6, 129.3, 137.8, 140.5, 143.1, 143.6, 147.5, 184.3. IR (neat) 3036, 2953, 2936, 2851, 2845, 1745, 1618, 1492, 1462, 1360, 1331, 1269, 1246, 1188, 1157, 1101, 1082, 1037, 1018, 993, 909, 887, 870, 809, 790, 766, 744, 706, 683, 659 cm⁻¹. HRMS (ESI) Calcd. for C₂₂H₂₂NO₄S⁺¹(M+H)⁺ requires 396.1264, Found: 396.1258.

Compound 1o:

2.0 mmol scale, a white solid, 46% yield (354.3 mg). M.p.: 65-67 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.98-1.03 (m, 2H), 1.07-1.12 (m, 2H), 1.81-1.87 (m, 2H), 2.00-2.06 (m, 2H), 2.42 (s, 3H), 4.15 (d, *J* = 6.4 Hz, 2H), 4.84-4.93 (m, 2H), 5.55-5.66 (m, 1H), 5.92-5.97 (m, 1H), 6.18 (d, *J* = 10.4 Hz, 2H), 6.86 (d, *J* = 10.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) 1.9, 2.2, 21.4, 27.9, 35.8, 48.9, 63.3, 115.4, 116.2, 125.8, 127.3, 129.0, 129.5, 136.4, 139.0, 143.6, 149.3, 184.8. IR (neat) 3063, 3039, 2976, 2937, 2921, 2874, 2858, 1745, 1667, 1626, 1493, 1445, 1330, 1157, 1083, 1040, 993, 922, 902, 865, 804, 766, 744, 704, 679 cm⁻¹. HRMS (ESI) Calcd. for C₂₂H₂₆NO₃S⁺¹(M+H)⁺ requires 384.1628, Found: 384.1630.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(f1 (ppm)

4. General procedure for the palladium-catalyzed intramolecular trasfer hydrogenation and cycloaddition.

A solution of **1** (0.15 mmol, 1.0 equiv), CpPd (π -cinnamyl) (0.015 mmol, 10 mol %) and i-PrOH (0.60 mmol, 4.0 equiv) in toluene (0.20 mL) was stirred at 120 °C under argon atmosphere for 12 hours. After the reaction completed, the mixture was concentrated in vacuo to yield the crude product, which was purified by a flash chromatography on silica gel (eluent: PE/EtOAc = 10/1 ~ 8/1) to furnish the desired product **2** and the by-product **3**.

5. Screening of conditions for the intramolecular transfer hydrogenation and cyclization of 1a

1a .							
$\begin{array}{c} & & & & \\ \hline & & & \\ \hline T_{SN} & & \\ \hline & & \\ 1a & & \\ \end{array} \begin{array}{c} & & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \hline \\ \hline \\$							
					Yield (%) ^b		
Entry ^a	Solvent	Catalyst	R-OH	T (°C)	1a	2a	3a
1	toluene	Pd ₂ (dba) ₃	_	100	-	37	4
2	toluene	Pd(PPh ₃) ₄	-	100	24	12	33
3	toluene	Pd(PPh ₃) ₂ Cl ₂	-	100	72	-	-
4	toluene	Pd(OAc) ₂	-	100	-	-	-
5	toluene	Pd(dba) ₂	-	100	-	34	14
6	toluene	Pd(dppe)	-	100	46	14	12
7	toluene	Pd ₂ (dba) ₃	PhCOOH	100	-	-	-
8	toluene	Pd ₂ (dba) ₃	Hantzsch Ester	100	-	58	trace
9	toluene	Pd ₂ (dba) ₃	4Å	100	15	32	10
10	toluene	Pd ₂ (dba) ₃	MeOH	100	-	54	10
11	toluene	Pd ₂ (dba) ₃	EtOH	100	-	55	12
12	toluene	Pd ₂ (dba) ₃	i-PrOH	100	-	59	10
13	toluene	Pd ₂ (dba) ₃	Phenol	100	-	-	30
14	Tol/i-PrOH	Pd ₂ (dba) ₃	-	100	-	28	24
15	xylene	Pd ₂ (dba) ₃	i-PrOH	120	-	50	10
16	PhCl	Pd ₂ (dba) ₃	i-PrOH	120	-	44	12
17	toluene	Pd(PPh ₃) ₄	4Å + K ₂ CO ₃	120	54	8	6
18	MeCN	Pd(PPh ₃) ₄	Phenol	120	97	-	-
19	toluene	Pd/C	i-PrOH	120	90	-	-
20	toluene	Pd ₂ (dba) ₃	Et ₃ N	120	-	47	14
21	toluene	Pd ₂ (dba) ₃	AcOH	120	-	-	-
22	toluene	Pd ₂ (dba) ₃	Phenol + LiCl	120	-	-	34

Table S1. Screening of Catalysts for the Intramolecular Transfer Hydrogenation and Cyclization of

^a Reactions were performed with **1a** (0.15 mmol), catalyst (10 mol%) and additive (0.6 mmol) in toluene (2.0 mL) at 100 or 120 °C. ^b Yields are determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

