Electronic Supplementary Information (ESI)

Conversion of 12-Membered D₃- and L₃-Co^{III}₃Cd^{II}₃ Metallorings into a 24-Membered D₃L₃-Co^{III}₆Cd^{II}₆ Metalloring

Daiki Hayashi, Nobuto Yoshinari, and Takumi Konno*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

konno@chem.sci.osaka-u.ac.jp

Experimental Section

Materials.

N,N'-ethylenebis(D-penicillamine) (D-H4ebp) and N,N'-ethylenebis(L-penicillamine) (L-H4ebp) were prepared from D-penicillamine and L-penicillamine, respectively, *via* 5,5-dimethylthiazolidine-4-carboxylic acid^{S1} using a modified synthetic method of N,N'-ethylenebis(L-cysteine).^{S2} Na₃[Co(CO₃)₃]·3H₂O was freshly prepared according to the literature method.^{S3} Other chemicals and solvents were of commercial reagent grade and used without further purification.

Preparation of Na[Co(D- or L-ebp)].

This complex has been previously prepared by using $[Co(NH_3)_6]Cl_3$ as a starting complex^{S4} but isolated as a double salt containing NaCl, Na $[Co(D-ebp)] \cdot 0.5NaCl$. To avoid contamination with chloride ions, Na $_3[Co(CO_3)_3]$ was used as the starting complex in this study.

An aqueous suspension (30 mL) containing D-H₄ebp (300 mg, 0.92 mmol) and Na₃[Co(CO₃)₃]·3H₂O (350 mg, 0.97 mmol) was stirred at room temperature for 1 h, which gave a brown solution. The brown solution was evaporated to dryness, and then methanol (8 mL) and 1-hexanol (8 mL) were added to the residue to give a brown suspension. After filtration, 1-hexanol (12 mL) was added to the filtrate. The brown solution was concentrated to a small volume to give a dark brown powder. The brown powder was collected by filtration, washed with diethyl ether, and then dried in vacuo. Yield: 245 mg (57 %). Anal. Calcd for Na[Co(D-ebp)]·3.5H₂O = C₁₂H₂₇CoN₂NaO_{7.5}S₂: C, 30.97; H, 5.85; N, 6.02 %. Found: C, 30.62; H, 5.57; N, 6.00 %. ¹H NMR spectrum in D₂O (δ , ppm from DSS): 3.54 (s, 2H), 3.51 (d, *J* = 8.6 Hz, 2H), 1.79 (s, 6H), 1.29 (s, 6H). Diffuse reflection spectrum (λ , nm): 538. Solid CD spectrum (λ , nm): 405 (–), 453 (–), 547 (+), 669 (+)

A similar reaction using L-H₄ebp, instead of D-H₄ebp, gave Na[Co(L-ebp)]. Yield: 55 %. Anal. Calcd for Na[Co(L-ebp)] \cdot 3.5H₂O = C₁₂H₂₇CoN₂NaO_{7.5}S₂: C, 30.97; H, 5.85; N, 6.02 %. Found: C, 30.91; H, 5.87; N, 5.81 %. Diffuse reflection spectrum (λ , nm): 539. Solid CD (λ , nm): 400 (+), 460 (+), 558 (–), 670 (–)

Preparation of [Cd3{Co(D-ebp)}3I3] (D3-11) and [Cd3{Co(L-ebp)}3I3] (L3-11).

To a brown solution containing Na[Co(D-ebp)]·3.5H₂O (50 mg, 0.11 mmol) in H₂O (5 mL) was added a colourless solution of CdI₂ (59 mg, 0.16 mmol) in H₂O (4 mL). The brown solution was slowly evaporated at room temperature for 2 weeks, which gave purple block crystals of D₃-1₁, together with a small amount of a white precipitate. The white precipitate was removed by decantation, and the purple crystals were collected by filtration and washed with a small amount of H₂O. One of the crystals was used for single-crystal X-ray analysis. Yield: 53 mg (73 %). Anal. Calcd for [Cd₃{Co(D-ebp)}₃I₃]·8H₂O = C₃₆H₇₆Cd₃Co₃I₃N₆O₂₀S₆: C, 21.62; H, 3.83; N, 4.20 %. Found: C, 21.63; H, 3.61; N, 4.19 %. Diffuse reflection spectrum (λ , nm): 525. Solid CD spectrum (λ , nm): 438 (–), 525 (+), 612 (–).

A similar reaction using Na[Co(L-ebp)]·3.5H₂O, instead of Na[Co(D-ebp)]·3.5H₂O, gave L₃-1. Yield: 51 %. Anal. Calcd for [Cd₃{Co(ebp)}₃I₃]·8H₂O = C₃₆H₇₆Cd₃Co₃I₃N₆O₂₀S₆: C, 21.62; H, 3.83; N, 4.20 %. Found: C, 21.74; H, 3.61; N, 4.22 %. Diffuse reflection spectrum (λ , nm): 525. Solid CD spectrum (λ , nm): 435 (+), 522 (-), 614 (+).

Preparation of $[Cd_6(H_2O)_6\{Co(D-ebp)\}_3\{Co(L-ebp)\}_3I_6]$ (D3L3-21). Method A.

To a brown solution containing Na[Co(D-ebp)]·3.5H₂O (15 mg, 0.033 mmol) and Na[Co(L-ebp)]·3.5H₂O (15 mg, 0.033 mmol) in H₂O (6 mL) was added a colourless solution containing CdI₂ (72 mg, 0.13 mmol) in H₂O (2 mL). The resulting brown solution was slowly evaporated at room temperature for a week, which gave purple hexagonal plate crystals of D₃L₃-**2**I. The crystals were collected by filtration and washed with a small amount of H₂O. One of the crystals was used for single-crystal X-ray analysis. Yield: 29 mg (67 %). Anal. Calcd for [Cd₆(H₂O)₆{Co(epen)}₆I₆]·12H₂O = C₇₂H₁₅₆Cd₆Co₆I₆N₁₂O₄₂S₁₂: C, 21.42; H, 3.90; N, 4.16 %. Found: C, 21.36; H, 3.72; N, 4.07 %. Diffuse reflection spectrum (λ , nm): 525. Solid CD spectrum: silent.

