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Experimental
Synthesis of V,P; Nanoparticles:

The V,4P; nanoparticles were synthesized by high energy mechanical milling (HEMM, Fritsch
Pulverisette-6) with vanadium (99.95%, Alfa Aesar) and red phosphorus (98.9%, Alfa Aesar)
under an Ar atmosphere. Stoichiometric amount of precursors was put into a hardened steel
vial (80 cm?) with hardened steel balls (3/8 in. in diameter). The weight ratio of milling balls
to powder was 20:1. The phase pure V,4P; was obtained after milling for 60 h at a rotation speed
of 300 rpm. The final product was collected, softly ground, and stored in a glove box to

minimize the surface oxidation.

Synthesis of VO,(B) Nanorods:

The VO,(B) nanorods were synthesized by a hydrothermal method. 1.6 mmol of vanadium
pentaoxide (V,0s, 99.6%, Sigma-Aldrich) was dissolved in 50 mL of deionized water. After
stirring for 30 min using a magnetic stirrer, 16.0 mmol of glycerol (99.5%, Sigma-Aldrich) was
added into solution and additional stirring was conducted for 30 min. Then, the obtained
solution was transferred into a Teflon-lined stainless steel autoclave (100 mL capacity) and
hydrothermally treated at 180 °C for 24 h with a ramping rate of 5 °C min™!. As-obtained blue
black powder was collected by centrifugation and washed with deionized water and ethanol for

several times. The final product was dried in vacuum oven at 80 °C for 24 h.

Materials Characterization: The phase of as-synthesized V4P; nanoparticles, VO,(B)
nanorods, and electrodes was characterized by X-ray diffractometer (XRD, D8-Advance,
BRUKER MILLER Co.) using Cu Ko radiation (A=1.5406 A). The valence states of vanadium
and phosphorus for as-prepared V4P, nanoparticles were characterized by X-ray photoelectron
spectroscopy (XPS, K-Alpha, Thermo scientific) equipped with an Al Ko X-ray source (hv =
1486.6 eV). The morphology of nanoparticles, nanorods, and electrodes was examined by field
emission scanning electron microscopy (FE-SEM, SU70, Hitachi) and transmission electron
microscopy (TEM, JEM-2100F, JEOL). The V and P content in as-synthesized V,P;
nanoparticles and were determined using inductively coupled plasma atomic emission
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spectrometer (ICP-AES, OPTIMA 8300, Perkin-Elmer). The ex-situ measurement of V K-edge
X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure
(EXAFS) was carried out with a transmission mode at the 7D beamline of Pohang accelerator

laboratory (PAL, Korea) in a storage ring of 2.5 GeV with a ring current of 330-360 mA.

Electrochemical Measurements: The electrochemical properties of the V4P; and VO,(B)
electrodes were evaluated using 2032 coin-type half cells, which were fabricated inside an
argon-filled glove box by employing poly-propylene (Welcose, Korea) separator and sodium
foil counter/reference electrode. The V4P; and VO,(B) working electrodes were prepared by
mixing 70% active material, 15% Super P carbon black, and 15% carboxymethyl cellulose
(CMC) binder by weight to form a slurry, which cast onto a piece of copper foil and followed
by drying in a vacuum oven at 80 °C overnight. The mass loading of the active material on the
copper foil was 1.5-2 mg cm. The electrolyte was 1.0 M NaClO, dissolved in a solution of
ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1 v/v) with the addition of 5 vol.%
of fluoroethylene carbonate (FEC) additive. Galvanostatic cycling and cyclic voltammetry tests
were performed with a battery testing system (Wonatech, Korea) within voltage ranges of 0.01—
2 V and 0.01-3 V (vs. Na/Na"). Electrochemical impedance spectroscopy (EIS) experiment
was carried out at a frequency range of 100 kHz to 0.1 Hz with an AC amplitude of 5 mV using
an impedance analyzer (Zive, SP1). For the ex-situ XRD, SEM, and TEM analyses, the
electrode materials were collected by disassembling the test cells in the argon-filled glove box,

rinsing with DMC several times, and drying at room temperature.
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Fig. S1. (a) V 2p and (b) P 2p XPS spectra of as-prepared V,P; nanoparticles.