	TsN	Catal	<mark>lyst</mark> e, T ℃	H TSN + T 2 a	sN	3a	
	14					Yield (%)	Ь
Entry ^a	Solvent	Catalyst	R-OH	T (°C) -	1a	2a	3a
1	i-PrOH	Pd(PPh ₃) ₄	-	PPh ₃	8	-	22
2	toluene	Pd ₂ (dba) ₃	-	R-MONOPhos	-	20	8
3	toluene	Pd ₂ (dba) ₃	-	<i>R</i> -BINAP	-	-	16
4	toluene	$Pd_2(dba)_3$	-	S-L1	-	18	6
5	toluene	Pd ₂ (dba) ₃	i-PrOH	P(Oi-Pr) ₃	-	40	10
6	toluene	Pd ₂ (dba) ₃	i-PrOH	P(OPh) ₃	-	16	-
7	toluene	Pd ₂ (dba) ₃	i-PrOH	P(O-2-toyl) ₃	-	30	36
8	toluene	Pd ₂ (dba) ₃	i-PrOH	P(O-2,4- ^{t-} Bu ₂ C ₆ H ₃);	3 -	24	12
9	toluene	$Pd_2(dba)_3$	S-BINOL	-	-	27	28
10	toluene	$Pd_2(dba)_3$	-	P(i-Pr) ₃	-	36	10
11	toluene	$Pd_2(dba)_3$	-	$P(Cy)_3$	40	16	10
12	toluene	$Pd_2(dba)_3$	i-PrOH	P(i-Pr) ₃	-	60	8
13	toluene	Pd ₂ (dba) ₃	i-PrOH	P(Cy) ₃	-	-	-

Table S2. Screening of Ligands for the Intramolecular Transfer Hydrogenation and Cyclization of

1a.

^a Reactions were performed with **1a** (0.15 mmol), catalyst (10 mol%), ligands (20 mol%) and additive (0.6 mmol) in toluene (2.0 mL) at 120 °C. ^b Yields are determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S3. Screening of Hydrogen Source for the Intramolecular Transfer Hydrogenation andCyclization of 1a.

^a Reactions were performed with **1a** (0.15 mmol), $Pd_2(dba)_3$ (10 mol%) and ROH (0.60 mol) in solvent (2.0 mL) at 100 °C. ^b Yields are determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S4. Optimization of Conditions for the CpPd(π -cinnamyl)-Catalyzed Intramolecular Transfer Hydrogenation and Cyclization of **1a**.

T _{SN} 1a		$\begin{array}{c} RO \longrightarrow \\ CpPd(\pi\text{-cinnamyl}) \\ toluene, 120 °C \end{array} \qquad \begin{array}{c} \textcircled{H} & \bigcirc \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & $		+ TsN				
Entrv ^a	Solvent	R-OH	Ligand		Yield (%) ^b			
y	Solvent			1a	2a	3a		
1	toluene	-	-	-	49	12		
2	toluene	-	PMePh ₂	-	-	-		
3	toluene	(i-Pr) ₂ CHOH	-	-	68	10		
4	toluene	i-PrOH	-	-	71(68) ^c	8		
5	toluene	MeOH	-	-	44	14		
6	toluene	Cinnamyl alcohol	-	-	29	6		
7	toluene	[NH₄]⁺[HCOO]⁻	-	-	-	-		

^a Reactions were performed with **1a** (0.15 mmol), CpPd(π -cinnamyl) (10 mol%) and ROH (0.6 mol) in solvent (2.0 mL) at 120 °C. ^b Yields are determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^c Yields of isolated product.

6. Characterization and spectra charts for 2

Compound 2a:

0.15 mmol scale, a light yellow solid, 68% yield (35.2 mg). M.p.: 130-133 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.71 (s, 3H), 2.05 (d, *J* = 14.8 Hz, 1H), 2.26-2.31 (m, 2H), 2.43 (s, 3H), 2.46-2.53 (m, 3H), 2.64-2.68 (m, 1H), 2.74 (t, *J* = 4.4 Hz, 1H), 2.76-2.82 (m, 1H), 3.45 (dd, *J* = 4.4 Hz, 9.2 Hz, 1H), 3.61 (d, *J* = 9.2 Hz, 1H), 4.80 (d, *J* = 2.0 Hz, 1H), 4.82 (d, *J* = 2.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.3, 21.4, 36.0, 39.7, 40.8, 44.2, 46.8, 47.7, 53.0, 65.3, 114.1, 126.4, 129.5, 139.3, 141.8, 142.9, 207.5. IR (neat) 3068, 2979, 2942, 2882, 1712, 1652, 1598, 1494, 1445, 1405, 1319, 1287, 1228, 1197, 1151, 1130, 1095, 1079, 1039, 1008, 902, 814, 734, 707, 672, 653 cm⁻¹. HRMS (ESI) Calcd. for C₁₉H₂₄NO₃S⁺¹(M+H)⁺ requires: 346.1471, found: 346.1472.