Method B.

 D_3 -1₁ (10 mg, 5.0 µmol) and L_3 -1₁ (10 mg, 5.0 µmol) were dissolved in H₂O (6 mL), which gave a brown solution. To the solution was added a 0.3 M aqueous NaI solution (650 µL, 195 µmol). The mixture was slowly evaporated at room temperature for 3 weeks, which gave purple hexagonal plate crystals of D_3L_3 -2₁. The crystals were collected by filtration and washed with a small amount of H₂O. Yield: 17 mg (84 %).

Preparation of $[Cd_2(H_2O)_2\{Co(D-ebp)\}_2\{Co(L-ebp)\}_2]$ (D₂L₂-3).

D₃-1₁ (10 mg, 5.0 µmol) and L₃-1₁ (10 mg, 5.0 µmol) were dissolved in H₂O (6 mL), which gave a brown solution. The mixture was slowly evaporated at room temperature for 2 weeks, which gave purple hexagonal plate crystals of D₃L₃-2₁ and green block crystals of D₂L₂-3. The product was recrystallized from H₂O, which gave only green block crystals of D₂L₂-3. The green crystals were collected by filtration and washed with a small amount of H₂O. One of the green crystals was used for single-crystal X-ray analysis. Yield: 3 mg (20 %). Found: C, 30.37; H, 5.06; N, 5.88 %. Calcd for $[Cd_2{Co(ebp)}_4]$ ·9H₂O = C₄₈H₉₈Cd₂Co₄N₈O₂₅S₈: C, 30.27; H, 5.19; N, 5.88 %. Diffuse reflection spectrum (λ , nm): 543. Solid CD spectrum: silent. Fluorescence Xray analysis: Cd, Co, S. The bulk purity of the sample was confirmed by powder X-ray diffraction measurement.

Preparation of [Cd3{Co(D-ebp)}3Br3] (D3-1Br) and [Cd3{Co(L-ebp)}3Br3] (L3-1Br).

To a brown solution containing Na[Co(D-ebp)]·3.5H₂O (50 mg, 0.11 mmol) in H₂O (6 mL) was added CdBr₂ (32 mg, 0.12 mmol). After stirring at room temperature for 3 days, a small amount of a white precipitate was filtered off. The brown filtrate was slowly evaporated at room temperature for 2 weeks. The resulting purple block crystals of D₃-1_{Br} were collected by filtration and washed with a small amount of H₂O. One of the crystals was used for single-crystal X-ray analysis. Yield: 49 mg (74 %). Anal. Calcd for [Cd₃{Co(ebp)}₃Br₃]·8H₂O = C₃₆H₇₆Br₃Cd₃Co₃N₆O₂₀S₆: C, 23.26; H, 4.12; N, 4.52 %. Found: C, 23.41; H, 3.99; N, 4.63 %. Diffuse reflection spectrum (λ , nm): 523. Solid CD spectrum (λ , nm): 435 (–), 523 (+), 610 (–).

A similar reaction using Na[Co(L-ebp)]·3.5H₂O instead of Na[Co(D-ebp)]·3.5H₂O gave L₃-1Br. Yield: 62 %. Anal. Calcd for [Cd₃{Co(ebp)}₃Br₃]·8H₂O = C₃₆H₇₆Br₃Cd₃Co₃N₆O₂₀S₆: C, 23.26; H, 4.12; N, 4.52 %. Found: C, 23.13; H, 4.03; N, 4.53 %. Diffuse reflection spectrum (λ ,

nm): 526. Solid CD spectrum (λ, nm): 434 (+), 525 (–), 610 (+).

Preparation of [Cd₆(H₂O)₆{Co(D-ebp)}₃{Co(L-ebp)}₃Br₆] (D₃L₃-2_{Br}). Method A.

To a brown solution containing Na[Co(D-ebp)]·3.5H₂O (15 mg, 0.033 mmol) and Na[Co(L-ebp)]·3.5H₂O (15 mg, 0.033 mmol) in H₂O (6 mL) was added a colourless solution containing CdBr₂ (54 mg, 0.20 mmol) in H₂O (2 mL). The mixture was slowly evaporated at room temperature for 5 days. The resulting purple hexagonal plate crystals of **D_{3L3-2Br}** were collected by filtration and washed with a small amount of H₂O. One of the crystals was used for single-crystal X-ray analysis. Yield: 29 mg (72 %). Anal. Calcd for [Cd₆(H₂O)₆{Co(ebp)}₆Br₆]·12H₂O = C₇₂H₁₅₆Br₆Cd₆Co₆N₁₂O₄₂S₁₂: C, 23.03; H, 4.19; N, 4.48 %. Found: C, 22.96; H, 4.04; N, 4.50 %. Diffuse reflection spectrum (λ , nm): 525. Solid CD spectrum: silent.

Method B.

 D_3-1_{Br} (10 mg, 5.4 µmol) and L_3-1_{Br} (10 mg, 5.4 µmol) were dissolved in H₂O (8 mL), which gave a brown solution. To the solution was added 3 M aqueous NaBr (70 µL, 210 µmol). The mixture was slowly evaporated at room temperature for 3 weeks, which gave purple hexagonal plate crystals of $D_3L_3-2_{Br}$. The crystals were collected by filtration and washed with a small amount of H₂O. Yield: 15 mg (74 %).

Preparation of [CdCl{Co(D-ebp)}]_n.

To a brown solution containing Na[Co(D-ebp)]·3.5H₂O (50 mg, 0.11 mmol) in H₂O (3 mL) was added CdCl₂·2.5H₂O (24 mg, 0.11 mmol). After stirring at room temperature for 1 day, a small amount of a white precipitate was filtered off. The brown filtrate was slowly evaporated at room temperature for 5 days. The resulting purple block crystals of [CdCl{Co(D-ebp)}]_n were collected by filtration and washed with a small amount of H₂O. One of the crystals was used for single-crystal X-ray analysis. Yield: 32 mg (49 %). Anal. Calcd for [CdCl{Co(ebp)}]·4H₂O = C₁₂H₂₈CdCoN₂O₈S₂: C, 24.05; H, 4.71; N, 4.67 %. Found: C, 24.11; H, 4.43; N, 4.70 %.