(The valence states of V and P in as-synthesized V4P; powder were characterized by X-
ray photoelectron spectroscopy (XPS). The V2p core level spectrum shows the
characteristic peaks of V2* (2ps); at 513.4 and 2p;,, at 521 eV), V3* (2ps; at 514.5 and
2p1p at 522.7 eV), and V> (2p3n at 517.3 and 2p;» at 524.7 eV), respectively (Fig. S1a).
[1.21 The P2p XPS spectrum exhibits two peaks at 129.1 and 130 eV corresponding P2p;,
and P2p,, respectively (Fig. S1b). The peaks around 133.7 eV in P2p spectrum can be
assigned to oxidized P species arising from oxidation as a result of air contact.l3] The
V4P; phase has two partial occupancy sites for phosphorus ions, thus the near-neighbor
environments of all 'equivalent' atoms are slightly different, depending on the actual
occupancy of the near split-atom positions.[*] The various valence states of vanadium
ions could be derived from the partial occupied sites of phosphorus ions in the crystal
structure.

[1] Appl. Surf. Sci. 2010, 257, 887-898.
[2] J. Elect. Spectro. Related Phenom. 2004, 135, 167-175.

[3]J. Mater. Chem. A. 2016, 4, 4686-4690.

[4] Acta Cryst. 1976, B32, 1499-1505.)



Fig. S2. (a) STEM image of V,P; nanoparticles, (b) V K, and (c) P K EDS mapping of (a) and
(d) STEM image of VO,(B) nanorods, (¢) V K, and (f) O K EDS mapping of (d).
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Fig. S3. Cyclic voltammetry (CV) plots at a scan rate of 0.1 mV s! for (a) V4P; electrode and

(b) VO,(B) electrode, respectively.
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Fig. S4. Galvanostatic discharge/charge voltage profiles of VO,(B)/Na cell at current density
of 50 mA g! with operational potential range from 0.01 to 3.0 V.
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Fig. S5. XRD pattern of V4P electrode after discharged to 0.01 V after 20% cycle.
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Fig. S6. STEM image and NaK, VK, and PK EDS mapping of V,P; electrode after 1%
discharged to 0.01 V.
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Fig. S7 (a) Cyclic voltammetry (CV) plots as a function of the scan rate, (b) corresponding
measured current values, (c¢) current versus square root of the scan rate, (d) galvanostatic
discharge/charge voltage profiles of V4P;/Na cell, and (e) Na/V atomic ratio of electrodes by
ICP-AES, EDS, and capacity calculation, stopped at various discharge/charge states as shown
in (d).

(To identify the successful insertion of Na' into bulk V4P; nanoparticles, cyclic
voltammetry (CV) test was performed as a function of the scan rate from 0.1 to 100 mV
s'! (Fig. S7a, b). Fig. S7c showed the current values as a function of the square root of
the scan rate (v/?). Assuming that the current obeys a power-law relationship with the
voltage sweep rate leads to i=av®, Fig. S7¢ showed a linear relation for both the sodiation
and desodiation currents with v!’? indicating that Na" ions/electrons are stored in the

bulk of V,P; as diffusion-controlled reaction rather than at the surface as capacitive

reaction (b=1, iocv).

The cycle tested cell was dissembled in argon-filled glove box and the electrode was washed

with dimethylcarbonate (DMC) and acetonitrile to clean the solid electrode interface layer and



surface attached Na-salt and NaClO,. The atomic ratio of Na/V measured by ICP-AES for the
Na/V4P; cell, which did not operate the galvanostatic test, just assembled and de-assembled
one is only 0.08 (t; of Fig. S7d), indicating very little existence of surface attached NaClO,4 in
the electrode, which seems to be negligible. Fig. S7e shows that the atomic ratio of Na/V in the
electrode at discharge state increased with decreasing the voltage to 0.01 V (from t; to t4),
which means the electrochemical Na ion insertion occurred in the bulk V4P, electrode during
the discharge process. On the other hand, Na/V ratio in the electrode at charge state decreased
with increasing the voltage to 2.0 V (from t4 to ts), which means the electrochemical Na-ion

extraction occurred in the bulk V4P; electrode during the charge process.)
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Fig. S8 (a) Cycling performance tested at a current density of 100 mA g! in the voltage range
0f 0.01-3.0 V for VO,(B) electrode and discharge/charge voltage profiles of rate capability and
long-term cycle retention tested at current density of 500 mA g-! for (b,d) V4P; and (c,e) VO,(B)

electrodes, respectively.
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Fig. S9 The crystal structure of V4P, tetragonal phase along a, b, and c-axis.
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