Compound 2b:

0.15 mmol scale, a white solid, 53% yield (28.6 mg). M.p.: 189-190 °C. ¹H NMR (CDCl₃, TMS,

400 MHz) δ 0.81 (t, J = 7.2 Hz, 3H), 1.86-2.01 (m, 2H), 2.23-2.29 (m, 1H), 2.33-2.40 (m, 1H), 2.41-2.44 (m, 4H), 2.45-2.49 (m, 1H), 2.49-2.59 (m, 2H), 2.65-2.68 (m, 2H), 2.72 (t, J = 4.4 Hz, 1H), 3.41 (dd, J = 4.8 Hz, 9.6 Hz, 1H), 3.60 (d, J = 9.6 Hz, 1H), 4.76 (d, J = 2.0 Hz, 1H), 4.80 (d, J = 2.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 7.9, 21.5, 24.0, 36.4, 39.5, 40.7, 42.3, 44.6, 46.6, 53.5, 69.9, 113.9, 126.7, 129.5, 138.5, 142.6, 143.1, 207.7. IR (neat) 3065, 3050, 3023, 2979, 2923, 2882, 2845, 1711, 1647, 1598, 1493, 1452, 1403, 1320, 1286, 1227, 1197, 1153, 1124, 1094, 1072, 1030, 1008, 955, 901, 845, 815, 792, 734, 707, 698, 669 cm⁻¹. HRMS (ESI) Calcd. for C₂₀H₂₆NO₃S⁺¹(M+H)⁺ requires: 360.1628, found: 360.1635.

Compound 2c:

0.15 mmol scale, a light yellow solid, 62% yield (34.7 mg). M.p.: 122-125 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.87 (t, *J* = 7.2 Hz, 3H), 1.14-1.29 (m, 2H), 1.80-1.89 (m, 1H), 1.98 (dd, *J* = 3.6 Hz, 17.2 Hz, 1H), 2.26 (d, *J* = 17.2 Hz, 1H), 2.34-2.44 (m, 6H), 2.45-2.50 (m, 1H), 2.54-2.66 (m, 3H), 2.71 (t, *J* = 4.0 Hz, 1H), 3.42 (dd, *J* = 4.4 Hz, 9.2 Hz, 1H), 3.61 (d, *J* = 9.6 Hz, 1H), 4.75 (s, 1H), 4.79 (s, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 14.0, 16.7, 21.4, 33.5, 36.3, 39.5, 40.7, 43.1, 44.6, 46.6, 53.5, 69.6, 113.8, 126.5, 129.5, 138.6, 142.5, 143.0, 207.7. IR (neat) 3068, 2955, 2932, 2873, 1712, 1598, 1494, 1448, 1403, 1321, 1303, 1261, 1226, 1197, 1154, 1095, 1079, 1040, 1011, 967, 899, 815, 734, 708, 699, 666 cm⁻¹. HRMS (ESI) Calcd. for C₂₁H₂₈NO₃S⁺¹(M+H)⁺ requires: 374.1784, found: 374.1783.

Compound 2d:

0.15 mmol scale, a light yellow solid, 57% yield (33.1 mg). M.p.: 146-148 °C. ¹H NMR (CDCl₃,

TMS, 400 MHz) δ 0.79 (t, J = 7.2 Hz, 3H), 1.04-1.16 (m, 2H), 1.19-1.32 (m, 2H), 1.82-1.91 (m, 1H), 2.00 (d, J = 14.0 Hz, 1H), 2.27 (d, J = 16.8 Hz, 1H), 2.34-2.48 (m, 7H), 2.54-2.60 (m, 1H), 2.65-2.72 (m, 3H), 3.43 (dd, J = 4.8 Hz, 9.2 Hz, 1H), 3.65 (d, J = 9.2 Hz, 1H), 4.76 (s, 1H), 4.80 (s, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 14.0, 21.4, 22.9, 25.7, 31.1, 36.4, 39.5, 40.7, 43.1, 44.6, 46.6, 53.6, 69.5, 113.8, 126.5, 129.4, 138.8, 142.5, 143.0, 207.7. IR (neat) 3073, 2951, 2924, 2870, 1712, 1647, 1594, 1447, 1404, 1322, 1303, 1226, 1196, 1154, 1095, 1073, 1037, 1014, 966, 898, 814, 795, 734, 708, 699, 665 cm⁻¹. HRMS (ESI) Calcd. for C₂₂H₃₀NO₃S⁺¹(M+H)⁺ requires: 388.1941, found: 388.1943.

Compound 2e:

0.15 mmol scale, a light yellow solid, 43% yield (26.8 mg). M.p.: 140-143 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.87 (t, *J* = 7.2 Hz, 3H), 1.00-1.24 (m, 8H), 1.81-1.90 (m, 1H), 2.01 (d, *J* = 14.4 Hz, 1H), 2.26 (d, *J* = 16.8 Hz, 1H), 2.32-2.43 (m, 6H), 2.46-2.49 (m, 1H), 2.54-2.60 (m, 1H), 2.65-2.76 (m, 3H), 3.43 (dd, *J* = 4.4 Hz, 9.2 Hz, 1H), 3.67 (d, *J* = 9.2 Hz, 1H), 4.77 (s, 1H), 4.80 (s, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 14.1, 21.4, 22.6, 23.6, 29.5, 31.3, 31.9, 36.4, 39.6, 40.8, 43.2, 44.6, 46.7, 53.7, 69.5, 113.8, 126.5, 129.5, 139.0, 142.6, 143.0, 207.7. IR (neat) 3073, 2950, 2923, 2869, 2852, 1715, 1598, 1494, 1449, 1403, 1322, 1303, 1226, 1195, 1154, 1096, 1073, 1024, 997, 963, 900, 813, 797, 735, 708, 699, 684, 666 cm⁻¹. HRMS (ESI) Calcd. for C₂₄H₃₄NO₃S⁺¹(M+H)⁺ requires: 416.2254, found: 416.2255.