Preparation of [Cd6(H2O)6{C0(D-ebp)}3{C0(L-ebp)}3Cl6] (D3L3-2Cl).

To a brown solution containing Na[Co(D-ebp)]·3.5H₂O (15 mg, 0.033 mmol) and Na[Co(L-ebp)]·3.5H₂O (15 mg, 0.033 mmol) in H₂O (6 mL) was added a colourless solution containing CdCl₂·2.5H₂O (45 mg, 0.13 mmol) in H₂O (2 mL). The mixture was slowly evaporated at room temperature for 5 days. The resulting purple hexagonal plate crystals of **D_{3L3}-2**_{Cl} were collected by filtration and washed with a small amount of H₂O. One of the crystals was used for single-crystal X-ray analysis. Yield: 27 mg (71 %). Anal. Calcd for [Cd₆(H₂O)₆{Co(ebp)}₆Cl₆]·12H₂O = C₇₂H₁₅₆Cd₆Cl₆Co₆N₁₂O₄₂S₁₂: C, 25.05; H, 4.44; N, 4.87 %. Found: C, 25.07; H, 4.33; N, 4.91 %.

Physical measurements.

The absorption and CD spectra in solution were recorded with a JASCO V-670 spectrophotometer and a JASCO V-670 spectrophotometer, respectively, at room temperature. The CD spectra in the solid state were recorded with a JASCO J-820 polarimeter using KBr disks at room temperature. The diffuse reflection spectra were recorded with a JASCO V-670

spectrophotometer equipped with a JASCO ISN-723 integrating sphere using MgSO₄ at room temperature. The CD spectra in the solid state were recorded with a JASCO J-820 polarimeter using KBr disks at room temperature. The elemental analyses (C, H, N) were performed with a Yanaco CHN Corder MT-5. The ¹H NMR spectra were recorded with a JEOL ECS500 spectrometer in D₂O. Sodium 3-(trimethylsilyl)-1-propanesulfonate (DSS) was used as the internal standard. Fluorescence X-ray spectra were measured with a SHIMADZU Rayny EDX-720 energy-dispersive X-ray fluorescence spectrometer. The electrospray ionization (ESI) mass spectra were recorded on BRUKER micrOTOF II-OS (1.5 mM in water-methanol (v/v = 1/1)). The TG/DTA data were measured with a SHIMADZU DTG-60 using Al₂O₃ as a reference.

Powder X-ray diffraction measurements.

Powder X-ray diffraction patterns illustrated in Figures S13 and S14 were recorded at 200 K, in transmission mode [synchrotron radiation $\lambda = 1.000$ Å; 2 θ range = 0–78°; step width = 0.01°; data collection time = 1 min] on a diffractometer equipped with a white imaging plate detector at the SPring-8 BL02B2 beamline. The crystals were put into 0.3 mm glass capillary tubes, and the samples were rotated during the measurements. The diffraction patterns were collected with a large Debye–Scherrer camera. Powder X-ray diffraction patterns illustrated in Figures S17 and S18 were recorded at room temperature in reflection mode (Cu radiation λ = 1.54 Å, 2 θ range = 6–30°; step width = 0.05°). The powder simulation patterns were generated from the single-crystal X-ray structures using Mercury 3.10.^{S5}

X-ray Structural Determinations.

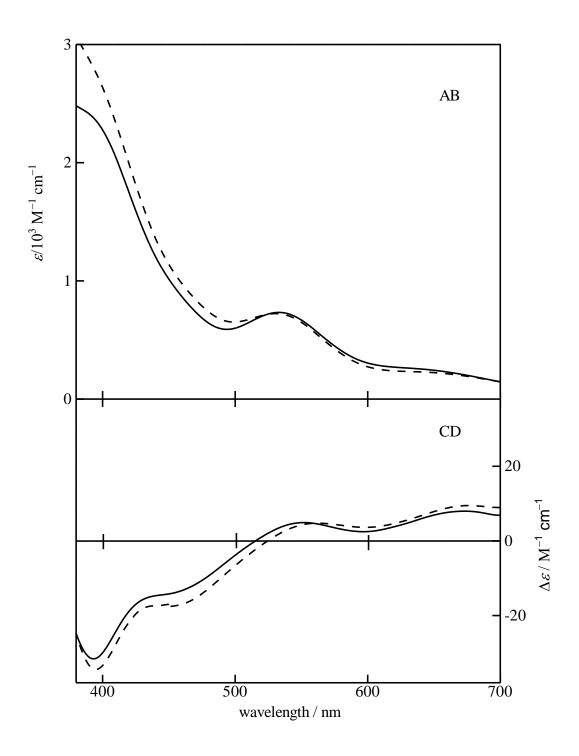
The single-crystal X-ray diffraction measurements were performed using a Rigaku FR-E Superbright rotating-anode X-ray source with a Mo-target ($\lambda = 0.71075$ Å), equipped with a Rigaku RAXIS VII imaging plate as a detector, at 200 K. The intensity data were collected via the ω -scan technique and empirically corrected for absorption. The structures of the complexes were solved by direct methods using SHELXS97.^{S6} The structure refinements were carried out using the full matrix least-squares method (SHELXL-2014).^{S6} The crystallographic data are summarized in Tables S1-S4. All calculations were performed using the Yadokari-XG software package.^{S7} Crystallographic data have been deposited with Cambridge Crystallographic Data Centre (CCDC 1879438-1879446). Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, U.K.; Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

For D₃-1_I, L₃-1_I, [CdCl{Co(D-ebp)}]_n, L₃-1_{Br}, all non-hydrogen atoms except for several water molecules were refined anisotropically, while the other atoms were refined isotropically. H atoms were included in the calculated positions except those of water molecules. For D₃-1_{Br}, D₃L₃-2_{Br}, and D₃L₃-2_{Cl}, all non-hydrogen atoms were refined anisotropically, while the other atoms were refined isotropically. H atoms were included in the calculated positions except those of water molecules. For D₃L₃-2_L, all non-hydrogen atoms were refined anisotropically, while the other atoms were refined isotropically. H atoms were refined anisotropically, while the other atoms were refined isotropically. H atoms were refined anisotropically, while the other atoms were refined isotropically. H atoms bound to C and N atoms were placed at the calculated positions and refined using a riding model. The H atoms of water molecules were found in the Fourier map and refined with restrained displacement parameters [$U_{iso}(H) =$

 $1.2U_{eq}(O)$]. For D₂L₂-**3**, the complex molecule was disordered over two positions (part A (occ. 90 %) and part B (occ. 10 %)). All non-hydrogen atoms belonging to the major part (part A) were refined anisotropically, while the atoms belonging to the minor part (part B) were refined isotropically. The H atoms, which were refined isotropically, were included in the calculated positions except those of water molecules. The DFIX and EADP restraints were used to model the minor part. Because the geometrical parameters of the atoms belonging to the minor part were inaccurate, their data were excluded from the discussion.

References.

(S1) Howard-Lock, H. E.; Lock, C. J. L.; Martins, M. L.; Smalley, P. S.; Bell, R. A. Amino-acid zwitterion equilibria: vibrational and nuclear magnetic resonance studies of methyl-substituted thiazolidine-4-carboxylic acids. *Can. J. Chem.* **1986**, *64*, 1215-1219.


(S2) Blondeau, P.; Berse, C.; Gravel, D. Dimerization of an intermediate during the sodium in liquid ammonia reduction of l-thiazolidine-4-carboxylic acid. *Can. J. Chem.* **1967**, *45*, 49-52.

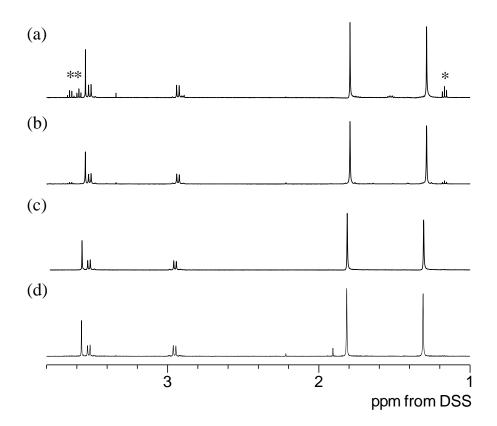
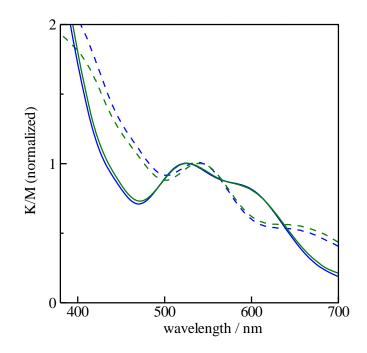
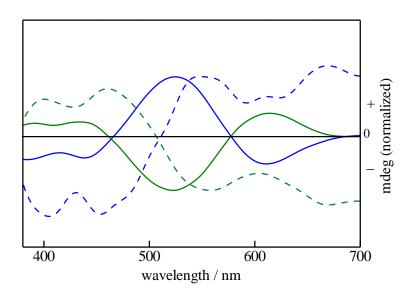
(S3) Bauer, H. F.; Drinkard, W. C. A General Synthesis of Cobalt(III) Complexes; A New Intermediate, Na₃[Co(CO₃)₃]·3H₂O. *J. Am. Chem. Soc.* **1960**, *82*, 5031-5032.

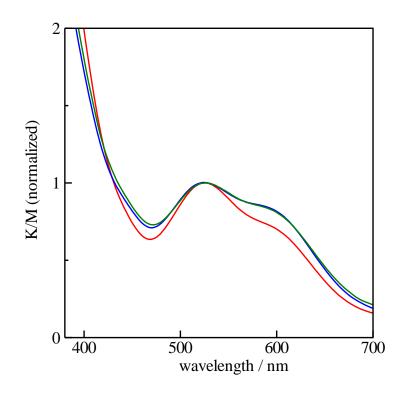
(S4) Okamoto, K.; Fushimi, N.; Konno, T.; Hidaka, J. Preparation and Characterization of *N*,*N*-bridged and/or *S*,*S*-bridged Sexidentate-N₂,O₂,S₂ Cobalt(III) Complexes. Crystal Structure of {(3S, 8S)-2,2,9,9-Tetramethyl-1,10-dithia-4,7-diazacyclotetradecane-3,8-dicarboxylato}cobalt(III) bromide, *Bull. Chem. Soc. Jpn.* **1991**, *64*, 2635-2643.

(S5) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek J.; Wood, P. A. Mercury CSD 2.0 - new features for the visualisation and investigation of crystal structures, *J. Appl. Cryst.* **2008**, *41*, 466-470. (S6) Sheldrick, G. M. A short history of SHELX, *Acta Cryst.* **2008**, *A64*, 112-122.

(S7) Kabuto, C.; Akine, S.; E. Nemoto,; Kwon, E. Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, *Nihon Kessho Gakkaishi* **2009**, *51*, 218-224.

Figure S1. Absorption (AB) and CD spectra of Na[Co(D-ebp)]×3 (dashed line) and D₃-1₁ (solid line) in water.


Figure S2. ¹H NMR spectra of (a) Na[Co(D-ebp)], (b) Na[Co(L-ebp)], (c) D₃-1_I, and (d) L₃-1_I in D₂O. (* denotes the signals from solvents)