Compound 2f:

0.15 mmol scale, a white solid, 30% yield (16.7 mg). M.p.: 186-187 °C. $^1\mathrm{H}$ NMR (CDCl_3, TMS,

400 MHz) δ 1.04 (d, J = 6.8 Hz, 3H), 1.31 (d, J = 6.8 Hz, 3H), 1.97 (d, J = 15.2 Hz, 1H), 2.25-2.31 (m, 1H), 2.31-2.37 (m, 1H), 2.38-2.45 (m, 4H), 2.47-2.54 (m, 2H), 2.58-2.68 (m, 3H), 2.92-2.95 (m, 1H), 3.44 (dd, J = 4.4 Hz, 9.2 Hz, 1H), 3.65 (d, J = 9.2 Hz, 1H), 4.75-4.77 (m, 1H), 4.79-4.81 (m, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 17.3, 21.5, 30.5, 36.3, 37.2, 40.4, 44.4, 45.1, 46.9, 54.8, 72.7, 113.9, 126.9, 129.5, 138.8, 142.4, 143.1, 208.0. IR (neat) 3068, 2963, 2937, 2882, 1714, 1649, 1597, 1451, 1408, 1338, 1327, 1226, 1189, 1157, 1104, 1090, 1076, 1050, 1004, 926, 900, 815, 790, 708, 669 cm⁻¹. HRMS (ESI) Calcd. for C₂₁H₂₈NO₃S⁺¹(M+H)⁺ requires: 374.1784, found: 374.1784.

Compound 2g:

0.15 mmol scale, a light yellow solid, 25% yield (15.5 mg). M.p.: 198-200 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 0.99-1.32 (m, 5H), 1.63-1.71 (m, 2H), 1.75-1.82 (m, 3H), 1.92-2.02 (m, 2H), 2.25-2.31 (m, 1H), 2.40-2.55 (m, 6H), 2.66-2.73 (m, 3H), 2.93-2.97 (m, 1H), 3.43 (dd, *J* = 4.4 Hz, 9.6 Hz, 1H), 3.72 (d, *J* = 9.6 Hz, 1H), 4.77 (s, 1H), 4.80 (s, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.5, 26.3, 27.2, 27.4, 27.5, 27.6, 36.7, 37.1, 40.6, 41.8, 44.6, 44.7, 47.1, 54.9, 72.5, 113.9, 126.8, 129.5, 139.1, 142.6, 143.0, 208.2. IR (neat) 2923, 2852, 1714, 1647, 1594, 1448, 1406, 1328, 1222, 1200, 1155, 1129, 1094, 1069, 1038, 1008, 964, 902, 812, 787, 735, 710, 668 cm⁻¹. HRMS (ESI) Calcd. for C₂₄H₃₂NO₃S⁺¹(M+H)⁺ requires: 414.2097, found: 414.2096.

Compound 2h:

0.15 mmol scale, a light yellow solid, 30% yield (18.3 mg). M.p.: 232-235 °C. ¹H NMR (CDCl₃,

TMS, 400 MHz) δ 2.17 (dd, J = 6.4 Hz, 17.2 Hz, 1H), 2.33 (s, 3H), 2.35-2.43 (m, 3H), 2.63 (dd, J = 2.8 Hz, 16.4 Hz, 1H), 2.92 (t, J = 4.4 Hz, 1H), 3.10-3.13 (m, 1H), 3.21 (dd, J = 2.8 Hz, 14.4 Hz, 1H), 3.67-3.71 (m, 2H), 3.97 (d, J = 8.8 Hz, 1H), 4.92 (s, 2H), 6.91 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 7.22-7.30 (m, 3H), 7.39 (br, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.4, 36.2, 37.7, 39.6, 44.8, 47.1, 48.7, 53.9, 67.5, 114.3, 125.8, 128.1, 128.3, 128.8, 135.0, 139.1, 142.0, 142.1, 207.4. IR (neat) 3063, 3029, 2979, 2946, 2921, 2874, 2845, 1712, 1652, 1597, 1496, 1447, 1401, 1330, 1234, 1183, 1153, 1109, 1093, 1063, 1026, 1015, 977, 945, 928, 901, 853, 813, 796, 753, 734, 695, 678, 665 cm⁻¹. HRMS (ESI) Calcd. for C₂₄H₂₉N₂O₃S⁺¹(M+NH₄)⁺ requires: 425.1893, found: 425.1893.