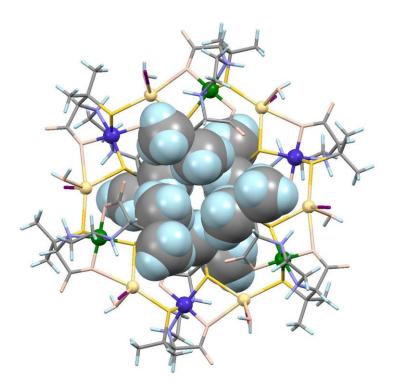
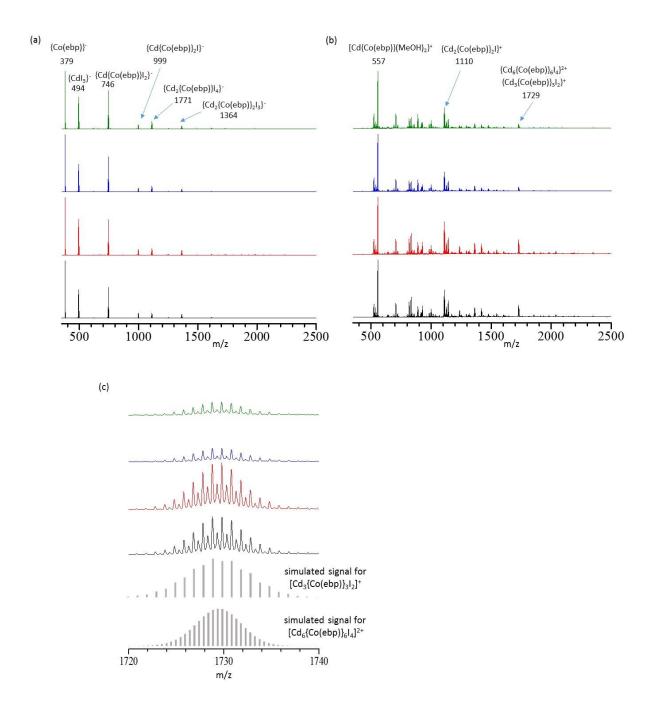
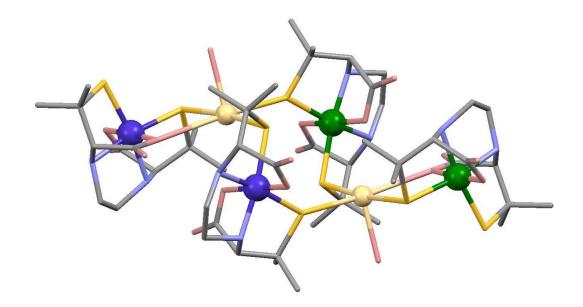
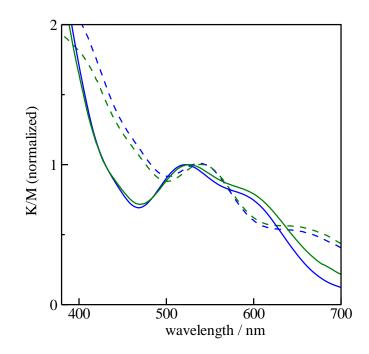
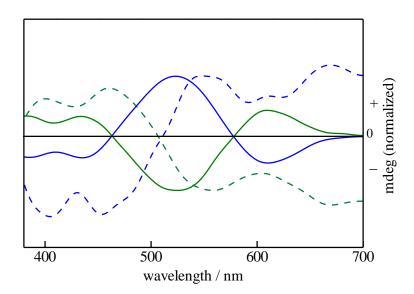

Figure S3. Diffuse reflection spectra of Na[Co(D-ebp)] (blue dashed line), Na[Co(L-ebp)] (green dashed line), D_3 -1_I (blue solid line), and L_3 -1_I (green solid line) in the solid state. The reflection intensity was normalized at the absorption band approximately 500-550 nm.

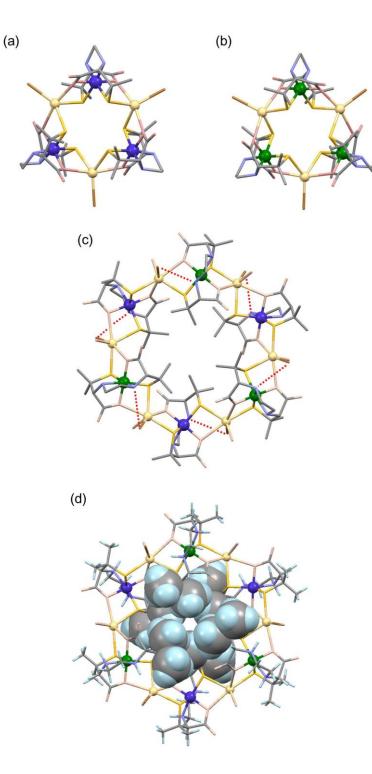
Figure S4. CD spectra of Na[Co(D-ebp)] (blue dashed line), Na[Co(L-ebp)] (green dotted line), D_3-1_1 (blue dashed line), and L_3-1_1 (green solid line) in the solid state. The CD intensity was normalized at the band approximately 500-550 nm.

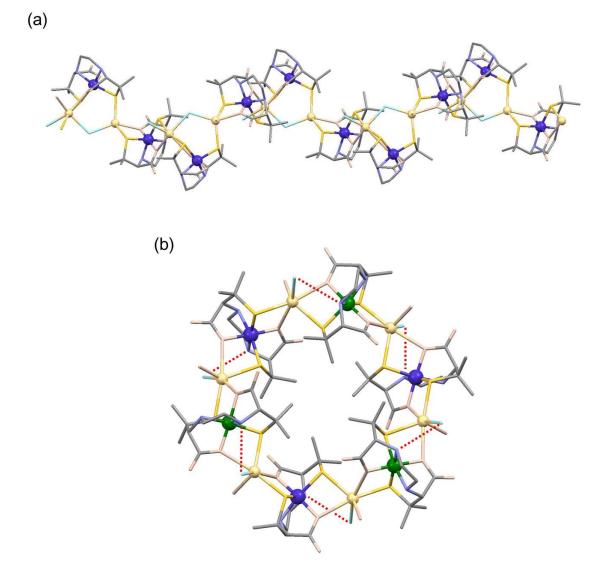
Figure S5. Diffuse reflection spectra of D₃-**1**₁ (blue), L₃-**1**₁ (green), and D₃L₃-**2**₁ (red). The reflection intensity was normalized at the absorption band approximately 500-550 nm.