Compound 2i:

0.15 mmol scale, a light yellow solid, 41% yield (25.9 mg). M.p.: 210-212 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.70 (s, 3H), 2.10 (dd, *J* = 6.4 Hz, 17.2 Hz, 1H), 2.30-2.32 (m, 1H), 2.36 (s, 3H), 2.39-2.51 (m, 2H), 2.82-2.89 (m, 2H), 3.23-3.30 (m, 1H), 3.49-3.53 (m, 1H), 3.65 (dd, *J* = 4.4 Hz, 9.2 Hz, 1H), 3.77-3.82 (m, 1H), 4.05 (d, *J* = 9.2 Hz, 1H), 4.90 (d, *J* = 2.0 Hz, 2H), 6.84 (d, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 7.22 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H), 7.31 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H), 7.67 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.4, 22.0, 36.9, 39.3, 39.7, 45.1, 45.5, 47.7, 53.5, 69.0, 113.9, 125.9, 126.2, 128.1, 128.8, 130.5, 133.1, 133.7, 137.7, 138.0, 142.2, 142.4, 207.7. IR (neat) 3057, 3026, 2989, 2950, 2922, 2866, 2845, 1715, 1597, 1483, 1453, 1401, 1375, 1330, 1305, 1266, 1230, 1211154, 1124, 1103, 1056, 1024, 1016, 975, 942, 904, 852, 813, 800, 783, 753, 733, 706, 673, 657 cm⁻¹. HRMS (ESI) Calcd. for C₂₅H₃₁N₂O₃S⁺¹(M+NH₄)⁺ requires: 439.2050, found: 439.2050.

Compound 2j:

0.15 mmol scale, a light yellow solid, 49% yield (31.0 mg). M.p.: 250-253 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.13 (br, 3H), 2.19 (d, J = 6.4 Hz, 1H), 2.33 (s, 3H), 2.34-2.36 (m, 1H), 2.37-2.43 (m, 2H), 2.62-2.68 (m, 1H), 2.91 (t, J = 4.4 Hz, 1H), 3.08-3.12 (m, 1H), 3.16-3.23 (m, 1H), 3.65-3.70 (m, 1H), 3.72 (dd, J = 4.4 Hz, 9.2 Hz, 1H), 3.98 (d, J = 9.2 Hz, 1H), 4.90-4.93 (m, 2H), 6.90-6.97 (m, 4H), 7.05 (d, J = 7.2 Hz, 1H), 7.13-7.29 (m, 3H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.29, 21.32, 36.2, 37.6, 39.6, 44.8, 47.1, 48.8, 54.0, 67.3, 114.2, 125.8, 128.1, 128.7, 128.8, 134.7, 137.8, 139.2, 141.9, 142.2, 207.6. IR (neat) 3065, 3026, 2979, 2945, 2921, 2874, 1714, 1598, 1494, 1445, 1402, 1340, 1330, 1200, 1154, 1112, 1066, 1017, 979, 958, 929, 902, 854, 813, 779, 734, 706, 694, 677, 666 cm⁻¹. HRMS (ESI) Calcd. for C₂₅H₃₁N₂O₃S⁺¹(M+NH₄)⁺ requires: 439.2050, found: 439.2047.

Compound 2k:

0.15 mmol scale, a white solid, 50% yield (31.6 mg). M.p.: 216-218 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.18 (dd, *J* = 6.4 Hz, 17.6 Hz, 1H), 2.34 (s, 6H), 2.35-2.38 (m, 2H), 2.39-2.42 (m, 1H), 2.58-2.64 (m, 1H), 2.91 (t, *J* = 4.4 Hz, 1H), 3.09-3.13 (m, 1H), 3.14-3.22 (m, 1H), 3.67-3.71 (m, 2H), 3.95 (d, *J* = 9.2 Hz, 1H), 4.90 (d, *J* = 2.0 Hz, 1H), 4.91 (d, *J* = 2.0 Hz, 1H), 6.92-6.98 (m, 4H), 7.00 (d, *J* = 6.8 Hz, 2H), 7.23-7.32 (m, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.0, 21.4, 36.1, 37.6, 39.6, 44.7, 47.1, 48.4, 54.0, 67.2, 114.2, 126.0, 128.3 (br), 128.6, 128.9, 131.9, 138.0, 139.2, 141.9, 142.2, 207.6. IR (neat) 3065, 3026, 2979, 2944, 2921, 2874, 1712, 1597, 1515, 1494, 1445, 1405, 1328, 1234, 1183, 1154, 1110, 1092, 1065, 1016, 977, 946, 901, 881, 857, 811, 734, 705, 672 cm⁻¹. HRMS (ESI) Calcd. for C₂₅H₃₁N₂O₃S⁺¹(M+NH₄)⁺ requires: 439.2050, found: 439.2051.

Compound 21:

0.15 mmol scale, a white solid, 27% yield (17.7 mg). M.p.: 250-252 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.19 (dd, J = 6.4 Hz, 17.2 Hz, 1H), 2.34 (s, 3H), 2.35-2.38 (m, 2H), 2.39-2.41 (m, 1H), 2.55-2.61 (m, 1H), 2.91 (t, J = 4.4 Hz, 1H), 3.07-3.10 (m, 1H), 3.15-3.23 (m, 1H), 3.63-3.67 (m, 1H), 3.70 (dd, J = 4.4 Hz, 9.2 Hz, 1H), 3.82 (s, 3H), 3.95 (d, J = 9.2 Hz, 1H), 4.89-4.93 (m, 2H), 6.72 (d, J = 7.6 Hz, 2H), 7.00 (s, 4H), 7.30 (br, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.4, 36.1, 37.8, 39.6, 44.7, 47.0, 48.3, 53.9, 55.3, 67.1, 113.6, 114.2, 125.9, 126.7, 128.7, 129.7 (br), 139.4, 141.9, 142.2, 159.3, 207.5. IR (neat) 3065, 3039, 2981, 2925, 2872, 2851, 1711, 1609, 1514, 1444, 1402, 1327, 1304, 1257, 1236, 1182, 1153, 1112, 1091, 1066, 1029, 1015, 977, 946, 909, 880, 858, 814, 801, 734, 705, 674 cm⁻¹. HRMS (ESI) Calcd. for C₂₅H₃₁N₂O₄S⁺¹(M+NH₄)⁺ requires: 455.1999, found: 455.2002.

Compound 2m:

0.15 mmol scale, a light yellow solid, 39% yield (24.9 mg). M.p.: 203-205 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.16 (dd, J = 6.4 Hz, 17.2 Hz, 1H), 2.35 (s, 3H), 2.38-2.43 (m, 3H), 2.52-2.58 (m, 1H), 2.93 (t, J = 4.0 Hz, 1H), 3.05-3.10 (m, 1H), 3.17-3.23 (m, 1H), 3.64-3.73 (m, 2H), 3.98 (d, J = 9.2 Hz, 1H), 4.93 (d, J = 4.8 Hz, 2H), 6.87-6.92 (m, 2H), 6.98 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 7.36 (br, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.4, 36.1, 37.7, 39.5, 44.6, 47.0, 48.7, 54.0, 66.9, 114.5, 115.1 (d, J = 21.2 Hz), 125.8, 128.9, 130.3 (d, J = 7.9 Hz), 130.9 (d, J = 3.4 Hz), 139.3, 141.8, 142.3, 162.3 (d, J = 247.3 Hz), 207.0. ¹⁹F NMR (CDCl₃, CFCl₃, 376 MHz) δ -113.66-113.59 (m). IR (neat) 3052, 2953, 2927, 2887, 2848, 1716, 1601, 1511, 1495, 1482, 1445, 1409, 1377, 1339, 1317, 1305, 1263, 1234, 1209, 1183, 1163, 1149, 1112, 1091, 1064, 1030, 1015, 1006, 981, 947, 905, 881, 860, 809, 736, 720, 705, 677 cm⁻¹. HRMS (ESI) Calcd. for C₂₄H₂₅NO₃SF⁺¹(M+NH₄)⁺ requires: 426.1534, found: 426.1533.

Compound 2n:

0.15 mmol scale, a yellow solid, 31% yield (18.5 mg). M.p.: 150-152 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.28-2.32 (m, 1H), 2.34-2.38 (m, 4H), 2.40-2.46 (m, 2H), 2.48-2.55 (m, 1H), 2.75-2.80 (m, 1H), 2.86 (t, *J* = 4.4 Hz, 1H), 3.12-3.20 (m, 1H), 3.28-3.33 (m, 1H), 3.65 (dd, *J* = 4.4 Hz, 9.2 Hz, 1H), 3.91 (d, *J* = 9.2 Hz, 1H), 4.89-4.92 (m, 2H), 6.29 (dd, *J* = 1.2 Hz, 2.0 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.28 (dd, *J* = 2.0 Hz, 2.0 Hz, 1H), 7.39 (dd, *J* = 1.2 Hz, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.4, 35.7, 39.7, 39.8, 44.5, 46.8, 47.8, 53.6, 63.0, 110.2, 114.7, 121.9, 125.9, 129.0, 139.3, 141.7, 142.3, 142.7, 142.8, 207.1. IR (neat) 3141, 3068, 2981, 2945, 2924, 2877, 2851, 1712, 1597, 1505, 1445, 1402, 1328, 1288, 1190, 1154, 1122, 1094, 1067, 1031, 1015, 991, 969, 906, 874, 866, 813, 795, 734, 706, 672 cm⁻¹. HRMS (ESI) Calcd. for C₂₂H₂₄NO₄S⁺¹(M+H)⁺ requires: 398.1421, found: 398.1420.