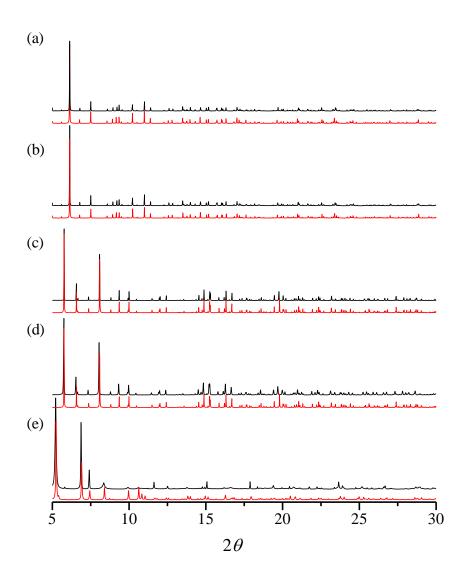
Figure S6. A perspective view of D_3L_3 -**21**. The methyl groups occupying the central cavity were illustrated as a space-filling model. Colour code: Cd, beige; I, purple; Co, blue for $[Co(D-ebp)]^-$ unit and green for $[Co(L-ebp)]^-$ unit; S, yellow; O, pink; N, pale blue; C, grey. H, sky blue.

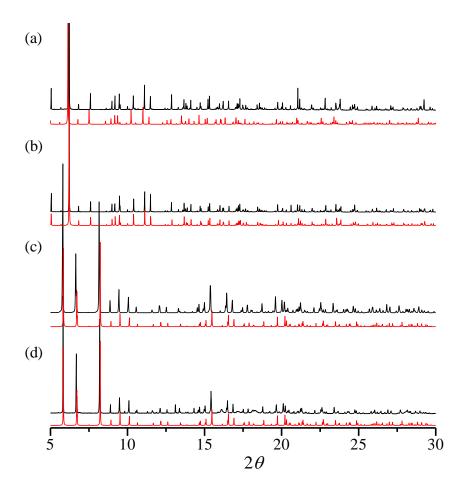





Figure S7. ESI-mass spectra of D_3 -1_I (green), L_3 -1_I (blue), D_3L_3 -2_I (red), and a mixture of D_3 -1_I and L_3 -1_I (black) in H₂O/MeOH. (a) The entire spectra measured in negative mode and (b) positive mode. (c) The isotope pattern of the signal at m/z = 1729 observed in the positive mode with the simulated patterns.


Figure S8. A perspective view of D_2L_2 -**3**. Colour code: Cd, beige; Co, blue for $[Co(D-ebp)]^-$ unit and green for $[Co(L-ebp)]^-$ unit; S, yellow; O, pink; N, pale blue; C, grey. H atoms are omitted for clarity.


Figure S9. Diffuse reflection spectra of Na[Co(D-ebp)] (blue dashed line), Na[Co(L-ebp)] (green dashed line), D₃-1_{Br} (blue solid line), and L₃-1_{Br} (green solid line) in the solid state. The reflection intensity was normalized at the absorption band approximately 500-550 nm.


Figure S10. CD spectra of Na[Co(D-ebp)] (blue dashed line), Na[Co(L-ebp)] (green dashed line), D_3 -1_{Br} (blue solid line), and L_3 -1_{Br} (green solid line) in the solid state. The CD intensity was normalized at the absorption band approximately 500-550 nm.


Figure S11. Perspective views of (a) D_3-1B_r , (b) L_3-1B_r , and (c,d) $D_3L_3-2B_r$. The methyl groups occupying the central cavity were illustrated as a space-filling model for (d). Colour code: Cd, beige; Br, brown; Co, blue for $[Co(D-ebp)]^-$ unit and green for $[Co(L-ebp)]^-$ unit; S, yellow; O, pink; N, pale blue; C, grey. H atoms are omitted for clarity for (a)-(c). Red dashed lines indicate NH···I hydrogen bonds.

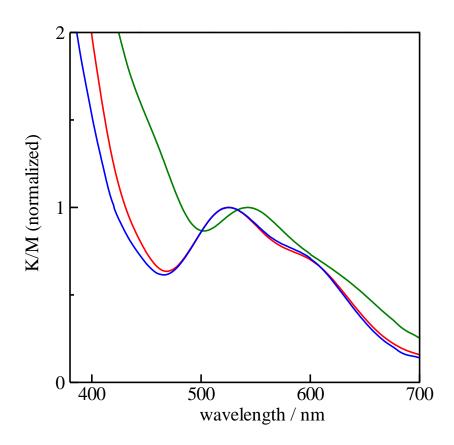

Figure S12. Perspective views of (a) $[CdCl{Co(D-ebp)}]_n$ and (b) D_3L_3 -**2**_{Cl}. Colour code: Cd, beige; Cl, sky blue; Co, blue for $[Co(D-ebp)]^-$ unit and green for $[Co(L-ebp)]^-$ unit; S, yellow; O, pink; N, pale blue; C, grey. Red dashed lines indicate NH…I hydrogen bonds.

Figure S13. Observed (black) and calculated (red) PXRD patterns of (a) D₃-1_I, (b) L₃-1_I, (c) D₃L₃-2_I prepared from the reaction of Na[Co(D-ebp)], Na[Co(L-ebp)], and CdI₂, (d) D₃L₃-2_I prepared from the reaction of D₃-1_I, L₃-1_I, and NaI, and (e) D₂L₂-3 [λ = 1.000 Å, 200 K].

Figure S14. Observed (black) and calculated (red) PXRD patterns of (a) D_3-1Br , (b) L_3-1Br , (c) D_3L_3-2Br prepared from the reaction of Na[Co(D-ebp)], Na[Co(L-ebp)], and CdBr₂, and (d) D_3L_3-2Br prepared from the reaction of D_3-1Br , L_3-1Br , and NaBr. [$\lambda = 1.000$ Å].

Figure S15. Diffuse reflection spectra of D_3L_3 -**2**_I (red), D_2L_3 -**3** (green), and D_3L_3 -**2**_{Br} (blue). The reflection intensity was normalized at the absorption band approximately 500-550 nm.