Compound 2o:

0.15 mmol scale, a light yellow solid, 53%

TsŃ-

yield (30.5 mg). M.p.: 150-152 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.89-2.02 (m, 4H), 2.24-2.30 (m, 1H), 2.40-2.44 (m, 5H), 2.47-2.51 (m, 1H), 2.54-2.57 (m, 1H), 2.58-2.68 (m, 3H), 2.72 (d, J = 4.4 Hz, 1H), 3.42 (dd, J = 4.4 Hz, 9.2 Hz, 1H), 3.62 (d, J = 9.2 Hz, 1H), 4.76 (s, 1H), 4.81 (s, 1H), 4.96-4.97 (m, 1H), 4.98-5.02 (m, 1H), 5.71-5.82 (m, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.5, 27.8, 30.6, 36.3, 39.5, 40.7, 43.1, 44.6, 46.6, 53.5, 69.4, 114.0, 115.1, 126.6, 129.6, 137.7, 138.5, 142.3, 143.2, 207.4. IR (neat) 3073, 3026, 2976, 2938, 2877, 2848, 1712, 1640, 1597, 1493, 1449, 1404, 1321, 1303, 1196, 1154, 1095, 1071, 997, 982, 904, 815, 795, 735, 709, 668 cm⁻¹. HRMS (ESI) Calcd. for C₂₂H₂₈NO₃S⁺¹(M+H)⁺ requires: 386.1784, found: 386.1784.

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (rops)

S57

7. Characterization and spectra charts for 3a.

Compound 3a:

0.15 mmol scale, a light yellow solid, 10% yield (5.2 g). M.p.: 46-49 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.61 (s, 3H), 2.40-2.46 (m, 4H), 2.50-2.57 (m, 1H), 2.76 (dd, *J* = 9.6 Hz, 18.0 Hz, 1H), 2.98 (t, *J* = 9.2 Hz, 1H), 3.11 (dd, *J* = 4.0 Hz, 10.4 Hz, 1H), 3.21-3.26 (m, 1H), 3.72 (dd, *J* = 8.0 Hz, 10.0 Hz, 1H), 4.82 (s, 1H), 4.88 (s, 1H), 6.01 (d, *J* = 10.4 Hz, 1H), 7.23 (d, *J* = 10.4 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.4, 27.2, 37.7, 45.7, 47.1, 54.0, 54.2, 62.6, 108.1, 127.07, 127.08, 129.4, 137.2, 143.5, 149.0, 151.2, 198.7. IR (neat) 3068, 3042, 2966, 2924, 2869, 1673, 1597, 1494, 1447, 1393, 1375, 1335, 1303, 1198, 1153, 1090, 1035, 988, 953, 895, 814, 734, 707, 673 cm⁻¹. HRMS (ESI) Calcd. for C₁₉H₂₅N₂O₃S⁺¹(M+NH₄)⁺ requires: 361.1580, found: 361.1574.

8. General procedure for synthesis of [D]-2a and its spectra chart.

A solution of **1a** (0.15 mmol, 1.0 equiv), CpPd (π -cinnamyl) (0.015 mmol, 10 mol%) and CD₃OD (0.60 mmol, 4.0 equiv), or D₂O in toluene (0.20 mL) was stirred at 120 °C under argon atmosphere for 12 hours. After the reaction completed, the mixture was concentrated in vacuo to yield the crude product, which was purified by a flash chromatography on silica gel (eluent: PE/EtOAc = 10/1 ~ 8/1) to furnish the desired product [D]-**2a**.

9. Control experiment

Scheme SI-1. Control experiments

In order to further investigate the reaction mechanism, the deuterium-labeling experiment was conducted. The reaction of **1a** was performed in standard conditions with addition of the deuterated methanol and D_2O , respectively. The use of CD_3OD as a hydrogen source afforded the product [D]-**2a** in 46% yield with 72% and 75% D content on the cyclohexenone ring (Scheme SI-1). On the other hand, the addition of D_2O in the system also provided [D]-**2a** in 36% yield with 86% and 83% D content (Scheme SI-1). In the case of employing water, the water played as a proton source, and the substrate or ligand probably served as a reductant.

When the reaction was conducted with $Pd_2(dba)_3$ as catalyst, toluene as solvent at 120 °C for 12 hours, **1a** was fully converted, and 37% of **2a** and 4% **3a** was obtained. However, when 4Å molecular sieves were added in the system to decrease the content of H₂O, the 20% of **1a** was remained under the standard conditions, and the yield of **2a** was decreased to 16%. This result demonstrates that trace amount of ambient water affected the yield of **2a** dramatically. If the yield of **2a** was obtained in 40%, the H₂O requirement was only 0.06 mmol. It is very difficult to avoid such a trace amount of water under standard conditions since substrate, solvents or catalyst may contain trace amount of water.

10. Proposed mechanism

Scheme SI-2. Proposed mechanism for the reaction in the absence of alcohol.

Proposed mechanism for the reaction in the absence of alcohol is shown in **Scheme SI-2**. Instead of alcohol, H_2O plays a proton source to promote the generation of intermediate **F** from an intermediate **D**, and also promote to give an intermediate **J** by protonolysis. These steps can be supported by our deuterium-labeling experiments and the related references ((a) *J. Am. Chem. Soc.*, 2016, **138**, 6107-6110; (b) *Org. Lett.*, 2016, **18**, 4250-4253; (c) *Org. Lett.*, 2007, **9**, 2195-2198). Without alcohol, substrate **1**, or ligands (dba, or Cp–cinnamyl moiety) in the reaction system probably played as a reductant. We proposed four possible pathways **Paths I-IV** for the regeneration of Pd(0) species which are illustrated in the **Scheme SI-3**.