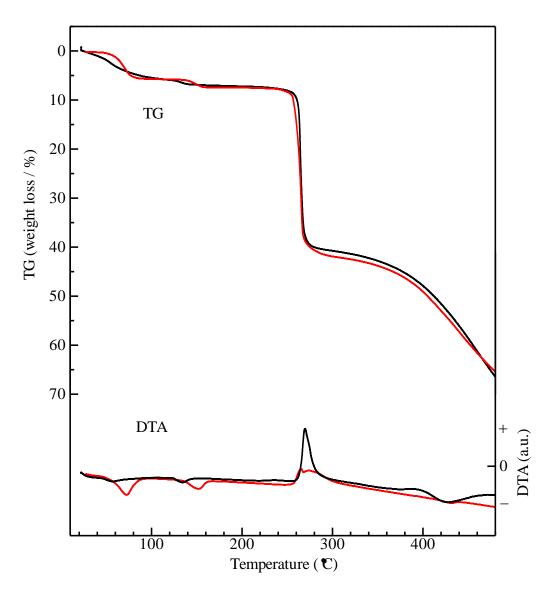
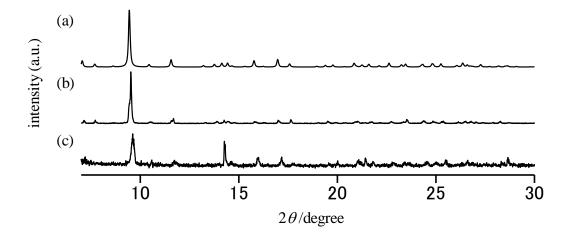
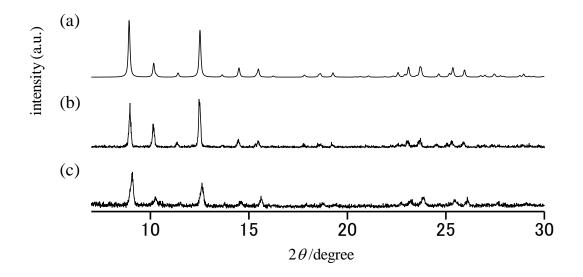




Figure S16. TG/DTA data for D_3 -1_I (black) and D_3L_3 -2_I (red).

Figure S17. (a) Simulated and (b) observed PXRD patterns of D_3 -**1**_I kept at room temperature for more than 1 year and (c) heated at 100 °C for 1 hour [$\lambda = 1.540$ Å, room temperature].

Figure S18. (a) Simulated and (b) observed PXRD patterns of D_3L_3 -**2**_I kept at room temperature for more than 1 year and (c) heated at 100 °C for 1 hour [$\lambda = 1.540$ Å, room temperature].

	$[Cd_{3}\{Co(D-ebp)\}_{3}I_{3}]\cdot 9H_{2}O$ $(D_{3}-1_{I})$	$[Cd_{3}\{Co(L-ebp)\}_{3}I_{3}] \cdot 9H_{2}O$ $(L_{3}-1_{I})$	$[Cd_{6}(H_{2}O)_{6}\{Co(D-ebp)\}_{3}\{Co(L-b)\}_{3}(Co(D-b))\}_{3}(Co(D-b))$
	(D3-1])	(L3-1)	$(D_{3}L_{3}-2_{I})$
Formula	$C_{36}H_{60}Cd_3Co_3I_3N_6O_{21}S_6$	$C_{36}H_{60}Cd_3Co_3I_3N_6O_{21}S_6$	$C_{72}H_{156}Cd_6Co_6I_6N_{12}O_{42}S_{12}$
Colour, form	purple, block	purple, block	purple, hexagonal plate
М	1999.95	1999.95	4036.18
Crystal system	orthorhombic	orthorhombic	trigonal
Space group	C222 ₁	C222 ₁	<i>R</i> -3
a /Å	11.2294(7)	11.2149(7)	34.458(5)
b /Å	25.0427(15)	25.0212(15)	34.458(5)
c ∕Å	22.9742(16)	22.9649(16)	9.1227(6)
lpha /°	90	90	90
β /°	90	90	90
$\gamma/^{\circ}$	90	90	120
$V/\text{\AA}^3$	6460.7(7)	6444.2(7)	9381(3)
Ζ	4	4	3
T/K	200(2)	200(2)	200(2)
<i>F</i> (000)	3864	3864	5904
$ ho_{ m calcd}$ /g cm ⁻³	2.056	2.061	2.143
μ (Mo K α) /mm ⁻¹	3.418	3.427	3.532
Crystal size /mm ³	0.10×0.07×0.02	0.10×0.05×0.03	0.10×0.10×0.03
	$-14 \le h \le 14,$	$-14 \le h \le 12,$	$-44 \le h \le 44,$
Limiting indices	$-31 \le k \le 32,$	$-32 \le k \le 32,$	$-44 \le k \le 44,$
	$-29 \le l \le 29$	$-29 \le l \le 29$	$-11 \le l \le 11$
R_1^{a} (<i>I</i> >2 σ (<i>I</i>))	0.036	0.031	0.021
wR_2^b (all data)	0.081	0.075	0.049
GOF	1.060	1.069	1.140
Flack parameter	0.030(6)	0.011(5)	_
CCDC No.	1879438	1879439	1879440

Table S1.	Crystallographic data for D ₃ - 1 _I , L ₃ - 1 _I , and D ₃ L ₃ - 2 _I .
-----------	---

 ${}^{a}R_{1} = (\Sigma |(|F_{o}| - |F_{c}|)|) / (\Sigma |F_{o}|)$ ${}^{b}wR_{2} = [\{\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}\} / (\Sigma w |F_{o}^{2}|^{2})]^{1/2}$

$[Cd_2(H_2O)_2\{Co(D-ebp)\}_2\{Co(L-ebp)\}_2]\cdot 8H_2O$		
	(D ₂ L ₂ - 3)	
Formula	$C_{48}H_{80}Cd_2Co_4N_8O_{26}S_8$	
Colour, form	green, block	
Μ	1902.20	
Crystal system	monoclinic	
Space group	$P2_{1}/n$	
a /Å	14.7082(11)	
<i>b</i> /Å	15.4846(12)	
c /Å	15.6106(12)	
lpha /°	90	
$eta/^{\circ}$	99.087(7)	
γ/°	90	
$V/\text{\AA}^3$	3510.7(5)	
Ζ	2	
T/K	200(2)	
<i>F</i> (000)	1928	
$ ho_{ m calcd}$ /g cm ⁻³	1.799	
μ (Mo K α) /mm ⁻¹	1.838	
Crystal size /mm ³	0.15×0.05×0.03	
	$-19 \le h \le 19,$	
Limiting indices	$-20 \le k \le 20,$	
	$-20 \le l \le 19$	
$R_1^a (I > 2\sigma(I))$	0.059	
wR_2^{b} (all data)	0.150	
GOF	1.127	
CCDC No.	1879441	

Table S2. Crystallographic data for D2L2-3.

 $\overline{{}^{a}R_{1} = (\Sigma|(|F_{o}| - |F_{c}|)|)/(\Sigma|F_{o}|)}$ ${}^{b}wR_{2} = [\{\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}\}/(\Sigma w|F_{o}^{2}|^{2})]^{1/2}$

	$[Cd_3\{Co(D-ebp)\}_3Br_3] \cdot 9H_2O$ (D_3-1_{Br})	$[Cd_{3}\{Co(L-ebp)\}_{3}Br_{3}]\cdot 9H_{2}O$ $(L_{3}-1_{Br})$	$[Cd_{6}(H_{2}O)_{6}\{Co(D-ebp)\}_{3}\{Co(L-ebp)\}_{3}Br_{6}]\cdot 12H_{2}O$ $(D_{3}L_{3}-2Br)$
Formula	$C_{36}H_{60}Br_3Cd_3Co_3N_6O_{21}S_6\\$	$C_{36}H_{60}Br_3Cd_3Co_3N_6O_{21}S_6\\$	$C_{72}H_{156}Br_6Cd_6Co_6N_{12}O_{42}S_{12}$
Colour, form	purple, block	purple, block	purple, hexagonal plate
Μ	1858.98	1858.98	3717.95
Crystal system	orthorhombic	orthorhombic	Trigonal
Space group	<i>C</i> 222 ₁	$C222_{1}$	<i>R</i> -3
a /Å	11.0674(9)	11.0409(17)	34.015(13)
b/Å	24.976(2)	24.930(4)	34.015(13)
c /Å	22.7050(18)	22.688(4)	8.9339(18)
lpha /°	90	90	90
$eta/^{\circ}$	90	90	90
$\gamma/^{\circ}$	90	90	120
$V/\text{\AA}^3$	6276.1(9)	6244.7(17)	8952(7)
Ζ	4	4	3
T/K	200(2)	200(2)	200(2)
<i>F</i> (000)	3648	3648	5472
$ ho_{ m calcd}$ /g cm ⁻³	1.967	1.977	2.069
μ (Mo K α) /mm ⁻¹	3.952	3.972	4.156
Crystal size /mm ³	0.20×0.10×0.05	0.10×0.05×0.01	0.10×0.10×0.02
Limiting indices	$-14 \le h \le 14,$ $-32 \le k \le 31,$ $-29 \le l \le 27$	$-14 \le h \le 14,$ $-31 \le k \le 32,$ $-29 \le l \le 29$	$-44 \le h \le 38,$ $-44 \le k \le 44,$ $-10 \le l \le 11$
$R_1^{a} (I > 2\sigma(I))$	0.029	0.060	0.058
wR_2^b (all data)	0.074	0.100	0.109
GOF	1.046	1.054	1.165
Flack parameter	0.032(5)	0.022(8)	-
CCDC No.	1879442	1879443	1879444

Table S3. Crystallographic data for D_3 -1Br, L_3 -1Br, and D_3L_3 -2Br.

 $\overline{{}^{a}R_{1} = (\Sigma|(|F_{o}| - |F_{c}|)|)/(\Sigma|F_{o}|)}$ ${}^{b}wR_{2} = [\{\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}\}/(\Sigma w|F_{o}^{2}|^{2})]^{1/2}$

	$[Cd_2Cl_2(H_2O)\{Co(D-$	$[Cd_{6}(H_{2}O)_{6}\{Co(D-$
	$ebp)_{2} \cdot 14.5 H_{2}O$	ebp)} ₃ {Co(L-
	$([CdCl{Co(D-ebp)}]_n)$	$ebp)$ } ₃ Cl_6]·12H ₂ O
		(D ₃ L ₃ - 2 _{Cl})
Formula	$C_{24}H_{71}Cd_2Cl_2Co_2N_4O_{23.5}S_4$	$C_{72}H_{156}Cd_6Co_6N_{12}O_{42}S_{12}$
Colour, form	purple, block	purple, hexagonal plate
Μ	1333.64	3717.95
Crystal system	Tetragonal	Trigonal
Space group	$P4_{1}2_{1}2$	<i>R</i> -3
a /Å	17.911(3)	34.015(13)
b /Å	17.911(3)	34.015(13)
c /Å	31.795(3)	8.9339(18)
lpha /°	90	90
$\beta/^{\circ}$	90	90
$\gamma /^{\circ}$	90	120
$V/\text{\AA}^3$	10199(4)	8952(7)
Ζ	8	3
T/K	200(2)	200(2)
<i>F</i> (000)	5432	5472
$ ho_{ m calcd}$ /g cm ⁻³	1.737	2.069
μ (Mo K α) /mm ⁻¹	1.806	4.156
Crystal size /mm ³	0.05×0.05×0.02	0.10×0.10×0.02
	$-22 \le h \le 23,$	$-44 \le h \le 38,$
Limiting indices	$-23 \le k \le 18,$	$-44 \le k \le 44,$
	$-41 \le l \le 41$	$-10 \le l \le 11$
R_1^{a} (<i>I</i> >2 σ (<i>I</i>))	0.045	0.058
wR_2^b (all data)	0.126	0.109
GOF	1.082	1.165
Flack parameter	0.018(5)	_
CCDC No.	1879445	1879446

Table S4. Crystallographic data for $[CdCl{Co(D-ebp)}]_n$ and D_3L_3 -**2**_{Cl}.

 $\overline{{}^{a}R_{1} = (\Sigma|(|F_{o}| - |F_{c}|)|)/(\Sigma|F_{o}|)}$ ${}^{b}wR_{2} = [\{\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}\}/(\Sigma w|F_{o}^{2}|^{2})]^{1/2}$