Scheme SI-3. Proposed mechanism for the generation of H-Pd-OH

From the previous reports,^[3] we think the process can be explained by above four pathways:

Path I: One possible pathway is that the Pd(II) species undergoes a migratory insertion to generate intermediate I-A. Then the H-Pd-OH is produced through a β -hydride elimination.

Path II: According to the previous literature,^[4] the α , β -unsaturated ketone can react with H₂O and can be transformed into diketones, when Pd(II) species was used as the catalyst. We propose that the Pd(II) species can undergo a migratory insertion into the double bond of *p*-quinamine moiety of substrate **1**, and following a β -hydride elimination; the intermediate **II-D** is subsequently generated, which can be transformed into diketones through keto-enol tautomerization. From this process, the H-Pd-OH can be also obtained. Finally, HO-Pd-H can undergo reductive elimination to regenerate the Pd(0) species and subsequently re-engage in the catalytic cycle.

Path III and **Path IV**: In the presence of the ligands such as dba, or Cp–cinnamyl moiety, Pd(II) species can also undergo the similar process to generate H-Pd-OH species, which can further undergo reductive elimination to regenerate the Pd(0) species and subsequently re-engage in the catalytic cycle.

We also tried to find some MS evidences to support our proposed mechanism illustrated in **Scheme SI-3**. After the reaction was completed and the solvent was removed by rotary evaporation,

the crude reaction mixture was detected by EI and ESI. The EI-Mass spectrum is shown in **Figure SI-1**, and the ESI-Mass spectrum is shown in **Figure SI-2**. We found the peaks of 250 (belong to **III-E**) and 359 (belong to **II-B** or **II-E**) in EI-Mass spectrum shown in **Figure SI-1**; we also found the peaks of 251 (belong to **III-E**) and 360 (belong to **I-B** or **II-E**) in ESI-Mass spectrum shown in **Figure SI-2**, although the peak value is very low. These Mass spectra provide some evidences for our proposed mechanisms shown in **Scheme SI-3**.

Figure	SI-1 .	EI S	Spectrum
--------	---------------	------	----------

Instrument: Agilent Technologies 5973N Ionization Method: EI Ion source: 230 °C

Ionization Energy: 70 eV MS Quard: 150 °C

Figure SI-2. ESI Spectrum

Instrument: Agilent Technologies 1100 LC/MSDSL

Ionization Method: ES-API Ionization Energy: 80 eV Collecting Techniques: CHEM32\1\METHODS\ANAL.M Analytical Method: CHEM32\1\METHODS\ANAL2.M

11. X-ray crystallographic information of products 2a and 3a.

The crystal data of **2a** have been deposited in CCDC with number 1834287. Empirical Formula: $C_{19}H_{23}NO_3S$; Formula Weight: 345.44; Crystal Color, Habit: colorless, Crystal Dimensions: 0.140 x 0.100 x 0.060 mm³; Crystal System: Monoclinic; Lattice Parameters: a = 7.0366(5)Å, b = 20.3622(13)Å, c = 12.3027(10)Å, $\alpha = 90^{\circ}$, $\beta = 96.424(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 1751.7(2)Å³; Space group: P 21/n; Z = 4; $D_{calc} = 1.310$ g/cm³; $F_{000} = 736$; Final R indices [I>2sigma(I)] R1 = 0.0725, wR2 = 0.2099.

The crystal data of **3a** have been deposited in CCDC with number 1836527. Empirical Formula: $C_{19}H_{21}NO_3S$; Formula Weight: 343.43; Crystal Color, Habit: colorless, Crystal Dimensions: 0.200 x 0.180 x 0.070 mm³; Crystal System: Monoclinic; Lattice Parameters: a = 35.236(4)Å, b = 7.3453(8)Å, c = 13.4985(13)Å, $\alpha = 90^{\circ}$, $\beta = 96.077(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 3474.1(6)Å³; Space group: C 2/c; Z = 8; $D_{calc} = 1.313$ g/cm³; $F_{000} = 1456$; Final R indices [I>2sigma(I)] R1 = 0.0583, wR2 = 0.1279.

12. References.

[1] (a) S. C. Banfield, M. A. Kerr, *Can. J. Chem.* 2004, **82**, 131; (b) P. Jia, Q. Zhang, Jin, H. Y. Huang, *Org. Lett.* 2017, **19**, 412.

[2] A. Shigeru, K. Yuka, H. Hirohiko, N. Atsushi, J. Org. Chem. 2010, 75, 7573.

[3] (a) S. P. Cummings, T.-N. Le, G. E. Fernandez, L. G. Quiambao, and Benjamin J. Stokes, *J. Am. Chem. Soc.*, 2016, **138**, 6107; (b) Q. Xuan, Q. Song, *Org. Lett.*, 2016, **18**, 4250; (c) A. G. Campaña,

R. E. Estévez, N. Fuentes, R. Robles, J. M. Cuerva, E. Buñuel, D. Cárdenas, J. Enrique Oltra, *Org. Lett.*, 2007, 9, 2195.

[4] T. Mitsudome, S. Yoshida, T. Mizugaki, K. Jitsukawa, K. Kaneda, *Angew. Chem., Int. Ed.*, 2013, 52, 5961.